Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 98: 73-82, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27363295

RESUMO

Constitutive Ca(2+)/calmodulin (CaM)-activation of adenylyl cyclases (ACs) types 1 and 8 in sinoatrial nodal cells (SANC) generates cAMP within lipid-raft-rich microdomains to initiate cAMP-protein kinase A (PKA) signaling, that regulates basal state rhythmic action potential firing of these cells. Mounting evidence in other cell types points to a balance between Ca(2+)-activated counteracting enzymes, ACs and phosphodiesterases (PDEs) within these cells. We hypothesized that the expression and activity of Ca(2+)/CaM-activated PDE Type 1A is higher in SANC than in other cardiac cell types. We found that PDE1A protein expression was 5-fold higher in sinoatrial nodal tissue than in left ventricle, and its mRNA expression was 12-fold greater in the corresponding isolated cells. PDE1 activity (nimodipine-sensitive) accounted for 39% of the total PDE activity in SANC lysates, compared to only 4% in left ventricular cardiomyocytes (LVC). Additionally, total PDE activity in SANC lysates was lowest (10%) in lipid-raft-rich and highest (76%) in lipid-raft-poor fractions (equilibrium sedimentation on a sucrose density gradient). In intact cells PDE1A immunolabeling was not localized to the cell surface membrane (structured illumination microscopy imaging), but located approximately within about 150nm inside of immunolabeling of hyperpolarization-activated cyclic nucleotide-gated potassium channels (HCN4), which reside within lipid-raft-rich microenvironments. In permeabilized SANC, in which surface membrane ion channels are not functional, nimodipine increased spontaneous SR Ca(2+) cycling. PDE1A mRNA silencing in HL-1 cells increased the spontaneous beating rate, reduced the cAMP, and increased cGMP levels in response to IBMX, a broad spectrum PDE inhibitor (detected via fluorescence resonance energy transfer microscopy). We conclude that signaling via cAMP generated by Ca(2+)/CaM-activated AC in SANC lipid raft domains is limited by cAMP degradation by Ca(2+)/CaM-activated PDE1A in non-lipid raft domains. This suggests that local gradients of [Ca(2+)]-CaM or different AC and PDE1A affinity regulate both cAMP production and its degradation, and this balance determines the intensity of Ca(2+)-AC-cAMP-PKA signaling that drives SANC pacemaker function.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/genética , Expressão Gênica , Sistema de Condução Cardíaco , Nó Sinoatrial/citologia , Nó Sinoatrial/metabolismo , Animais , Cálcio/metabolismo , Calmodulina/metabolismo , Linhagem Celular , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/metabolismo , Ativação Enzimática , Ativação do Canal Iônico , Mitocôndrias , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Especificidade de Órgãos/genética , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais
2.
Mult Scler Relat Disord ; 68: 104160, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36113276

RESUMO

BACKGROUND: Retinal optical coherence tomography (OCT) can differentiate definite NMOSD (dNMOSD) from multiple sclerosis (MS), but has not been evaluated in patients with a high clinical suspicion of NMOSD and not fulfilling the current consensus diagnostic criteria, referred in this paper as "potential" NMOSD (pNMOSD). AIM: To compare the retinal OCT measurements between patients with pNMOSD, dNMOSD, MS, and reference healthy controls (HC). MATERIAL AND METHODS: In this cross-sectional study, clinical and demographic characteristics, as well as OCT measurements of peripapillary retinal nerve fiber layer (pRNFL), inner nuclear layer (INL), macular retinal nerve fiber layer (mRNFL), outer nuclear layer (ONL) ganglion cell/inner plexiform layer (GCIPL), and macular volume (MV) were compared between groups. Mixed-effects regression models adjusting for within-patient inter-eye correlations, controlling for age, gender, disease duration and history of optic neuritis per eye were explored. Subgroup analyses were performed on eyes with previous optic neuritis. RESULTS: 234 eyes (20 pNMOSD, 33 dNMOSD, 138 MS, and 43 HC) were included. Controlling for age, gender, disease duration, and history of optic neuritis per eye, pNMOSD eyes showed decreased GCIPL, pRNFL, mRNFL and MV thicknesses, similar to eyes with dNMOSD, but significantly thinner than MS and HC subjects' eyes. Similar results were obtained for the pRNFL, mRNFL, GCIPL, INL and MV thickness in the subgroup analysis exploring only eyes with history of optic neuritis (12 pNMOSD, 15 dNMOSD, and 27 MS). CONCLUSION: Retinal OCT measurements in patients with pNMOSD were similar to dNMOSD, but significantly lower than patients with MS and healthy controls. This suggests that retinal OCT measures could be helpful markers supportive of NMOSD diagnosis and should be explored in larger studies as a valuable addition to the current consensus diagnostic criteria.


Assuntos
Esclerose Múltipla , Neuromielite Óptica , Neurite Óptica , Humanos , Neuromielite Óptica/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Estudos Transversais , Esclerose Múltipla/diagnóstico por imagem , Células Ganglionares da Retina , Neurite Óptica/diagnóstico por imagem
3.
Anal Biochem ; 417(1): 36-40, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21693101

RESUMO

We have adapted bioluminescence methods to be able to measure phosphodiesterase (PDE) activity in a one-step technique. The method employs a four-enzyme system (PDE, adenylate kinase (AK) using excess CTP instead of ATP as substrate, pyruvate kinase (PK), and firefly luciferase) to generate ATP, with measurement of the concomitant luciferase-light emission. Since AK, PK, and luciferase reactions are coupled to recur in a cyclic manner, AMP recycling maintains a constant rate of ATP formation, proportional to the steady-state AMP concentration. The cycle can be initiated by the PDE reaction that yields AMP. As long as the PDE reaction is rate limiting, the system is effectively at steady state and the bioluminescence kinetics progresses at a constant rate proportional to the PDE activity. In the absence of cAMP and PDE, low concentrations of AMP trigger the AMP cycling, which allows standardizing the system. The sensitivity of the method enables detection of <1 µU (pmol/min) of PDE activity in cell extracts containing 0.25-10 µg protein. Assays utilizing pure enzyme showed that 0.2 mM IBMX completely inhibited PDE activity. This single-step enzyme- and substrate-coupled cyclic-reaction system yields a simplified, sensitive, reproducible, and accurate method for quantifying PDE activities in small biological samples.


Assuntos
Ensaios Enzimáticos/métodos , Medições Luminescentes/métodos , Diester Fosfórico Hidrolases/metabolismo , 1-Metil-3-Isobutilxantina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Bovinos , Luciferina de Vaga-Lumes/metabolismo , Cinética , Luz , Luciferases/metabolismo , Miócitos Cardíacos/metabolismo , Coelhos , Padrões de Referência
4.
Cells ; 10(11)2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34831329

RESUMO

Spontaneous AP (action potential) firing of sinoatrial nodal cells (SANC) is critically dependent on protein kinase A (PKA) and Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent protein phosphorylation, which are required for the generation of spontaneous, diastolic local Ca2+ releases (LCRs). Although phosphoprotein phosphatases (PP) regulate protein phosphorylation, the expression level of PPs and phosphatase inhibitors in SANC and the impact of phosphatase inhibition on the spontaneous LCRs and other players of the oscillatory coupled-clock system is unknown. Here, we show that rabbit SANC express both PP1, PP2A, and endogenous PP inhibitors I-1 (PPI-1), dopamine and cyclic adenosine 3',5'-monophosphate (cAMP)-regulated phosphoprotein (DARPP-32), kinase C-enhanced PP1 inhibitor (KEPI). Application of Calyculin A, (CyA), a PPs inhibitor, to intact, freshly isolated single SANC: (1) significantly increased phospholamban (PLB) phosphorylation (by 2-3-fold) at both CaMKII-dependent Thr17 and PKA-dependent Ser16 sites, in a time and concentration dependent manner; (2) increased ryanodine receptor (RyR) phosphorylation at the Ser2809 site; (3) substantially increased sarcoplasmic reticulum (SR) Ca2+ load; (4) augmented L-type Ca2+ current amplitude; (5) augmented LCR's characteristics and decreased LCR period in intact and permeabilized SANC, and (6) increased the spontaneous basal AP firing rate. In contrast, the selective PP2A inhibitor okadaic acid (100 nmol/L) had no significant effect on spontaneous AP firing, LCR parameters, or PLB phosphorylation. Application of purified PP1 to permeabilized SANC suppressed LCR, whereas purified PP2A had no effect on LCR characteristics. Our numerical model simulations demonstrated that PP inhibition increases AP firing rate via a coupled-clock mechanism, including respective increases in the SR Ca2+ pumping rate, L-type Ca2+ current, and Na+/Ca2+-exchanger current. Thus, PP1 and its endogenous inhibitors modulate the basal spontaneous firing rate of cardiac pacemaker cells by suppressing SR Ca2+ cycling protein phosphorylation, the SR Ca2+ load and LCRs, and L-type Ca2+ current.


Assuntos
Relógios Biológicos , Fosfoproteínas Fosfatases/metabolismo , Nó Sinoatrial/citologia , Potenciais de Ação/efeitos dos fármacos , Animais , Relógios Biológicos/efeitos dos fármacos , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Simulação por Computador , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ventrículos do Coração/citologia , Toxinas Marinhas/farmacologia , Modelos Biológicos , Oxazóis/farmacologia , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coelhos
5.
Circ Res ; 102(7): 761-9, 2008 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-18276917

RESUMO

Spontaneous beating of rabbit sinoatrial node cells (SANCs) is controlled by cAMP-mediated, protein kinase A-dependent local subsarcolemmal ryanodine receptor Ca(2+) releases (LCRs). LCRs activated an inward Na(+)/Ca(2+) exchange current that increases the terminal diastolic depolarization rate and, therefore, the spontaneous SANC beating rate. Basal cAMP in SANCs is elevated, suggesting that cAMP degradation by phosphodiesterases (PDEs) may be low. Surprisingly, total suppression of PDE activity with a broad-spectrum PDE inhibitor, 3'-isobutylmethylxanthine (IBMX), produced a 9-fold increase in the cAMP level, doubled cAMP-mediated, protein kinase A-dependent phospholamban phosphorylation, and increased SANC firing rate by approximately 55%, indicating a high basal activity of PDEs in SANCs. A comparison of specific PDE1 to -5 inhibitors revealed that the specific PDE3 inhibitor, milrinone, accelerated spontaneous firing by approximately 47% (effects of others were minor) and increased amplitude of L-type Ca(2+) current (I(Ca,L)) by approximately 46%, indicating that PDE3 was the major constitutively active PDE in the basal state. PDE-dependent control of the spontaneous SANC firing was critically dependent on subsarcolemmal LCRs, ie, PDE inhibition increased LCR amplitude and size and decreased LCR period, leading to earlier and augmented LCR Ca(2+) release, Na(+)/Ca(2+) exchange current, and an increase in the firing rate. When ryanodine receptors were disabled by ryanodine, neither IBMX nor milrinone was able to amplify LCRs, accelerate diastolic depolarization rate, or increase the SANC firing rate, despite preserved PDE inhibition-induced augmentation of I(Ca,L) amplitude. Thus, basal constitutive PDE activation provides a novel and powerful mechanism to decrease cAMP, limit cAMP-mediated, protein kinase A-dependent increase of diastolic ryanodine receptor Ca(2+) release, and restrict the spontaneous SANC beating rate.


Assuntos
Relógios Biológicos/fisiologia , Cálcio/metabolismo , Frequência Cardíaca/fisiologia , Diester Fosfórico Hidrolases/metabolismo , Nó Sinoatrial/metabolismo , 1-Metil-3-Isobutilxantina/farmacologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática , Técnicas de Patch-Clamp , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/efeitos dos fármacos , Fosforilação , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Transdução de Sinais/fisiologia , Nó Sinoatrial/patologia
6.
Am J Physiol Heart Circ Physiol ; 297(3): H949-59, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19542482

RESUMO

Prior studies indicate that cholinergic receptor (ChR) activation is linked to beating rate reduction (BRR) in sinoatrial nodal cells (SANC) via 1) a G(i)-coupled reduction in adenylyl cyclase (AC) activity, leading to a reduction of cAMP or protein kinase A (PKA) modulation of hyperpolarization-activated current (I(f)) or L-type Ca(2+) currents (I(Ca,L)), respectively; and 2) direct G(i)-coupled activation of ACh-activated potassium current (I(KACh)). More recent studies, however, have indicated that Ca(2+) cycling by the sarcoplasmic reticulum within SANC (referred to as a Ca(2+) clock) generates rhythmic, spontaneous local Ca(2+) releases (LCR) that are AC-PKA dependent. LCRs activate Na(+)-Ca(2+) exchange (NCX) current, which ignites the surface membrane ion channels to effect an AP. The purpose of the present study was to determine how ChR signaling initiated by a cholinergic agonist, carbachol (CCh), affects AC, cAMP, and PKA or sarcolemmal ion channels and LCRs and how these effects become integrated to generate the net response to a given intensity of ChR stimulation in single, isolated rabbit SANC. The threshold CCh concentration ([CCh]) for BRR was approximately 10 nM, half maximal inhibition (IC(50)) was achieved at 100 nM, and 1,000 nM stopped spontaneous beating. G(i) inhibition by pertussis toxin blocked all CCh effects on BRR. Using specific ion channel blockers, we established that I(f) blockade did not affect BRR at any [CCh] and that I(KACh) activation, evidenced by hyperpolarization, first became apparent at [CCh] > 30 nM. At IC(50), CCh reduced cAMP and reduced PKA-dependent phospholamban (PLB) phosphorylation by approximately 50%. The dose response of BRR to CCh in the presence of I(KACh) blockade by a specific inhibitor, tertiapin Q, mirrored that of CCh to reduced PLB phosphorylation. At IC(50), CCh caused a time-dependent reduction in the number and size of LCRs and a time dependent increase in LCR period that paralleled coincident BRR. The phosphatase inhibitor calyculin A reversed the effect of IC(50) CCh on SANC LCRs and BRR. Numerical model simulations demonstrated that Ca(2+) cycling is integrated into the cholinergic modulation of BRR via LCR-induced activation of NCX current, providing theoretical support for the experimental findings. Thus ChR stimulation-induced BRR is entirely dependent on G(i) activation and the extent of G(i) coupling to Ca(2+) cycling via PKA signaling or to I(KACh): at low [CCh], I(KACh) activation is not evident and BRR is attributable to a suppression of cAMP-mediated, PKA-dependent Ca(2+) signaling; as [CCh] increases beyond 30 nM, a tight coupling between suppression of PKA-dependent Ca(2+) signaling and I(KACh) activation underlies a more pronounced BRR.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Sinalização do Cálcio/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptores Colinérgicos/fisiologia , Nó Sinoatrial/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Atropina/farmacologia , Venenos de Abelha/farmacologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Césio/farmacologia , Cloretos/farmacologia , Agonistas Colinérgicos/farmacologia , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Parassimpatolíticos/farmacologia , Técnicas de Patch-Clamp , Toxina Pertussis/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia , Coelhos , Nó Sinoatrial/citologia , Processos Estocásticos
8.
J Endocrinol ; 223(2): 107-17, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25297556

RESUMO

Resveratrol (RES) and curcumin (CUR) are polyphenols that are found in fruits and turmeric, and possess medicinal properties that are beneficial in various diseases, such as heart disease, cancer, and type 2 diabetes mellitus (T2DM). Results from recent studies have indicated that their therapeutic properties can be attributed to their anti-inflammatory effects. Owing to reports stating that they protect against ß-cell dysfunction, we studied their mechanism(s) of action in ß-cells. In T2DM, cAMP plays a critical role in glucose- and incretin-stimulated insulin secretion as well as overall pancreatic ß-cell health. A potential therapeutic target in the management of T2DM lies in regulating the activity of phosphodiesterases (PDEs), which degrade cAMP. Both RES and CUR have been reported to act as PDE inhibitors in various cell types, but it remains unknown if they do so in pancreatic ß-cells. In our current study, we found that both RES (0.1-10 µmol/l) and CUR (1-100 pmol/l)-regulated insulin secretion under glucose-stimulated conditions. Additionally, treating ß-cell lines and human islets with these polyphenols led to increased intracellular cAMP levels in a manner similar to 3-isobutyl-1-methylxanthine, a classic PDE inhibitor. When we investigated the effects of RES and CUR on PDEs, we found that treatment significantly downregulated the mRNA expression of most of the 11 PDE isozymes, including PDE3B, PDE8A, and PDE10A, which have been linked previously to regulation of insulin secretion in islets. Furthermore, RES and CUR inhibited PDE activity in a dose-dependent manner in ß-cell lines and human islets. Collectively, we demonstrate a novel role for natural-occurring polyphenols as PDE inhibitors that enhance pancreatic ß-cell function.


Assuntos
Curcumina/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Estilbenos/farmacologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/fisiologia , Camundongos , Diester Fosfórico Hidrolases/genética , Resveratrol
9.
J Biol Chem ; 283(21): 14461-8, 2008 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-18356168

RESUMO

Spontaneous, rhythmic subsarcolemmal local Ca(2+) releases driven by cAMP-mediated, protein kinase A (PKA)-dependent phosphorylation are crucial for normal pacemaker function of sinoatrial nodal cells (SANC). Because local Ca(2+) releases occur beneath the cell surface membrane, near to where adenylyl cyclases (ACs) reside, we hypothesized that the dual Ca(2+) and cAMP/PKA regulatory components of automaticity are coupled via Ca(2+) activation of AC activity within membrane microdomains. Here we show by quantitative reverse transcriptase PCR that SANC express Ca(2+)-activated AC isoforms 1 and 8, in addition to AC type 2, 5, and 6 transcripts. Immunolabeling of cell fractions, isolated by sucrose gradient ultracentrifugation, confirmed that ACs localize to membrane lipid microdomains. AC activity within these lipid microdomains is activated by Ca(2+) over the entire physiological Ca(2+) range. In intact SANC, the high basal AC activity produces a high level of cAMP that is further elevated by phosphodiesterase inhibition. cAMP and cAMP-mediated PKA-dependent activation of ion channels and Ca(2+) cycling proteins drive sarcoplasmic reticulum Ca(2+) releases, which, in turn, activate ACs. This feed forward "fail safe" system, kept in check by a high basal phosphodiesterase activity, is central to the generation of normal rhythmic, spontaneous action potentials by pacemaker cells.


Assuntos
Adenilil Ciclases/metabolismo , Cálcio/farmacologia , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/enzimologia , Nó Sinoatrial/citologia , Nó Sinoatrial/enzimologia , Adenilil Ciclases/genética , Animais , Cálcio/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática , Regulação da Expressão Gênica , Isoenzimas/genética , Isoenzimas/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , RNA Mensageiro/genética , Coelhos
10.
Am J Physiol Heart Circ Physiol ; 289(4): H1652-61, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16162869

RESUMO

Growing evidence suggests that cardiac enkephalins and their receptors are involved in ischemic preconditioning (IPC). Because there is no evidence for vesicular storage of small bioactive enkephalins in the heart, studies were designed to test the hypothesis that ischemia depletes cardiac enkephalins and that IPC preserves the same enkephalins by accelerating their processing from the larger proenkephalin precursor (PEP) pool. The precursors and two bioactive representatives, Met-enkephalin (ME) and Met-enkephalin-Arg-Phe (MEAP), were separated by size-exclusion chromatography and quantified by radioimmunoassay. Isolated perfused rat hearts were prepared and exposed to global ischemia. After 30 min of global ischemia and 40 min of reflow, the PEP pool was reduced (from 17.99 +/- 1.52 to 14.20 +/- 2.38 pmol/g wet wt), MEAP increased by 53%, and ME declined by 68%. The sum of the two smaller peptides was unchanged (9.78 +/- 0.83 vs. 9.33 +/- 2.81). Thus the total enkephalin peptide content was not altered (27.77 +/- 1.69 vs. 24.10 +/- 4.75). Peptide distribution after ischemia and reflow was also unaltered by pretreatment with peptidase inhibitors. However, when the hearts were preconditioned, the PEP pool remained significantly lower and both of the bioactive peptides, MEAP and ME, were elevated (+49% and +86%, respectively). The decline in the PEP pool was prevented by peptidase inhibition and the rise in MEAP was exaggerated. In separate protocols, synthetic enkephalins (ME, MEAP, and Leu-enkephalin) were added to the coronary inflow before 30 min of global ischemia and throughout the subsequent reflow. The added enkephalins (10(-8) M) had no inotropic effect on baseline function but completely prevented the mechanical dysfunction observed in untreated controls during reflow. Thus IPC appears to increase available bioactive enkephalins (MEAP + ME) within the heart by enhancing synthesis of precursors and their subsequent processing from the PEP pool.


Assuntos
Encefalinas/metabolismo , Precondicionamento Isquêmico Miocárdico , Isquemia Miocárdica/metabolismo , Animais , Circulação Coronária , Encefalina Leucina/metabolismo , Encefalina Metionina/análogos & derivados , Encefalina Metionina/metabolismo , Técnicas In Vitro , Masculino , Contração Miocárdica/fisiologia , Reperfusão Miocárdica , Precursores de Proteínas/metabolismo , Radioimunoensaio , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA