Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36433605

RESUMO

Biocompatible optical fibers and waveguides are gaining attention as promising platforms for implantable biophotonic devices. Recently, the distinct properties of silk fibroin were extensively explored because of its unique advantages, including flexibility, process compatibility, long-term biosafety, and controllable biodegradability for in vitro and in vivo biomedical applications. In this study, we developed a novel silk fiber for a sensitive optical sensor based on surface-enhanced Raman spectroscopy (SERS). In contrast to conventional plasmonic nanostructures, which employ expensive and time-consuming fabrication processes, gold nanoparticles were uniformly patterned on the top surface of the fiber employing a simple and cost-effective convective self-assembly technique. The fabricated silk fiber-optic SERS probe presented a good performance in terms of detection limit, sensitivity, and linearity. In particular, the uniform pattern of gold nanoparticles contributed to a highly linear sensing feature compared to the commercial multi-mode fiber sample with an irregular and aggregated distribution of gold nanoparticles. Through further optimization, silk-based fiber-optic probes can function as useful tools for highly sensitive, cost-effective, and easily tailored biophotonic platforms, thereby offering new capabilities for future implantable SERS devices.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Seda , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Tecnologia de Fibra Óptica
2.
Biosensors (Basel) ; 12(8)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36004986

RESUMO

As surface-enhanced Raman scattering (SERS) has been used to diagnose several respiratory viruses (e.g., influenza A virus subtypes such as H1N1 and the new coronavirus SARS-CoV-2), SERS is gaining popularity as a method for diagnosing viruses at the point-of-care. Although the prior and quick diagnosis of respiratory viruses is critical in the outbreak of infectious disease, ELISA, PCR, and RT-PCR have been used to detect respiratory viruses for pandemic control that are limited for point-of-care testing. SERS provides quantitative data with high specificity and sensitivity in a real-time, label-free, and multiplex manner recognizing molecular fingerprints. Recently, the design of Raman spectroscopy system was simplified from a complicated design to a small and easily accessible form that enables point-of-care testing. We review the optical design (e.g., laser wavelength/power and detectors) of commercialized and customized handheld Raman instruments. As respiratory viruses have prominent risk on the pandemic, we review the applications of handheld Raman devices for detecting respiratory viruses. By instrumentation and commercialization advancements, the advent of the portable SERS device creates a fast, accurate, practical, and cost-effective analytical method for virus detection, and would continue to attract more attention in point-of-care testing.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Vírus , COVID-19/diagnóstico , Humanos , Testes Imediatos , SARS-CoV-2 , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA