Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; : 1-32, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153262

RESUMO

NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3), a member of the nucleotide-binding domain (NOD) and leucine-rich repeat sequence (LRR) protein (NLR) family, plays an essential role in the inflammation initiation and inflammatory mediator secretion, and thus is also associated with many disease progressions. Food-derived bioactive peptides (FDBP) exhibit excellent anti-inflammatory activity in both in vivo and in vitro models. They are encrypted in plant, meat, and milk proteins and can be released under enzymatic hydrolysis or fermentation conditions, thereby hindering the progression of hyperuricemia, inflammatory bowel disease, chronic liver disease, neurological disorders, lung injury and periodontitis by inactivating the NLRP3. However, there is a lack of systematic review around FDBP, NLRP3, and NLRP3-related diseases. Therefore, this review summarized FDBP that exert inhibiting effects on NLRP3 inflammasome from different protein sources and detailed their preparation and purification methods. Additionally, this paper also compiled the possible inhibitory mechanisms of FDBP on NLRP3 inflammasomes and its regulatory role in NLRP3 inflammasome-related diseases. Finally, the progress of cutting-edge technologies, including nanoparticle, computer-aided screening strategy and recombinant DNA technology, in the acquisition or encapsulation of NLRP3 inhibitory FDBP was discussed. This review provides a scientific basis for understanding the anti-inflammatory mechanism of FDBP through the regulation of the NLRP3 inflammasome and also provides guidance for the development of therapeutic adjuvants or functional foods enriched with these FDBP.

2.
Org Lett ; 26(22): 4727-4732, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38809604

RESUMO

A visible-light-induced photocatalyst-free acylative pyridylation of styrenes with 4-acyl-1,4-dihydropyridines (DHPs) and 4-cyanopyridines has been described, featuring mild reaction conditions, a broad substrate scope, and good functional group tolerance. The reaction could also be performed under sunlight irradiation albeit with a slightly lower conversion. 4-Acyl-1,4-DHPs serve a dual role, acting as both a photoreductant to reduce the cyanopyridine to its radical anion intermediate and a radical precursor to produce the acyl radical. The mechanism was especially elucidated through the Hammett analysis, with the quadratic linear regression analysis by using radical dual parameters, σmb and σjj·. The findings from Hammett analysis further demonstrate that the rate-limiting step of the process is the single electron transfer between 4-acyl-1,4-DHPs and 4-cyanopyridines.

3.
Future Microbiol ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700283

RESUMO

Aim: A bibliometric analysis and evaluation of research on non-Helicobacter pylori Helicobacter species (NHPHs) is essential to determining future research directions. Materials & methods: A comprehensive search was carried out using predetermined search terms within the Web of Science Core Collection (WoSCC) to gather publications spanning from 1993 to 2023. VOSviewer and Citespace were employed for data analysis and visualization. Results: 308 publications on NHPHs were included. Among these, gastric NHPHs received more publications and attention compared with enterohepatic NHPHs. Key findings included the identification of most productive countries, institutions, journals, authors, keywords, research trends and notable perspectives in the field. Conclusion: The article guides further research and clinical applications on NHPHs.

4.
Front Oncol ; 13: 1061084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007132

RESUMO

Introduction: Colon cancer is the 3rd most prevalent cancer worldwide, with more than 900,000 deaths annually. Chemotherapy, targeted treatment, and immunotherapeutic treatment are the three cornerstones of colon cancer treatment; however, the occurrence of immune therapy resistance is the most pressing problem to solve. Copper is a mineral nutrient that is both beneficial and potentially toxic to cells and is increasingly implicated in cell proliferation and death pathways. Cuproplasia is characterized by copper-dependent cell growth and proliferation. This term encompasses both neoplasia and hyperplasia and describes the primary and secondary effects of copper. The connection between copper and cancer has been noted for decades. However, the relationship between cuproplasia and colon cancer prognosis remains unclear. Method: In this study, we applied bioinformatics approaches including WGCNA, GSEA and etc. to delineate cuproplasia characterization of colon cancer, set up a robust Cu_riskScore model based on cuproplasia-relevant genes and found its relevant biological processes use qRT-pCR to validate our results on our cohort. Result: The Cu_riskScore is found to be relevant to Stage and MSI-H subtype, and some biological processes including MYOGENESIS and MYC TARGETS. The Cu_riskScore high and low groups also showed different immune infiltration pattern and genomic traits. Finally, the result of our cohort showed the Cu_riskScore gene RNF113A has a marked effect in predicting immunotherapy response. Discussion: In conclusion, we identified a cuproplasia-related gene expression signature consisting of six genes and studied the landscape of the clinical and biological characterization of this model in Colon Cancer. Furthermore, the Cu_riskScore was demonstrated to be a robust prognostic indicator and predictive factor for the benefits of immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA