Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(46): e202312927, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37776073

RESUMO

The promotion of intersystem crossing (ISC) is critical for achieving a high-efficiency long-persistent luminescence (LPL) from organic materials. However, the use of a transition-metal complex for LPL materials has not been explored because it can also shorten the emission lifetime by accelerating the phosphorescence decay. Here, we report a new class of LPL materials by doping a monovalent Au-carbene complex into a boron-embedded molecular host. The donor-acceptor systems exhibit photoluminescence with both high efficiencies (>57 %) and long lifetimes (ca. 40 ms) at room temperature. It is revealed that the Au atom promotes the population of low-lying triplet excited states of the host aggregate (T1 *) which can be converted into the charge-transfer (CT) state, thereby resulting in afterglow luminescence. Moreover, the use of a chirality unit on the guest molecule results in the LPL being circularly polarized. This work illustrates that transition-metal complexes can be used for developing organic afterglow systems by exquisite control over the excited state mechanism.

2.
Chemistry ; 28(67): e202202439, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36065000

RESUMO

Two-coordinate donor-metal-acceptor type coinage metal complexes displaying efficient thermally activated delayed fluorescence (TADF) have been unveiled to be highly appealing candidates as emitters for organic light-emitting diodes (OLEDs). Herein a series of green to yellow TADF gold(I) complexes with alkynyl ligands has been developed for the first time. The complexes exhibit high photoluminescence quantum yields (PLQYs) of up to 0.76 in doped films (5 wt % in PMMA) at room temperature. The modifications of alkynyl ligands with electron-donating amino groups together with the use of electron-deficient carbene ligands induce ligand-to-ligand charge transfer excited states that give rise to TADF emission. Spectroscopic and density functional theory (DFT) calculations reveal the roles of electron-donating capability of the alkynyl ligand in tuning the excited-state properties. Solution-processed organic light-emitting diodes (OLEDs) using the present complexes as emitters achieve maximum external quantum efficiency (EQE) of up to 20 %.

3.
Chemistry ; 27(71): 17834-17842, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34705307

RESUMO

Metal-based thermally activated delayed fluorescence (TADF) is conceived to inherit the advantages of both phosphorescent metal complexes and purely organic TADF compounds for high-performance electroluminescence. Herein a panel of new TADF Au(I) emitters has been designed and synthesized by using carbazole and pyrazine-fused nitrogen-heterocyclic carbene (NHC) as the donor and acceptor ligands, respectively. Single-crystal X-ray structures show linear molecular shape and coplanar arrangement of the donor and acceptor with small dihedral angles of <6.5°. The coplanar orientation and appropriate separation of the HOMO and LUMO in this type of molecules favour the formation of charge-transfer excited state with appreciable oscillator strength. Together with a minor but essential heavy atom effect of Au ion, the complexes in doped films exhibit highly efficient (Φ∼0.9) and short-lived (<1 µs) green emissions via TADF. Computational studies on this class of emitters have been performed to decipher the key reverse intersystem crossing (RISC) pathway. In addition to a small energy splitting between the lowest singlet and triplet excited states (ΔEST ), the spin-orbit coupling (SOC) effect is found to be larger at a specific torsion angle between the donor and acceptor planes which favours the RISC process the most. This work provides an alternative molecular design to TADF Au(I) carbene emitters for OLED application.

4.
Chemistry ; 25(20): 5246-5250, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30714222

RESUMO

Up to now, the direct conversion of the thiadiazole ring to other heterocyclic rings has been a very challenging task. Herein, a CdII -mediated alcohol-substitution strategy for direct conversion from benzothiadiazole to benzimidazole is reported. Experimental and molecular modeling studies on the role of the chelated metal ion in this in situ alcohol-substitution reaction revealed that it serves as an all-rounder that is involved in the insertion of alcohol, activation of the thiadiazole ring by coordinative interaction, and the sulfur-extrusion process. Interestingly, the insertion of alcohol occurs much earlier than the sulfur-extrusion process, supported by a water-mediated proton-transfer process. This strategy also is suitable for constructing new benzimidazole-derived MOFs [Cd2 (HMBIDC2- )2 ]⋅4 H2 O (Cd-BID-MOF-1, HMBIDC2- =2-methyl-1H-benzimidazole-4,7-dicarboxylate) and [Cd2 (HPBIDC2- )2 ]⋅1/3 H2 O (Cd-BID-MOF-2, HPBIDC2- =2-(3-hydroxypropyl)-2H-benzimidazole-4,7-dicarboxylate). Because the terminal hydroxyl group on the imidazole ring protrudes into the circular channel in rhombohedral Cd-BID-MOF-2, the cavity is closer to hydrophilic than the honeycomb-like cavity in Cd-BID-MOF-1 with similar 3D structure. This rare observation will provide a new strategy to develop in situ ligand-reaction synthesis of functional MOFs and useful chelation-assisted catalytic reactions in heteroaromatic chemistry.

5.
Inorg Chem ; 56(10): 5953-5958, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28448126

RESUMO

In this work, we first found a surprising solvothermal reaction for direct dinitration of quinoline derivative. To explore the application in direct nitroquinoline synthesis, this reaction was subsequently modified as an equivalent reaction in a Schlenk tube. More significantly, after a constant attempt, nitrated derivative was obtained in optimized condition with a zinc(II) sulfate catalyst, where some substrates with strong electron-withdrawing group were first nitrated by a directly catalyzed condition. This new zinc(II)-catalyzed aromatic C-H activation reaction is the first example of direct dinitration by a single catalyst, which will be a new facile and environmentally friendly strategy to access synthetically useful nitroquinoline derivative.

6.
Materials (Basel) ; 13(12)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580483

RESUMO

This paper analyzes the dynamic magneto-mechanical response in magnetization-graded ferromagnetic materials (MGFM) comprised of high-permeability Finemet and traditional magnetostrictive materials. The theoretical modeling of the piezomagnetic coefficient that depends on the bias magnetic field of MGFM is proposed by using the nonlinear constitutive model of a piezomagnetic material, the magnetoelectric equivalent circuit method, and the simulation software Ansoft. The theoretical variation of piezomagnetic coefficients of MGFM on the bias magnetic field is in good agreement with the experiment. Using the piezomagnetic coefficient in the magnetoelectric voltage model, the theoretical longitudinal resonant magnetoelectric voltage coefficients have also been calculated, which are consistent with the experimental values. This theoretical analysis is beneficial to comprehensively understand the self-biased piezomagnetic response of MGFM, and to design magnetoelectric devices with MGFM.

7.
Materials (Basel) ; 12(18)2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491948

RESUMO

In this paper, we report the nonlinear magnetoelectric response in a homogenous magnetostrictive/piezoelectric laminate material. The proposed magnetoelectric stack Fe73.5Cu1Nb3Si13.5B9/piezofiber is made up of high-permeability magnetostrictive Fe73.5Cu1Nb3Si13.5B9 foils and a piezoelectric Pb(Zr, Ti)O3 fiber composite. The time dependence of magnetoelectric interactions in the Fe73.5Cu1Nb3Si13.5B9/piezofiber structure driven by pulsed magnetic field was investigated in detail. The experimental results show that the magnetoelectric effect is strongly dependent on the external bias magnetic and pulsed magnetic field parameters. To detect the amplitude of a pulsed magnetic field, the output sensitivity reaches 17 mV/Oe, which is excited by a 100 µs width field. In addition, to measure the pulsed width, the output sensitivity reaches 5.4 mV/µs in the range of 0-300 µs. The results show that the proposed Fe73.5Cu1Nb3Si13.5B9/piezofiber sensor is ideally suited for pulsed magnetic field measurement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA