Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2401258, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38794878

RESUMO

Manganese oxide-based aqueous zinc-ion batteries (ZIBs) are attractive energy storage devices, owing to their good safety, low cost, and ecofriendly features. However, various critical issues, including poor conductivity, sluggish reaction kinetics, and unstable structure still restrict their further development. Oxygen defect engineering is an effective strategy to improve the electrochemical performance of manganese oxides, but challenging in the accurate regulation of oxygen defects. In this work, an effective and controllable defect engineering strategy-controllable electrochemical lithium-ion intercalation - is proposed to tackle this issue. The incorporation of lithium ions and oxygen defects can promote the conductivity, lattice spacing, and structural stability of Mn2O3 (MO), thus improving its capacity (232.7 mAh g-1), rate performance, and long-term cycling stability (99.0% capacity retention after 3000 cycles). Interestingly, the optimal ratio of intercalated lithium-ion varies at different temperature or mass-loading of MO, which provides the possibility to customize diverse ZIBs to meet different application conditions. In addition, the fabricated ZIBs present good flexibility, superior safety, and admirable adaptability under extreme temperatures (-20-100 °C). This work provides an inspiration on the structural customization of metal oxide nanomaterials for diverse ZIBs, and sheds light on the construction of future portable electronics.

2.
PLoS One ; 19(6): e0304284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843129

RESUMO

Agricultural pests and diseases pose major losses to agricultural productivity, leading to significant economic losses and food safety risks. However, accurately identifying and controlling these pests is still very challenging due to the scarcity of labeling data for agricultural pests and the wide variety of pest species with different morphologies. To this end, we propose a two-stage target detection method that combines Cascade RCNN and Swin Transformer models. To address the scarcity of labeled data, we employ random cut-and-paste and traditional online enhancement techniques to expand the pest dataset and use Swin Transformer for basic feature extraction. Subsequently, we designed the SCF-FPN module to enhance the basic features to extract richer pest features. Specifically, the SCF component provides a self-attentive mechanism with a flexible sliding window to enable adaptive feature extraction based on different pest features. Meanwhile, the feature pyramid network (FPN) enriches multiple levels of features and enhances the discriminative ability of the whole network. Finally, to further improve our detection results, we incorporated non-maximum suppression (Soft NMS) and Cascade R-CNN's cascade structure into the optimization process to ensure more accurate and reliable prediction results. In a detection task involving 28 pest species, our algorithm achieves 92.5%, 91.8%, and 93.7% precision in terms of accuracy, recall, and mean average precision (mAP), respectively, which is an improvement of 12.1%, 5.4%, and 7.6% compared to the original baseline model. The results demonstrate that our method can accurately identify and localize farmland pests, which can help improve farmland's ecological environment.


Assuntos
Algoritmos , Animais , Agricultura/métodos , Controle de Pragas/métodos , Redes Neurais de Computação , Fazendas , Produtos Agrícolas/parasitologia
3.
ACS Infect Dis ; 10(7): 2336-2355, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866389

RESUMO

The misuse of antibiotics has led to the global spread of drug-resistant bacteria, especially multi-drug-resistant (MDR) ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). These opportunistic bacteria pose a significant threat, in particular within hospitals, where they cause nosocomial infections, leading to substantial morbidity and mortality. To comprehensively explore ESKAPE pathogenesis, virulence, host immune response, diagnostics, and therapeutics, researchers increasingly rely on necessitate suitable animal infection models. However, no single model can fully replicate all aspects of infectious diseases. Notably when studying opportunistic pathogens in immunocompetent hosts, rapid clearance by the host immune system can limit the expression of characteristic disease symptoms. In this study, we examine the critical role of animal infection models in understanding ESKAPE pathogens, addressing limitations and research gaps. We discuss applications and highlight key considerations for effective models. Thoughtful decisions on disease replication, parameter monitoring, and data collection are crucial for model reliability. By meticulously replicating human diseases and addressing limitations, researchers maximize the potential of animal infection models. This aids in targeted therapeutic development, bridges knowledge gaps, and helps combat MDR ESKAPE pathogens, safeguarding public health.


Assuntos
Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla , Animais , Humanos , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/fisiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Klebsiella pneumoniae/efeitos dos fármacos , Acinetobacter baumannii/efeitos dos fármacos , Infecção Hospitalar/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Enterobacter/efeitos dos fármacos , Infecções Bacterianas/microbiologia
4.
ACS Appl Mater Interfaces ; 16(4): 4449-4461, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38252958

RESUMO

The phenylborate-ester-cross-linked hydrogel microneedle patch (MNP) was promising in the diabetic field for the glucose-responsive insulin-delivering property and simple fabrication process. However, the unfit design of the charging microneedle network limited the improvement of blood-glucose regulating performances. In this work, insulin-loaded phenylborate-ester-cross-linked MNPs, with the polyzwitterion property, were constructed based on the modified ε-polylysine and poly(vinyl alcohol). The relationship between the charging nature of the MNP network and insulin release was verified by regulating the content of postprotonated positively charged amino groups. The elaborately designed MNP possessed improved glucose-responsive insulin-delivering performance. The in vivo study revealed the satisfactory results on blood-glucose regulation by the optimized MNP under the mimic three-meal-per-day mode. Moreover, the insulin bioactivity in the MNP could be maintained for 2 weeks under 25 °C. In summary, this work developed an effective strategy to improve the glucose-responsive phenylborate-ester-cross-linked MNP and enhance its potential for clinical transformation.


Assuntos
Glicemia , Sistemas de Liberação de Medicamentos , Eletricidade Estática , Sistemas de Liberação de Medicamentos/métodos , Glucose , Insulina , Agulhas , Ésteres
5.
Int J Biol Macromol ; 263(Pt 2): 129887, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38383251

RESUMO

Infected wound management is a great challenge to healthcare, especially in emergencies such as accidents or battlefields. Hydrogels as wound dressings can replace or supplement traditional wound treatment strategies, such as bandages or sutures. It is significant to develop novel hydrogel-based wound dressings with simple operation, inexpensive, easy debridement, effective antibacterial, biocompatibility, etc. Here, we designed a novel gelatin-based hydrogel wound dressing Gel-TA-Fe3+. The hydrogels used tannic-modified gelatin as the main body and Fe3+ as the crosslinking agent to achieve a controllable rapid sol-gel transition. The hydrogels exhibited tough mechanical properties, excellent antibacterial ability, biocompatibility and an acceptable temperature response to near-infrared light (NIR). Moreover, the hydrogels could promote the healing process of MRSA-infected skin wound in rats. This multifunctional hydrogel was thought to have potential for emergency treatment of bacterial infected wound.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecção dos Ferimentos , Animais , Ratos , Gelatina/farmacologia , Cicatrização , Suplementos Nutricionais , Antibacterianos/farmacologia , Hidrogéis/farmacologia , Infecção dos Ferimentos/tratamento farmacológico
6.
Cancer Med ; 13(2): e6942, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38376003

RESUMO

OBJECTIVE: The purpose of this study is to explore the biological mechanism of Schizandrin A (SchA) inducing non-small cell lung cancer (NSCLC) apoptosis. METHODS: The reverse molecular docking tool "Swiss Target Prediction" was used to predict the targets of SchA. Protein-protein interaction analysis was performed on potential targets using the String database. Functional enrichment analyses of potential targets were performed with Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. The conformation of SchA binding to target was simulated by chemical-protein interactomics and molecular docking. The effect of SchA on the expression and phosphorylation level of EGFR was detected by Western blot. Lipofectamine 3000 and EGFR plasmids were used to overexpress EGFR. Apoptosis was tested with Annexin V-FITC and propidium iodide staining, and cell cycle was detected by propidium iodide staining. RESULTS: The "Swiss Target Prediction" database predicted 112 and 111 targets based on the 2D and 3D structures of SchA, respectively, of which kinases accounted for the most, accounting for 24%. Protein interaction network analyses showed that molecular targets such as ERBB family and SRC were at the center of the network. Functional enrichment analyses indicated that ERBB-related signaling pathways were enriched. Compound-protein interactomics and molecular docking revealed that SchA could bind to the ATP-active pocket of the EGFR tyrosine kinase domain. Laboratory results showed that SchA inhibited the phosphorylation of EGFR. Insulin could counteract the cytotoxic effect of SchA. EGFR overexpression and excess EGF or IGF-1 had limited impacts on the cytotoxicity of SchA. CONCLUSIONS: Network pharmacology analyses suggested that ERBB family members may be the targets of SchA. SchA can inhibit NSCLC at least in part by inhibiting EGFR phosphorylation, and activating the EGFR bypass can neutralize the cytotoxicity of SchA.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ciclo-Octanos , Lignanas , Neoplasias Pulmonares , Compostos Policíclicos , Humanos , Apoptose , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Ciclo-Octanos/farmacologia , Receptores ErbB/genética , Lignanas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Simulação de Acoplamento Molecular , Compostos Policíclicos/farmacologia
7.
Meat Sci ; 214: 109532, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38733667

RESUMO

This study aimed to clarify the effect of electrostatic spraying of lactic acid (LE) and ascorbic acid (AE) on vacuum-packaged beef aged at 10 °C. The physicochemical attributes, flavor profiles, and microbial diversities were evaluated. Beef steaks were electrostatically sprayed twice with 4% LE, 0.5% AE, or a mixture of them (LAE). Afterward, the beef was vacuum-packaged and aged. All treated beef exhibited a decrease in quality and sensory scores over time. At the end of the study period, the total viable count (TVC) and the total volatile basic nitrogen values in the control group (7.34 log CFU/g and 15.52 mg/100 g, respectively) were higher than those in the acid-treated groups. The LAE group exhibited the best color stability and the lowest TVC and Enterobacteriaceae counts after aging. High-throughput sequencing analysis revealed that acid types and electrostatic spray could change the microbiota structure. Leuconostoc was the dominant bacteria in the AE and LAE groups, while Enterococcus became the predominant bacteria in the NLE and LE groups with aging. This indicates that electrostatic spray combined with acid treatment can ensure beef quality and microbiological safety at mild temperatures.


Assuntos
Ácido Ascórbico , Ácido Láctico , Carne Vermelha , Animais , Bovinos , Carne Vermelha/microbiologia , Carne Vermelha/análise , Ácido Ascórbico/farmacologia , Ácido Láctico/farmacologia , Vácuo , Embalagem de Alimentos/métodos , Paladar , Humanos , Temperatura , Cor , Microbiologia de Alimentos , Microbiota/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Eletricidade Estática , Armazenamento de Alimentos
8.
Adv Colloid Interface Sci ; 329: 103197, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38781827

RESUMO

The semiconductor industry has long been driven by advances in a nanofabrication technology known as lithography, and the fabrication of nanostructures on chips relies on an important coating, the photoresist layer. Photoresists are typically spin-coated to form a film and have a photolysis solubility transition and etch resistance that allow for rapid fabrication of nanostructures. As a result, photoresists have attracted great interest in both fundamental research and industrial applications. Currently, the semiconductor industry has entered the era of extreme ultraviolet lithography (EUVL) and expects photoresists to be able to fabricate sub-10 nm structures. In order to realize sub-10 nm nanofabrication, the development of photoresists faces several challenges in terms of sensitivity, etch resistance, and molecular size. In this paper, three types of lithographic mechanisms are reviewed to provide strategies for designing photoresists that can enable high-resolution nanofabrication. The discussion of the current state of the art in optical lithography is presented in depth. Practical applications of photoresists and related recent advances are summarized. Finally, the current achievements and remaining issues of photoresists are discussed and future research directions are envisioned.

9.
Foods ; 13(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38254499

RESUMO

The aim of this study was to explore the potential of commercial lactic acid bacteria (LAB) as probiotic starters in fermented sausages. We initially investigated the growth activity, acid production capability, and tolerance to fermentation conditions of Lactobacillus sakei, Lactiplantibacillus plantarum, and Pediococcus pentosaceus. All three LAB strains proved viable as starters for fermented sausages. Subsequently, we explored their potential as probiotics based on their antibacterial and antioxidant capabilities. L. plantarum exhibited stronger inhibition against Escherichia coli and Staphylococcus aureus. All three strains displayed antioxidant abilities, with cell-free supernatants showing a higher antioxidant activity compared to intact cells and cell-free extracts. Moreover, the activities of superoxide dismutase, glutathione peroxidase, and catalase were stronger in the cell-free supernatant, cell-free extract, and intact cell, respectively. Finally, we individually and collectively inoculated these three LAB strains into sausages to investigate their impact on quality during the fermentation process. External starters significantly reduced pH, thiobarbituric acid reactive substances, and sodium nitrite levels. The improvements in color and texture had positive effects, with the L. plantarum inoculation achieving higher sensory scores. Overall, all three LAB strains show promise as probiotic fermentation starters in sausage production.

10.
Cell Death Dis ; 15(6): 402, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851795

RESUMO

Vascular smooth muscle cell (VSMC) proliferation, migration, and apoptosis play important roles in many physiological processes and pathological conditions. To identify genetic influences on VSMC behavior, we measured these traits and undertook genome-wide association studies in primary umbilical artery-derived VSMCs from >2000 individuals. Although there were no genome-wide significant associations for VSMC proliferation or migration, genetic variants at two genomic loci (7p15.3 and 7q32.3) showed highly significant associations with VSMC apoptosis (P = 1.95 × 10-13 and P = 7.47 × 10-9, respectively). The lead variant at the 7p51.3 locus was associated with increased expression of the GSDME and PALS2 genes in VSMCs. Knockdown of GSDME or PALS2 in VSMCs attenuated apoptotic cell death. A protein co-immunoprecipitation assay indicated that GSDME complexed with PALS2. PALS2 knockdown attenuated activated caspase-3 and GSDME fragmentation, whilst GSDME knockdown also reduced activated caspase-3. These findings provide new insights into the genetic regulation of VSMC apoptosis, with potential utility for therapeutic development.


Assuntos
Apoptose , Músculo Liso Vascular , Miócitos de Músculo Liso , Apoptose/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Humanos , Miócitos de Músculo Liso/metabolismo , Estudo de Associação Genômica Ampla , Caspase 3/metabolismo , Caspase 3/genética , Proliferação de Células/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Movimento Celular/genética , Células Cultivadas
11.
Commun Biol ; 6(1): 1298, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129665

RESUMO

Biallelic mutations of the chromatin regulator SMARCAL1 cause Schimke Immunoosseous Dysplasia (SIOD), characterized by severe growth defects and premature mortality. Atherosclerosis and hyperlipidemia are common among SIOD patients, yet their onset and progression are poorly understood. Using an integrative approach involving proteomics, mouse models, and population genetics, we investigated SMARCAL1's role. We found that SmarcAL1 interacts with angiopoietin-like 3 (Angptl3), a key regulator of lipoprotein metabolism. In vitro and in vivo analyses demonstrate SmarcAL1's vital role in maintaining cellular lipid homeostasis. The observed translocation of SmarcAL1 to cytoplasmic peroxisomes suggests a potential regulatory role in lipid metabolism through gene expression. SmarcAL1 gene inactivation reduces the expression of key genes in cellular lipid catabolism. Population genetics investigations highlight significant associations between SMARCAL1 genetic variations and body mass index, along with lipid-related traits. This study underscores SMARCAL1's pivotal role in cellular lipid metabolism, likely contributing to the observed lipid phenotypes in SIOD patients.


Assuntos
Síndromes de Imunodeficiência , Animais , Humanos , Camundongos , Cromatina , DNA Helicases/genética , DNA Helicases/metabolismo , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/metabolismo , Metabolismo dos Lipídeos/genética , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA