RESUMO
After disease progression on EGFR tyrosine kinase inhibitor (TKI) therapy, patients with EGFR-mutated NSCLC who are then treated with platinum-based chemotherapy (PBC) obtain only limited clinical benefit with transient responses. Therapies with greater efficacy and tolerable safety profiles are needed in this setting. The receptor tyrosine kinase HER3 is widely expressed in NSCLC, and increased expression is associated with poor treatment outcomes. In the U31402-A-U102 phase I trial, HER3-DXd showed promising antitumor activity with manageable safety in heavily pre-treated patients with EGFR-mutated NSCLC across a range of tumor HER3 expression levels and EGFR TKI resistance mechanisms. HERTHENA-Lung02 is the first phase III trial to evaluate the safety and efficacy of HER3-DXd versus PBC in patients with progression on a third-generation EGFR TKI. Clinical Trial Registration: NCT05338970 (clinicaltrials.gov); 2021-005879-40 (EudraCT Number).
In some patients with non-small-cell lung cancer, changes (or mutations) in the DNA sequence can alter a protein called EGFR and allow tumors to grow and survive. Drugs called EGFR tyrosine kinase inhibitors (EGFR TKIs for short) are used to treat these tumors by interfering with the abnormal EGFR protein. Treatment with these drugs can work well at first, but some tumors never respond, and for tumors that do respond, the cancer eventually becomes resistant to the EGFR TKI and the drug stops working. Platinum-based chemotherapy is often prescribed after an EGFR TKI stops working; however, platinum-based chemotherapy can provide only temporary control of the tumor growth. Most patients with non-small-cell lung cancer have a protein called HER3 on the surface of their tumor cells. A new drug candidate called patritumab deruxtecan (HER3-DXd) finds tumor cells and attaches to the HER3 protein on their surface. HER3-DXd then moves inside the cancer cells, where a novel antitumor payload is released and kills the tumor cells. This article describes the phase III clinical trial HERTHENA-Lung02 (NCT05338970) that compares the benefit of HER3-DXd to platinum-based chemotherapy for patients who have non-small-cell lung cancer with the abnormal EGFR protein and whose disease stopped responding or never responded to EGFR TKI therapy.
Assuntos
Anticorpos Monoclonais Humanizados , Camptotecina , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Camptotecina/análogos & derivados , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Ensaios Clínicos Fase III como Assunto , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , Inibidores de Proteínas Quinases/efeitos adversosRESUMO
Limited treatment options exist for EGFR-mutated NSCLC that has progressed after EGFR TKI and platinum-based chemotherapy. HER3 is highly expressed in EGFR-mutated NSCLC, and its expression is associated with poor prognosis in some patients. Patritumab deruxtecan (HER3-DXd) is an investigational, potential first-in-class, HER3-directed antibody-drug conjugate consisting of a HER3 antibody attached to a topoisomerase I inhibitor payload via a tetrapeptide-based cleavable linker. In an ongoing phase I study, HER3-DXd demonstrated promising antitumor activity and a tolerable safety profile in patients with EGFR-mutated NSCLC, with or without identified EGFR TKI resistance mechanisms, providing proof of concept of HER3-DXd. HERTHENA-Lung01 is a global, registrational, phase II trial further evaluating HER3-DXd in previously treated advanced EGFR-mutated NSCLC. Clinical Trial Registration: NCT04619004 (ClinicalTrials.gov); 2020-000730-17 (EudraCT).
This article describes a clinical trial of a new drug to treat non-small-cell lung cancer. About a third of patients with non-small-cell lung cancer have tumors with changes (mutations) in a gene called EGFR, which cause tumors to grow. These patients are treated with EGFR inhibitors and chemotherapy, both of which can stop the tumor from growing for a period of time. When these treatments stop working, new and effective treatments are needed. Most non-small-cell lung cancer tumors have a protein called HER3 on the surface of their cells. Patritumab deruxtecan (HER3-DXd) is a new drug candidate that uses HER3 to get chemotherapy inside tumor cells. In an earlier clinical trial for patients with lung cancer whose disease had grown after multiple treatments, HER3-DXd often shrank tumors or stopped them from growing. The side effects of HER3-DXd were tolerable. The clinical trial described in this publication, HERTHENA-Lung01 (NCT04619004), is testing HER3-DXd in a larger group of patients with non-small-cell lung cancer that has activating mutations in the EGFR gene and for whom previous treatments have stopped working. The results of this study will help doctors and regulators decide if HER3-DXd should be approved and used for patients with non-small-cell lung cancer with EGFR mutations.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Receptores ErbB/genética , Receptor ErbB-3/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Mutação , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase I como AssuntoRESUMO
BACKGROUND: While 2-4% of lung cancers possess alterations in BRAF, little is known about the immune responsiveness of these tumours. METHODS: Clinical and genomic data were collected from 5945 patients with lung cancers whose tumours underwent next-generation sequencing between 2015 and 2018. Patients were followed through 2020. RESULTS: In total, 127 patients with metastatic BRAF-altered lung cancers were identified: 29 tumours had Class I mutations, 59 had Class II/III alterations, and 39 had variants of unknown significance (VUS). Tumour mutation burden was higher in Class II/III than Class I-altered tumours (8.8 mutations/Mb versus 4.9, P < 0.001), but this difference was diminished when stratified by smoking status. The overall response rate to immune checkpoint inhibitors (ICI) was 9% in Class I-altered tumours and 26% in Class II/III (P = 0.25), with median time on treatment of 1.9 months in both groups. Among patients with Class I-III-altered tumours, 36-month HR for death in those who ever versus never received ICI was 1.82 (1.17-6.11). Nine patients were on ICI for >2 years (two with Class I mutations, two with Class II/III alterations, and five with VUS). CONCLUSIONS: A subset of patients with BRAF-altered lung cancers achieved durable disease control on ICI. However, collectively no significant clinical benefit was seen.
Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas B-raf , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/imunologiaRESUMO
In â¼30% of patients with EGFR-mutant lung adenocarcinomas whose disease progresses on EGFR inhibitors, the basis for acquired resistance remains unclear. We have integrated transposon mutagenesis screening in an EGFR-mutant cell line and clinical genomic sequencing in cases of acquired resistance to identify mechanisms of resistance to EGFR inhibitors. The most prominent candidate genes identified by insertions in or near the genes during the screen were MET, a gene whose amplification is known to mediate resistance to EGFR inhibitors, and the gene encoding the Src family kinase YES1. Cell clones with transposon insertions that activated expression of YES1 exhibited resistance to all three generations of EGFR inhibitors and sensitivity to pharmacologic and siRNA-mediated inhibition of YES1 Analysis of clinical genomic sequencing data from cases of acquired resistance to EGFR inhibitors revealed amplification of YES1 in five cases, four of which lacked any other known mechanisms of resistance. Preinhibitor samples, available for two of the five patients, lacked YES1 amplification. None of 136 postinhibitor samples had detectable amplification of other Src family kinases (SRC and FYN). YES1 amplification was also found in 2 of 17 samples from ALK fusion-positive lung cancer patients who had progressed on ALK TKIs. Taken together, our findings identify acquired amplification of YES1 as a recurrent and targetable mechanism of resistance to EGFR inhibition in EGFR-mutant lung cancers and demonstrate the utility of transposon mutagenesis in discovering clinically relevant mechanisms of drug resistance.
Assuntos
Elementos de DNA Transponíveis , Resistencia a Medicamentos Antineoplásicos , Inibidores Enzimáticos/farmacologia , Receptores ErbB , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas c-yes , Linhagem Celular Tumoral , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Proteínas Proto-Oncogênicas c-yes/biossíntese , Proteínas Proto-Oncogênicas c-yes/genética , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismoRESUMO
BACKGROUND: Mutations in human epidermal growth factor receptor 2 (HER2; also known as ERBB2) are found in approximately 2% of lung adenocarcinomas. The frequency and clinical course of brain metastases in this oncogenic subset are ill defined. METHODS: Baseline and subsequent development of brain metastases was evaluated in consecutive patients with HER2-mutant (n = 98), epidermal growth factor receptor (EGFR)-mutant (n = 200), and KRAS-mutant lung cancers (n = 200). RESULTS: At metastatic diagnosis, the odds ratio (ORs) for brain metastases was similar for patients whose tumors harbored HER2 mutations (19%) in comparison with patients with KRAS mutations (24%; OR for HER2 vs KRAS, 0.7; P = .33) but lower compared to patients with EGFR mutations (31%; OR for HER2 vs EGFR, 0.5; P = .03). Patients with lung cancer and HER2 mutations developed more brain metastases on treatment than patients with KRAS mutations (28% vs 8%; hazard ratio [HR], 5.2; P < .001) and trended more than patients with EGFR mutations (28% vs 16%; HR, 1.7; P = .06). Patients with HER2 YVMA mutations also developed more brain metastases on treatment than patients with KRAS mutations (HR, 5.9; P < .001). The median overall survival (OS) was shorter for patients with HER2-mutant (1.6 years; P < .001) or KRAS-mutant lung cancers (1.1 years; P < .001) than patients with EGFR-mutant lung cancers (3.0 years). Brain metastases occurred in 47% of patients with HER2-mutant lung cancers, which imparted shorter OS (HR, 2.7; P < .001). CONCLUSIONS: These data provide a framework for brain imaging surveillance in patients with HER2-mutant lung cancers and underpin the need to develop HER2-targeted agents with central nervous system activity.
Assuntos
Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/secundário , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/patologia , Mutação , Receptor ErbB-2/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/terapia , Feminino , Humanos , Incidência , Neoplasias Pulmonares/terapia , Masculino , Pessoa de Meia-Idade , Razão de Chances , Oncogenes , Avaliação de Resultados da Assistência ao Paciente , Prognóstico , Modelos de Riscos Proporcionais , Radioterapia , Adulto JovemRESUMO
Background: Plasma cfDNA evaluation at acquired resistance to targeted therapies in lung cancer is routine, however, reports of extended clinical application and pitfalls in laboratory practice are still limited. In this study we describe our experience with cfDNA testing using EGFR T790M as a prototype.Methods: Patients with metastatic EGFR-mutant NSCLC patients who underwent plasma EGFR T790M testing at acquired resistance to EGFR tyrosine kinase inhibitors (EGFR-TKI) from January 2016 through August 2017 were identified. Molecular laboratory records were reviewed to assess performance of testing by digital PCR, concordance between plasma and tissue testing, turnaround time (TAT), plasma T790M variant allele frequency (VAF), and its correlations with metastatic sites and clinical outcomes.Results: 177 patients underwent T790M cfDNA testing during this period. Plasma T790M was positive in 32% of patients. The median TAT was shorter for plasma T790M compared to tissue PCR (9 vs. 15 days, p < .0001), and led to osimertinib use in 84% of positive patients. In 52 patients with plasma and tissue T790M evaluation, the concordance was 77%. Plasma T790M VAF did not correlate with time to osimertinib discontinuation (p = .4). Plasma T790M status correlated with a higher number of metastatic sites (4 vs. 3, p < .001) and bone metastases (p = .0002).Conclusion: Plasma EGFR T790M testing had shorter TAT compared to tissue testing, however, it was longer than anticipated. Test sensitivity is higher in patients with osseous metastases and with higher metastatic burden suggesting a more limited role for early detection. T790M VAF was not associated with clinical outcomes.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Mutação , Acrilamidas/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Compostos de Anilina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ácidos Nucleicos Livres/sangue , DNA de Neoplasias/sangue , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Biópsia Líquida , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Inibidores de Proteínas Quinases/uso terapêutico , Estudos RetrospectivosRESUMO
BACKGROUND: In a phase 1 study of pulse/continuous-dose erlotinib, no patient had disease progression in the central nervous system (CNS). This expansion cohort of the phase 1 study tested the same regimen in a cohort of individuals with epidermal growth factor receptor (EGFR)-mutant lung cancers with untreated brain metastases. METHODS: Patients had not received EGFR tyrosine kinase inhibitors or radiation for brain metastases. All received 1200 mg of erlotinib on days 1 and 2 and 50 mg on days 3 to 7 weekly. The primary endpoints were the overall and CNS response rates (according to version 1.1 of the Response Evaluation Criteria in Solid Tumors). RESULTS: Between May 2015 and August 2016, 19 patients were enrolled. Forty-two percent of the patients had target brain lesions, and the median size of the target brain lesions was 13 mm. Overall, 14 patients (74%; 95% confidence interval [CI], 51%-89%) had partial responses. The response rate in brain metastases was 75%. The overall median progression-free survival was 10 months (95% CI, 7 months to not reached). Only 3 patients (16%) had CNS progression. To date, 4 patients required CNS radiation at some time during their course. The adverse events (any grade) seen in 10% or more of the patients were rash, diarrhea, nausea, an increase in alanine aminotransferase, and fatigue. CONCLUSIONS: Pulse/continuous-dose erlotinib produced a 74% overall response rate and a 75% response rate in brain metastases in patients with EGFR-mutant lung cancers and untreated brain metastases. CNS control persisted even after progression elsewhere. Although this regimen did not improve progression-free survival or delay the emergence of EGFR T790M, it prevented progression in the brain and could be useful in situations in which CNS control is critical. Cancer 2018;124:105-9. © 2017 American Cancer Society.
Assuntos
Adenocarcinoma/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Cloridrato de Erlotinib/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Adenocarcinoma/genética , Adenocarcinoma/radioterapia , Adenocarcinoma/secundário , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Irradiação Craniana/estatística & dados numéricos , Intervalo Livre de Doença , Receptores ErbB/genética , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Critérios de Avaliação de Resposta em Tumores Sólidos , Resultado do Tratamento , Carga TumoralRESUMO
BACKGROUND: Prognostic variables are independently associated with survival and are fundamental to clinical trial design. In the current study, the authors evaluated the impact of stage of disease at the time of the initial diagnosis on overall survival (OS) in 2 independent, oncogene-defined cohorts. METHODS: All patients with epidermal growth factor receptor (EGFR)-mutant and KRAS-mutant metastatic lung adenocarcinomas were identified through routine molecular testing from January 2005 through January 2011. Clinical characteristics were obtained. OS from the date of diagnosis of recurrent or de novo metastatic disease was estimated using the Kaplan-Meier method. RESULTS: A total of 635 patients with KRAS-mutant and 496 patients with EGFR-mutant metastatic lung adenocarcinomas were identified. Among patients with KRAS-mutant lung adenocarcinomas, those with de novo metastatic disease were found to have a shorter median OS compared with those with recurrent metastatic disease (13 months vs 18 months; P = .003). In a multivariable analysis of patients with KRAS-mutant lung adenocarcinomas, de novo metastatic disease at the time of diagnosis (TNM stage IV vs stage I-III: hazard ratio, 1.5 [95% confidence interval, 1.2-1.8]; P<.001) was independently associated with shorter OS. In patients with EGFR-mutant lung adenocarcinomas, after controlling for age and Karnofsky performance status, de novo metastatic disease at the time of diagnosis (stage IV vs stage I-III: hazard ratio, 1.3 [95% confidence interval, 1.0-1.7]; P = .03) was found to be independently associated with shorter OS. CONCLUSIONS: Among patients with KRAS-mutant lung adenocarcinomas, stage of disease at diagnosis was associated with OS from the time of diagnosis of recurrent/metastatic disease. In multivariable analyses, in both patients with EGFR-mutant and KRAS-mutant lung adenocarcinomas, advanced stage at the time of diagnosis was found to be independently associated with shorter survival. Stage at diagnosis is a prognostic variable that should be accounted for in prospective studies in patients with metastatic lung adenocarcinomas.
Assuntos
Adenocarcinoma/genética , Receptores ErbB/genética , Genes ras , Neoplasias Pulmonares/genética , Mutação , Recidiva Local de Neoplasia/genética , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Recidiva Local de Neoplasia/mortalidade , Recidiva Local de Neoplasia/patologia , Estadiamento de Neoplasias , Prognóstico , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras) , Análise de Sobrevida , Proteínas ras/genéticaRESUMO
PURPOSE: The National Cancer Institute Molecular Analysis for Therapy Choice trial is a signal-finding genomically driven platform trial that assigns patients with any advanced refractory solid tumor, lymphoma, or myeloma to targeted therapies on the basis of next-generation sequencing results. Subprotocol E evaluated osimertinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, in patients with EGFR mutations. METHODS: Eligible patients had EGFR mutations (T790M or rare activating) and received osimertinib 80 mg once daily. Patients with lung cancer with EGFR T790M were excluded. The primary end point was objective response rate (ORR), and the secondary end points were 6-month progression-free survival (PFS), overall survival, and toxicity. RESULTS: A total of 19 patients were enrolled: 17 were evaluable for toxicity and 13 for efficacy. The median age of the 13 included in the efficacy analysis was 63 years, 62% had Eastern Cooperative Oncology Group performance status 1, and 31% received >three previous systemic therapies. The most common tumor type was brain cancers (54%). The ORR was 15.4% (n = 2 of 13; 90% CI, 2.8 to 41.0) and 6-month PFS was 16.7% (90% CI, 0 to 34.4). The two confirmed RECIST responses were observed in a patient with neuroendocrine carcinoma not otherwise specified (EGFR exon 20 S768T and exon 18 G719C mutation) and a patient with low-grade epithelial carcinoma of the paranasal sinus (EGFR D770_N771insSVD). The most common (>20%) treatment-related adverse events were diarrhea, thrombocytopenia, and maculopapular rash. CONCLUSION: In this pretreated cohort, osimertinib did not meet the prespecified end point threshold for efficacy, but responses were seen in a neuroendocrine carcinoma with an EGFR exon 20 S768T and exon 18 G719C mutation and an epithelial carcinoma with an EGFR D770_N771insSVD mutation. Osimertinib was well tolerated and had a safety profile consistent with previous studies.
Assuntos
Acrilamidas , Compostos de Anilina , Antineoplásicos , Carcinoma Neuroendócrino , Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , Pirimidinas , Estados Unidos , Humanos , Pessoa de Meia-Idade , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , National Cancer Institute (U.S.) , Antineoplásicos/efeitos adversos , Inibidores de Proteínas Quinases/efeitos adversos , Mutação , Carcinoma Neuroendócrino/tratamento farmacológicoRESUMO
PURPOSE: Even though BRAF fusions are increasingly detected in standard multigene next-generation sequencing panels, few reports have explored their structure and impact on clinical course. EXPERIMENTAL DESIGN: We collected data from patients with BRAF fusion-positive cancers identified through a genotyping protocol of 97,024 samples. Fusions were characterized and reviewed for oncogenic potential (in-frame status, non-BRAF partner gene, and intact BRAF kinase domain). RESULTS: We found 241 BRAF fusion-positive tumors from 212 patients with 82 unique 5' fusion partners spanning 52 histologies. Thirty-nine fusion partners were not previously reported, and 61 were identified once. BRAF fusion incidence was enriched in pilocytic astrocytomas, gangliogliomas, low-grade neuroepithelial tumors, and acinar cell carcinoma of the pancreas. Twenty-four patients spanning multiple histologies were treated with MAPK-directed therapies, of which 20 were evaluable for RECIST. Best response was partial response (N = 2), stable disease (N = 11), and progressive disease (N = 7). The median time on therapy was 1 month with MEK plus BRAF inhibitors [(N = 11), range 0-18 months] and 8 months for MEK inhibitors [(N = 14), range 1-26 months]. Nine patients remained on treatment for longer than 6 months [pilocytic astrocytomas (N = 6), Erdheim-Chester disease (N = 1), extraventricular neurocytoma (N = 1), and melanoma (N = 1)]. Fifteen patients had acquired BRAF fusions. CONCLUSIONS: BRAF fusions are found across histologies and represent an emerging actionable target. BRAF fusions have a diverse set of fusion partners. Durable responses to MAPK therapies were seen, particularly in pilocytic astrocytomas. Acquired BRAF fusions were identified after targeted therapy, underscoring the importance of postprogression biopsies to optimize treatment at relapse in these patients.
Assuntos
Proteínas de Fusão Oncogênica , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Adulto , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , Proteínas de Fusão Oncogênica/genética , Adulto Jovem , Adolescente , Terapia de Alvo Molecular , Criança , Neoplasias/genética , Neoplasias/patologia , Biomarcadores Tumorais/genética , Genômica/métodos , Pré-Escolar , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
PURPOSEThe impact of the intratumoral microbiome on immune checkpoint inhibitor (ICI) efficacy in patients with non-small-cell lung cancer (NSCLC) is unknown. Preclinically, intratumoral Escherichia is associated with a proinflammatory tumor microenvironment and decreased metastases. We sought to determine whether intratumoral Escherichia is associated with outcome to ICI in patients with NSCLC.PATIENTS AND METHODSWe examined the intratumoral microbiome in 958 patients with advanced NSCLC treated with ICI by querying unmapped next-generation sequencing reads against a bacterial genome database. Putative environmental contaminants were filtered using no-template controls (n = 2,378). The impact of intratumoral Escherichia detection on overall survival (OS) was assessed using univariable and multivariable analyses. The findings were further validated in an external independent cohort of 772 patients. Escherichia fluorescence in situ hybridization (FISH) and transcriptomic profiling were performed.RESULTSIn the discovery cohort, read mapping to intratumoral Escherichia was associated with significantly longer OS (16 v 11 months; hazard ratio, 0.73 [95% CI, 0.59 to 0.92]; P = .0065) in patients treated with single-agent ICI, but not combination chemoimmunotherapy. The association with OS in the single-agent ICI cohort remained statistically significant in multivariable analysis adjusting for prognostic features including PD-L1 expression (P = .023). Analysis of an external validation cohort confirmed the association with improved OS in univariable and multivariable analyses of patients treated with single-agent ICI, and not in patients treated with chemoimmunotherapy. Escherichia localization within tumor cells was supported by coregistration of FISH staining and serial hematoxylin and eosin sections. Transcriptomic analysis correlated Escherichia-positive samples with expression signatures of immune cell infiltration.CONCLUSIONRead mapping to potential intratumoral Escherichia was associated with survival to single-agent ICI in two independent cohorts of patients with NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/microbiologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Microambiente Tumoral/imunologia , Idoso de 80 Anos ou maisRESUMO
Neuroendocrine (NE) transformation is a mechanism of resistance to targeted therapy in lung and prostate adenocarcinomas leading to poor prognosis. Up to date, even if patients at high risk of transformation can be identified by the occurrence of Tumor Protein P53 (TP53) and Retinoblastoma Transcriptional Corepressor 1 (RB1) mutations in their tumors, no therapeutic strategies are available to prevent or delay histological transformation. Upregulation of the cell cycle kinase Cell Division Cycle 7 (CDC7) occurred in tumors during the initial steps of NE transformation, already after TP53/RB1 co-inactivation, leading to induced sensitivity to the CDC7 inhibitor simurosertib. CDC7 inhibition suppressed NE transdifferentiation and extended response to targeted therapy in in vivo models of NE transformation by inducing the proteasome-mediated degradation of the MYC Proto-Oncogen (MYC), implicated in stemness and histological transformation. Ectopic overexpression of a degradation-resistant MYC isoform reestablished the NE transformation phenotype observed on targeted therapy, even in the presence of simurosertib. CDC7 inhibition also markedly extended response to standard cytotoxics (cisplatin, irinotecan) in lung and prostate small cell carcinoma models. These results nominate CDC7 inhibition as a therapeutic strategy to constrain lineage plasticity, as well as to effectively treat NE tumors de novo or after transformation. As simurosertib clinical efficacy trials are ongoing, this concept could be readily translated for patients at risk of transformation.
Assuntos
Proteínas de Ciclo Celular , Neoplasias Pulmonares , Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-myc , Humanos , Masculino , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Camundongos , Animais , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/tratamento farmacológico , Proteólise/efeitos dos fármacos , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo , Ubiquitina-Proteína LigasesRESUMO
Small cell lung carcinoma (SCLC) is a highly aggressive malignancy that is typically associated with tobacco exposure and inactivation of RB1 and TP53 genes. Here we performed detailed clinicopathologic, genomic and transcriptomic profiling of an atypical subset of SCLC that lacked RB1 and TP53 co-inactivation and arose in never/light smokers. We found that most cases were associated with chromothripsis - massive, localized chromosome shattering - recurrently involving chromosomes 11 or 12, and resulting in extrachromosomal (ecDNA) amplification of CCND1 or co-amplification of CCND2/CDK4/MDM2, respectively. Uniquely, these clinically aggressive tumors exhibited genomic and pathologic links to pulmonary carcinoids, suggesting a previously uncharacterized mode of SCLC pathogenesis via transformation from lower-grade neuroendocrine tumors or their progenitors. Conversely, SCLC in never-smokers harboring inactivated RB1 and TP53 exhibited hallmarks of adenocarcinoma-to-SCLC derivation, supporting two distinct pathways of plasticity-mediated pathogenesis of SCLC in never-smokers.
RESUMO
EGFR mutations identify patients who are more likely to respond to treatment with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) than cytotoxic chemotherapy. The distinct success of the first-generation EGFR TKIs erlotinib and gefitinib has been accompanied by the observation that acquired resistance to these treatments develops after a median of 1 year of treatment. Newer, second-generation EGFR TKIs have been developed with the intent to delay or overcome acquired resistance by the broader inhibition of kinases (eg, HER2 and vascular endothelial growth factor receptor) and/or altering the interactions with EGFR through irreversibly binding to the kinase domain. This article discusses many of these agents (including afatinib, dacomitinib, XL647, AP26113, and CO-1686) which have the potential for greater efficacy compared with first-generation EGFR TKIs, and may also have clinical activity against other oncogenic mutations within the EGFR family, including HER2.
Assuntos
Antineoplásicos/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/etnologia , Inibidores de Proteínas Quinases/uso terapêutico , Ensaios Clínicos como Assunto , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/genética , Mutação , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
SUMMARY: The landscape of neoadjuvant immune-checkpoint blockade for resectable non-small cell lung cancer has become an exciting area of clinical and translational exploration. Cascone and colleagues present a platform study of one cycle of novel immunomodulatory agents prior to surgical resection, offering a unique opportunity to perform translational biomarker studies, though many questions remain regarding the ultimate application to a broader patient population. See related article by Cascone et al., p. 2394 (1).
Assuntos
Antineoplásicos Imunológicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Terapia Neoadjuvante , Antineoplásicos Imunológicos/uso terapêutico , Estadiamento de NeoplasiasRESUMO
Introduction: Patients with EGFR-mutant NSCLC have a high incidence of brain metastases. The EGFR-directed tyrosine kinase inhibitor osimertinib has intracranial activity, making the role of local central nervous system (CNS)-directed therapies, such as radiation and surgery, less clear. Methods: Patients with EGFR-mutant NSCLC and brain metastases who received osimertinib as initial therapy after brain metastasis diagnosis were included. Individual lesion responses were assessed using adapted RANO-BM criteria. CNS progression and local progression of brain metastasis from osimertinib start were analyzed using cumulative incidence treating death as a competing risk. Overall survival was estimated using Kaplan-Meier methodology. Results: There were 36 patients who had a median interval from brain metastasis diagnosis to first-line osimertinib initiation of 25 days. In total, 136 previously untreated brain metastases were tracked from baseline. Overall, 105 lesions (77.2%) had complete response and 31 had partial response reflecting best objective response of 100%. Best response occurred at a median of 96 days (range: 28-1113 d) from baseline magnetic resonance imaging. This reflects a best objective response rate of 100%. Two-year overall survival was 80%. CNS progression rates at 1-, 2-, and 3-years post-osimertinib were 21%, 32%, and 41%, respectively. Lesion-level local failure was estimated to be 0.7% and 4.7% at 1- and 2-years post-osimertinib, respectively. No clinicodemographic factors including brain metastasis number were associated with post-osimertinib progression. Conclusions: Intracranial response to osimertinib is excellent for patients with EGFR-mutant NSCLC with de novo, previously untreated brain metastases. Very low local failure rates support a strategy of upfront osimertinib alone in selected patients.
RESUMO
Up to 50% of patients with non-small cell lung cancer (NSCLC) develop brain metastasis (BM), yet the study of BM genomics has been limited by tissue access, incomplete clinical data, and a lack of comparison with paired extracranial specimens. Here we report a cohort of 233 patients with resected and sequenced (MSK-IMPACT) NSCLC BM and comprehensive clinical data. With matched samples (47 primary tumor, 42 extracranial metastatic), we show CDKN2A/B deletions and cell cycle pathway alterations to be enriched in the BM samples. Meaningful clinico-genomic correlations are noted, namely EGFR alterations in leptomeningeal disease (LMD) and MYC amplifications in multifocal regional brain progression. Patients who developed early LMD frequently have had uncommon, multiple, and persistently detectable EGFR driver mutations. The distinct mutational patterns identified in BM specimens compared to other tissue sites suggest specific biologic underpinnings of intracranial progression.
Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Genômica , Neoplasias Encefálicas/genética , Receptores ErbB/genéticaRESUMO
PURPOSE: Primary and acquired resistance to osimertinib remain significant challenges for patients with EGFR-mutant lung cancers. Acquired EGFR alterations such as EGFR T790M or C797S mediate resistance to EGFR tyrosine kinase inhibitors (TKI) and combination therapy with dual EGFR TKIs may prevent or reverse on-target resistance. PATIENTS AND METHODS: We conducted two prospective, phase I/II trials assessing combination osimertinib and dacomitinib to address on-target resistance in the primary and acquired resistance settings. In the initial therapy study, patients received dacomitinib and osimertinib in combination as initial therapy. In the acquired resistance trial, dacomitinib with or without osimertinib was administered to patients with EGFR-mutant lung cancers with disease progression on osimertinib alone and evidence of an acquired EGFR second-site mutation. RESULTS: Cutaneous toxicities occurred in 93% (any grade) of patients and diarrhea in 72% (any grade) with the combination. As initial therapy, the overall response to the combination was 73% [95% confidence interval (CI), 50%-88%]. No acquired secondary alterations in EGFR were observed in any patients at progression. In the acquired resistance setting, the overall response was 14% (95% CI, 1%-58%). CONCLUSIONS: We observed no acquired secondary EGFR alterations with dual inhibition of EGFR as up-front treatment, but this regimen was associated with greater toxicity. The combination was not effective in reversing acquired resistance after development of a second-site acquired EGFR alteration. Our study highlights the need to develop better strategies to address on-target resistance in patients with EGFR-mutant lung cancers.
Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , Mutação , Estudos Prospectivos , Inibidores de Proteínas Quinases/efeitos adversos , Resistencia a Medicamentos Antineoplásicos/genética , Compostos de Anilina/farmacologiaRESUMO
OBJECTIVE: Targeted therapy improves outcomes in patients with advanced-stage non-small cell lung cancer (NSCLC) and in the adjuvant setting, but data on its use before surgery are limited. We sought to investigate the safety and feasibility of preoperative targeted therapy in patients with operable NSCLC. METHODS: We retrospectively reviewed 51 patients with clinical stage I to III NSCLC who received targeted therapy, alone or in combination with chemotherapy, before surgical resection with curative intent, treated from 2004 to 2021. The primary outcome was the safety and feasibility of preoperative targeted therapy; secondary outcomes included objective response rate, major pathologic response (defined as ≤10% viable tumor) rate, recurrence-free survival (RFS), and overall survival. RESULTS: Of the 51 patients included, 46 had an activating epidermal growth factor receptor gene alteration and 5 had an anaplastic lymphoma kinase fusion. Overall, 37 of 46 evaluable patients experienced at least 1 adverse event before surgery; however, only 3 patients experienced a grade 3 or 4 event. The objective response rate was 38% (17/45) for all evaluable patients and 44% (14/32) for patients with clinical stage II or III disease. The major pathologic response rate was 20% (9/44); 2 patients had a complete pathologic response. Median RFS was 3.8 years (95% CI, 2.8 to not reached). Targeted therapy alone was associated with better RFS than combination therapy (P = .009) in patients with clinical stage II or III disease. CONCLUSIONS: Preoperative targeted therapy was well tolerated and associated with good outcomes, with or without induction chemotherapy. In addition, radiographic response and pathologic response were strongly correlated.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/cirurgia , Estudos Retrospectivos , Terapia Combinada , Terapia Neoadjuvante/efeitos adversos , Estadiamento de NeoplasiasRESUMO
In lung and prostate adenocarcinomas, neuroendocrine (NE) transformation to an aggressive derivative resembling small cell lung cancer (SCLC) is associated with poor prognosis. We previously described dependency of SCLC on the nuclear transporter exportin 1. Here, we explored the role of exportin 1 in NE transformation. We observed up-regulated exportin 1 in lung and prostate pretransformation adenocarcinomas. Exportin 1 was up-regulated after genetic inactivation of TP53 and RB1 in lung and prostate adenocarcinoma cell lines, accompanied by increased sensitivity to the exportin 1 inhibitor selinexor in vitro. Exportin 1 inhibition prevented NE transformation in different TP53/RB1-inactivated prostate adenocarcinoma xenograft models that acquire NE features upon treatment with the aromatase inhibitor enzalutamide and extended response to the EGFR inhibitor osimertinib in a lung cancer transformation patient-derived xenograft (PDX) model exhibiting combined adenocarcinoma/SCLC histology. Ectopic SOX2 expression restored the enzalutamide-promoted NE phenotype on adenocarcinoma-to-NE transformation xenograft models despite selinexor treatment. Selinexor sensitized NE-transformed lung and prostate small cell carcinoma PDXs to standard cytotoxics. Together, these data nominate exportin 1 inhibition as a potential therapeutic target to constrain lineage plasticity and prevent or treat NE transformation in lung and prostate adenocarcinoma.