Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hepatology ; 78(3): 727-740, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36221953

RESUMO

BACKGROUND AND AIMS: Major genomic drivers of hepatocellular carcinoma (HCC) are nowadays well recognized, although models to establish their roles in human HCC initiation remain scarce. Here, we used human liver organoids in experimental systems to mimic the early stages of human liver carcinogenesis from the genetic lesions of TP53 loss and L3 loop R249S mutation. In addition, chromatin immunoprecipitation sequencing (ChIP-seq) of HCC cell lines shed important functional insights into the initiation of HCC consequential to the loss of tumor-suppressive function from TP53 deficiency and gain-of-function activities from mutant p53. APPROACH AND RESULTS: Human liver organoids were generated from surgical nontumor liver tissues. CRISPR knockout of TP53 in liver organoids consistently demonstrated tumor-like morphological changes, increased in stemness and unrestricted in vitro propagation. To recapitulate TP53 status in human HCC, we overexpressed mutant R249S in TP53 knockout organoids. A spontaneous increase in tumorigenic potentials and bona fide HCC histology in xenotransplantations were observed. ChIP-seq analysis of HCC cell lines underscored gain-of-function properties from L3 loop p53 mutants in chromatin remodeling and overcoming extrinsic stress. More importantly, direct transcriptional activation of PSMF1 by mutant R249S could increase organoid resistance to endoplasmic reticulum stress, which was readily abrogated by PSMF1 knockdown in rescue experiments. In a patient cohort of primary HCC tumors and genome-edited liver organoids, quantitative polymerase chain reaction corroborated ChIP-seq findings and verified preferential genes modulated by L3 mutants, especially those enriched by R249S. CONCLUSIONS: We showed differential tumorigenic effects from TP53 loss and L3 mutations, which together confer normal hepatocytes with early clonal advantages and prosurvival functions.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Mutação , Proteína Supressora de Tumor p53/genética , Organoides
2.
Acta Biochim Biophys Sin (Shanghai) ; 55(1): 62-71, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36727416

RESUMO

Ovarian cancer is one of leading causes of cancer death in gynecological tumor. Isoalantolactone (IL), present in several medicinal plants, exhibits various biological activities, and its mechanism underlying anti-ovarian cancer activity needs to be further investigated. Here, we find that IL inhibits the proliferation of SKOV-3 and OVCAR-3 cells by causing G2/M phase arrest and inducing apoptosis. Moreover, IL decreases intracellular glutathione (GSH) level, and induces reactive oxygen species (ROS) generation in SKOV-3 cells. Furthermore, IL induces inactivation of Akt which is required for the cytotoxicity of IL. In addition, overexpression of Akt attenuates the IL-induced growth inhibition and ROS generation. GSH supplementation moderately increases the expression of phospho-Akt. Further investigation reveals that pretreatment with L-buthionine-sulfoximine (a GSH biosynthesis inhibitor) restores the Akt-mediated attenuation of growth inhibition induced by IL. Moreover, co-treatment with IL and wortmannin (an Akt pathway inhibitor) increases the growth inhibition attenuated by pretreatment with N-acetyl-L-cysteine (a precursor for GSH biosynthesis). These results indicate that inactivation of Akt and downregulation of GSH level induced by IL are related to each other. In conclusion, combined targeting Akt and GSH is an effective strategy for cancer therapy and IL can be a promising anticancer agent for further exploration.


Assuntos
Apoptose , Neoplasias Ovarianas , Humanos , Feminino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Glutationa/metabolismo , Proliferação de Células
3.
Drug Chem Toxicol ; 45(6): 2535-2544, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34380357

RESUMO

The leguminosae of Sophora moorcroftiana (Benth.) Benth.ex Baker is a drought-resistant endemic Sophora shrub species from the Qinghai-Tibet Plateau, and its seeds have hepatoprotective effects. To study the effect of S. moorcroftiana seeds on liver injury and the molecular mechanism underlying the beneficial effects, liquid chromatography-mass spectrometry was used to detect the main active components in the ethanol extract of S. moorcroftiana seeds (SM). Male mice were divided into six groups (n = 8): normal control (NC), CCl4, SM (50, 100, 200 mg/kg), and dimethyl diphenyl bicarboxylate (150 mg/kg) groups. Mice were treated as indicated (once/day, orally) for 14 days, and CCl4 (2 mL/kg) was administered intraperitoneally. The serum and liver of mice were used for biochemical assays. To explore the underlying mechanism, HepG2 cells were treated with SM, stimulated with tert-butyl hydroperoxide (t-BHP, 50 µM), and analyzed by Western blotting. The major active compounds of SM were alkaloids including 22 compounds. Serum alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) decreased in the SM (200 mg/kg) group. SM can activate the expression of pregnane X receptor (PXR) and downstream molecules cytochrome P4503A11 enzyme (CYP3A11), UDP glucuronosyltransferase 1 family polypeptide A 1 (UGT1A1), and inhibit the multidrug resistance protein 2 (MRP2). In addition, SM improved cell viability in t-BHP-induced HepG2 cells (64% to 83%) and decreased the activation of the mitogen-activated protein kinase (MAPK) pathway. The main compounds in SM were alkaloids. SM showed hepatoprotective effects possibly mediated by the suppression of oxidative stress through the MAPK pathway.


Assuntos
Alcaloides , Doença Hepática Induzida por Substâncias e Drogas , Sophora , Animais , Camundongos , Sophora/química , Receptor de Pregnano X , terc-Butil Hidroperóxido/análise , terc-Butil Hidroperóxido/farmacologia , Alanina Transaminase/análise , Fosfatase Alcalina , Sementes/química , Aspartato Aminotransferases/análise , Extratos Vegetais/química , Alcaloides/farmacologia , Fígado , Glucuronosiltransferase , Proteínas Quinases Ativadas por Mitógeno/análise , Proteínas Quinases Ativadas por Mitógeno/farmacologia , Etanol , Citocromos/análise , Citocromos/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
4.
Med Res Rev ; 41(1): 507-524, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33026703

RESUMO

Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality worldwide. The outcome of current standard treatments, as well as targeted therapies in advanced stages, are still unsatisfactory. Attention has been drawn to novel strategies for better treatment efficacy. Hepatocyte growth factor/c-mesenchymal-epithelial transition factor (HGF/c-Met) axis has been known as an essential element in the regulation of liver diseases and as an oncogenic factor in HCC. In this review, we collected the evidence of HGF/c-Met as a tumor progression and prognostic marker, discussed the anti-c-Met therapy in vitro, summarized the outcome of c-Met inhibitors in clinical trials, and identified potential impetus for future anti-c-Met treatments. We also analyzed the inconsistency of HGF/c-Met from various publications and offered reasonable explanations based on the current understanding in this area. In conclusion, HGF/c-Met plays a crucial role in the progression and growth of HCC, and the strategies to inhibit this pathway may facilitate the development of new and effective treatments for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Proliferação de Células , Transição Epitelial-Mesenquimal , Fator de Crescimento de Hepatócito , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais
5.
Bioorg Chem ; 114: 105066, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34134031

RESUMO

Twenty-one eudesmane-type sesquiterpenes, including five new compounds, were isolated from the roots of Inula helenium. The structures of the new compounds (1-5) were determined by extensive spectroscopic data interpretation, single-crystal X-ray diffraction analysis and ECD calculations. Six compounds can synergistically enhance cisplatin effect against ovarian cancer cells, the structure - activity relationship for the synergistic effect of these compounds with cisplatin was revealed for the first time, which provides useful clues to develop novel sensitizers to overcome drug resistance in cancer. In addition, fifteen sesquiterpenes exhibited significant anti-inflammatory activity, which provided promising candidates for development of anti-inflammatory agent.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Inula/química , Sesquiterpenos/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Células RAW 264.7 , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Relação Estrutura-Atividade
6.
J Nat Prod ; 82(9): 2645-2652, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31513408

RESUMO

Two octahydro-protoberberine alkaloids, alangiifoliumines A (1) and B (2), and two new protoemetine derivatives, alangiifoliumines C (3) and D (4), together with 11 known compounds, have been isolated from the stems of Alangium salviifolium. While the structures of these compounds were elucidated by spectroscopic methods, the absolute configurations of the new alkaloids were determined by conformational analysis and time-dependent density functional theory-electronic circular dichroism spectra calculations on selected stereoisomers. Compounds 1 and 2 represent the first 5,8,8a,9,12,12a,13,13a-octahydro-protoberberine derivatives, in which the aromatic ring D was reduced to cyclohexene. All the compounds isolated were evaluated for their cytotoxic activity against three human cancer cell lines: A-549, HeLa, and SKOV-3. Alkaloids 1, 3, and 6-14 exhibited inhibitory effects against all three human cancer cell lines, with half-maximal inhibitory concentration (IC50) values in the range of 3 nM to 9.4 µM.


Assuntos
Alcaloides/farmacologia , Alcaloides de Berberina/farmacologia , Caules de Planta/química , Alcaloides/isolamento & purificação , Alcaloides de Berberina/isolamento & purificação , Linhagem Celular Tumoral , Humanos
7.
Phytother Res ; 32(11): 2256-2263, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30047559

RESUMO

Protocatechuic acid (PCA), present in many fruits and vegetables, exhibited various biological activities. Here, we provided evidence that it could be developed as a potential chemotherapeutic agent against human ovarian cancer. We found that PCA treatment significantly reduced the cell viability and colony formation of OVCAR-3, SKOV-3, and A2780 cells. OVCAR-3 cells were selected as a test model system for investigating molecular mechanism. PCA treatment induced cell cycle arrest in G2 /M phase, the activation of poly (ADP-ribose) polymerase (PARP) and caspase-3, the upregulation of Bax and downregulation of Bcl-2 in OVCAR-3 cells. We also observed that PCA treatment significantly caused upregulation of autophagy-related protein LC3-II and induced GFP-LC3 puncta formation. Furthermore, cotreatment with PCA and autophagy inhibitor attenuated the cytotoxicity induced by PCA in OVCAR-3 cells. Moreover, our results showed that PCA increased the intracellular levels of glutathione and decreased intracellular reactive oxygen species that might be related to the inhibition effect of PCA on OVCAR-3 cells. Our data revealed that PCA could modulate apoptosis and autophagy, suggesting the potential of PCA for chemoprevention and chemotherapy of ovarian cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Hidroxibenzoatos/farmacologia , Neoplasias Ovarianas/patologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Glutationa/metabolismo , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Poli(ADP-Ribose) Polimerase-1/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
Proc Natl Acad Sci U S A ; 109(26): 10175-80, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22685209

RESUMO

The platinum-based chemotherapy is the standard treatment for several types of cancer. However, cancer cells often become refractory with time and most patients with serious cancers die of drug resistance. Recently, we have discovered a unique dissociative electron-transfer mechanism of action of cisplatin, the first and most widely used platinum-based anticancer drug. Here, we show that the combination of cisplatin with an exemplary biological electron donor, N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), may overcome the resistance of cancer cells to cisplatin. Our steady-state absorption and fluorescence spectroscopic measurements confirm the effective dissociative electron-transfer reaction between TMPD and cisplatin. More significantly, we found that the combination of 100 µM TMPD with cisplatin enhances double-strand breaks of plasmid DNA by a factor of approximately 3.5 and dramatically reduces the viability of cisplatin-sensitive human cervical (HeLa) cancer cells and highly cisplatin-resistant human ovarian (NIH:OVCAR-3) and lung (A549) cancer cells. Furthermore, this combination enhances apoptosis and DNA fragmentation by factors of 2-5 compared with cisplatin alone. These results demonstrate that this combination treatment not only results in a strong synergetic effect, but also makes resistant cancer cells sensitive to cisplatin. Because cisplatin is the cornerstone agent for the treatment of a variety of human cancers (including testicular, ovarian, cervical, bladder, head/neck, and lung cancers), our results show both the potential to improve platinum-based chemotherapy of various human cancers and the promise of femtomedicine as an emerging frontier in advancing cancer therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias do Colo do Útero/tratamento farmacológico , Apoptose , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Dano ao DNA , Transporte de Elétrons , Feminino , Citometria de Fluxo , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Ovarianas/patologia , Espectrometria de Fluorescência , Tetrametilfenilenodiamina/administração & dosagem , Neoplasias do Colo do Útero/patologia
9.
Nat Prod Res ; : 1-9, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623908

RESUMO

Two novel neolignans, piperkadsurenin A (1) and kadsurenin N (2), along with six known neolignans (3-8) and two lignans (9-10) were isolated from the stems of Piper kadsura (Choisy) Ohwi. Extensive spectroscopic data interpretation and ECD calculations were used to identify the structures of the new compounds 1 and 2. Especially, compound 1 represents the first example of neolignan with cyclopenta[b]pyran framework. The anti-inflammatory efficacy of compounds 1-10 in vitro was systematically assessed through NO production inhibitory assay. Compounds 3 and 7 significantly inhibited LPS-induced NO generation in RAW 264.7 cells, with IC50 values of 34.29 ± 0.82 and 47.5 ± 5.81 µM, respectively.

10.
PLoS Pathog ; 7(2): e1001300, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21383972

RESUMO

Elite suppressors (ES) are a rare population of HIV-infected individuals that are capable of naturally controlling the infection without the use of highly active anti-retroviral therapy (HAART). Patients on HAART often achieve viral control to similar (undetectable) levels. Accurate and sensitive methods to measure viral burden are needed to elucidate important differences between these two patient populations in order to better understand their mechanisms of control. Viral burden quantification in ES patients has been limited to measurements of total DNA in PBMC, and estimates of Infectious Units per Million cells (IUPM). There appears to be no significant difference in the level of total HIV DNA between cells from ES patients and patients on HAART. However, recovering infectious virus from ES patient samples is much more difficult, suggesting their reservoir size should be much smaller than that in patients on HAART. Here we find that there is a significant difference in the level of integrated HIV DNA in ES patients compared to patients on HAART, providing an explanation for the previous results. When comparing the level of total to integrated HIV DNA in these samples we find ES patients have large excesses of unintegrated HIV DNA. To determine the composition of unintegrated HIV DNA in these samples, we measured circular 2-LTR HIV DNA forms and found ES patients frequently have high levels of 2-LTR circles in PBMC. We further show that these high levels of 2-LTR circles are not the result of inefficient integration in ES cells, since HIV integrates with similar efficiency in ES and normal donor cells. Our findings suggest that measuring integration provides a better surrogate of viral burden than total HIV DNA in ES patients. Moreover, they add significantly to our understanding of the mechanisms that allow viral control and reservoir maintenance in this unique patient population.


Assuntos
Terapia Antirretroviral de Alta Atividade , Linfócitos T CD4-Positivos/virologia , DNA Circular/genética , DNA Viral/genética , Infecções por HIV/virologia , HIV-1/genética , Integração Viral , Estudos de Coortes , Infecções por HIV/tratamento farmacológico , Repetição Terminal Longa de HIV/genética , Humanos , Carga Viral
11.
Phytother Res ; 27(2): 251-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22565822

RESUMO

Emodin, a natural anthraquinone, has been reported to possess antiproliferative effects in many cancer cell lines. However, anticancer mechanism against human liver cancer remains unclear. In this study, we observed that emodin induced apoptosis in HepG2 cells and caused a significant accumulation of cells in the G1 phase. Western blot data showed that emodin treatment caused the increasing of release of cytochrome c into cytosol from mitochondria and the activation of caspase-8 and caspase-9, which suggest that the intrinsic and extrinsic pathways could be involved. Emodin treatment also resulted in a dose-dependent accumulation of intracellular reactive oxygen species. Furthermore, emodin increased the protein level of p53 and decreased the protein level of NF-κB/p65 in HepG2 cells, which indicated these two regulators might play a role in emodin-induced apoptosis. Computational modeling showed that emodin could directly bind to the BH3 domain of Bcl-2 through forming one hydrogen bond with Ala146 residue in Bcl-2. From these examinations, emodin not only significantly downregulated expression of Bcl-2 but also inhibited the heterodimerization of Bcl-2 with Bax because of strong interaction between emodin and Bcl-2. These suggest that emodin induces apoptosis in liver cancer cell line through a multifaceted complex cascade of events.


Assuntos
Apoptose/efeitos dos fármacos , Emodina/farmacologia , Células Hep G2/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 9/metabolismo , Ciclo Celular/efeitos dos fármacos , Citocromos c/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição RelA/metabolismo , Proteína Supressora de Tumor p53/metabolismo
12.
J Mater Chem B ; 11(12): 2706-2713, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36876404

RESUMO

Nitrogen mustard (NM), a kind of alkylating agent similar to sulfur mustard, remains a threat to public health. However, there is nearly no satisfactory antidote for nitrogen mustard. Herein, we developed a supramolecular antidote to nitrogen mustard through efficient complexation of NM by carboxylatopillar[5]arene potassium salts (CP[5]AK). The cavity of methoxy pillar[5]arene (P5A) is sufficient to encapsulate NM with an association constant of 1.27 × 102 M-1, which was investigated by 1H NMR titration, density functional theory studies and independent gradient model studies. NM degrades to the reactive aziridinium salt (2) in the aqueous phase which irreversibly alkylates DNA and proteins, causing severe tissue damage. Considering the size/charge matching with toxic intermediate 2, water-soluble CP[5]AK was selected to encapsulate the toxic aziridinium salt (2), resulting in a high association constant of 4.10 × 104 M-1. The results of protection experiments of guanosine 5'-monophosphate (GMP) by CP[5]AK indicated that the formation of a complex could effectively inhibit the alkylation of DNA. Besides, in vitro and in vivo experiments also indicated that the toxicity of the aziridinium salt (2) is inhibited with the formation of a stable host-guest complex, and CP[5]AK has a good therapeutic effect on the damage caused by NM. This study provides a new mechanism and strategy for the treatment of NM exposure-induced skin injuries.


Assuntos
Antídotos , Mecloretamina , Mecloretamina/farmacologia , DNA
13.
J Agric Food Chem ; 71(27): 10349-10360, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37392181

RESUMO

Piper longum L. is widely cultivated for food, medicine, and other purposes in tropical and subtropical regions. Sixteen compounds including nine new amide alkaloids were isolated from the roots of P. longum. The structures of these compounds were determined by spectroscopic data. All compounds showed better anti-inflammatory activities (IC50 = 1.90 ± 0.68-40.22 ± 0.45 µM) compared to indomethacin (IC50 = 52.88 ± 3.56 µM). Among the isolated compounds, five dimeric amide alkaloids exhibited synergistic effects with three chemotherapeutic drugs (paclitaxel, adriamycin, or vincristine) against cervical cancer cells. Moreover, these dimeric amide alkaloids also enhanced the efficacy of paclitaxel in paclitaxel-resistant cervical cancer cells. The combination treatment of one of these dimeric amide alkaloids and paclitaxel promoted cancer cell apoptosis, which is related to the Src/ERK/STAT3 signaling pathway.


Assuntos
Alcaloides , Piper , Neoplasias do Colo do Útero , Feminino , Humanos , Piper/química , Neoplasias do Colo do Útero/tratamento farmacológico , Alcaloides/farmacologia , Alcaloides/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Paclitaxel/farmacologia , Amidas/química , Anti-Inflamatórios/farmacologia
14.
Food Chem ; 405(Pt A): 134736, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36345102

RESUMO

Piper nigrum is an important aromatic plant, and its fruits (black and white pepper) are commonly used as food additives and spices. However, its stems were disposed as wastes. This research comprehensively investigated bioactive alkaloids of the stems, eight new dimeric amide alkaloids and eight known compounds were obtained. All obtained compounds showed excellent anti-inflammatory activity. Additionally, the dimeric amide alkaloids enhanced the anticancer effect of paclitaxel against cervical cancer cells. These results demonstrate that the stems of P. nigrum could be the sustainable source of bioactive alkaloids for development and utilization in the food and health fields.


Assuntos
Alcaloides , Piper nigrum , Amidas/farmacologia , Alcaloides/farmacologia , Extratos Vegetais/farmacologia , Frutas , Benzodioxóis , Alcamidas Poli-Insaturadas/farmacologia
15.
Nanotheranostics ; 6(2): 161-174, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34976591

RESUMO

Background: Hepatocellular carcinoma (HCC) is the predominant subtype of liver cancer with an extraordinary high mortality. Resistance to systemic therapy is a major cause of inferior clinical outcome in most patients with HCC. CD44 is a transmembrane cell-surface glycoprotein that is characterized by its variants displaying differential overexpression in human cancers. Aptamers, also known as chemical antibodies, can target cell-surface molecules with high affinity and specificity via structural recognition. Aptamer-mediated drug delivery hence is of high potentials in guiding therapy to improve efficacy. Methods: Variants CD44E and CD44s were studied for HCC relevance by investigating their expressions in primary HCC tumors, adjacent cirrhotic/fibrotic livers and normal livers using junction specific primers in qPCR assay. CD44E/s dual-targeted aptamers were uncovered by integrating loss-gain cell-SELEX and next generation sequencing. Selected aptamers were characterized for binding affinity and specificity, biostability, in vivo and in vitro cytotoxicity, in vivo homing and biodistribution, and ability to deliver 5-FU into targeted cells in vitro. Results: Both CD44E and CD44s isoforms showed significant upregulations in HCC tumors with CD44E/s activities promoting cell proliferation and migration. Loss-gain cell-SELEX uncover a CD44E/s dual-targeting aptamer, termed CD44-Apt1. Strong binding of CD44-Apt1 to cell-surface CD44 positive cells but not CD44-negative cells was demonstrated by flow-cytometry. CD44-Apt1 displayed strong affinity to CD44E and CD44s with KD as low as 1 nM but not the hyaluronic acid binding domain of CD44. Confocal imaging of CD44-positive cells stained with fluorescent-labeled CD44-Apt1 showed profound cytoplasmic localization, suggesting efficient cell-penetrating ability. Meanwhile, no apparent staining was observed in CD44-negative cells. CD44-Apt1 when conjugated with inhibitor 5-FU showed efficient guidance of 5-FU into HCC cells that significantly enhanced drug toxicity by more than thousands-fold. Both in vitro cell treatment and in vivo animal biodistribution indicated that CD44-Apt1 is non-toxic. In HCC xenograft model, CD44-Apt1 efficiently homed to tumor xenografts in a CD44 expression-dependent manner. Conclusion: Novel discovery of aptamer CD44-Apt1 that can bind both CD44E and CD44s illustrates high potential as nanoprobe to deliver anti-cancer therapeutics.


Assuntos
Aptâmeros de Nucleotídeos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Proliferação de Células , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Distribuição Tecidual
16.
Food Chem ; 126(4): 1593-8, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25213932

RESUMO

This study was designed to examine the anticancer, antioxidant and antimicrobial activities of the essential oil from Lycopus lucidus Turcz. var. hirtus Regel. The essential oil treatment to six human cancer cell lines resulted in a dose-dependent inhibition of cell growth. The cytotoxicity of the essential oil on liver carcinoma and breast cancer cell lines was significantly stronger than on other cell lines. The essential oil can induce apoptosis of the liver carcinoma cell line Bel-7402 and decrease the intracellular GSH level. The antioxidant effect of the essential oil was evaluated by using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radical (OH) scavenging assays. The essential oil exhibited moderate antioxidant activity. The antimicrobial activity of the essential oil was evaluated against eight microorganisms using the disc diffusion and broth microdilution methods. The essential oil also showed moderate antimicrobial activity. These suggest that the essential oil could hold a good potential for use in the pharmaceutical industry.

17.
Nat Prod Res ; 35(11): 1899-1902, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31328562

RESUMO

This study was undertaken in order to investigate the antioxidant, anti-inflammatory and antimicrobial activities of various fractions and compounds obtained from the bark of P. hupehensis. The ethyl acetate fraction exhibited strong antioxidant, anti-inflammatory and antimicrobial effects. Six compounds were isolated from this fraction, three of which showed antioxidant activity and anti-inflammatory activity. The biological activities and the active compounds of P. hupehensis were reported for the first time.


Assuntos
Juglandaceae/química , Casca de Planta/química , Extratos Vegetais/farmacologia , Antibacterianos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Compostos de Bifenilo/química , Sequestradores de Radicais Livres/farmacologia , Testes de Sensibilidade Microbiana , Picratos/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
18.
Theranostics ; 11(5): 2123-2136, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33500715

RESUMO

Rationale: Hyperactivation of HGF/MET signaling pathway is a critical driver in liver tumorigenesis. Cytochrome P450 1A2 (CYP1A2) was significantly down-regulated in hepatocellular carcinoma (HCC). However, little is explored about its tumor suppressive role in HCC. In this study, we examined the functional mechanisms and clinical implication of CYP1A2 in HCC. Methods: The clinical impact of CYP1A2 was evaluated in HCC patients in Hong Kong cohort. The biological functions of CYP1A2 were investigated in vitro and in vivo. A series of biochemical experiments including Western blot assay, immunohistochemistry, quantitative reverse transcription-polymerase chain reaction, and Co-immunoprecipitation assay were conducted. Results: CYP1A2 expression was prominently silenced in HCC tumor tissues and the high expression of CYP1A2 was significantly correlated with lower AFP level, less vascular invasion, and better tumor-free survival in local cohort of HCC patients. The overexpression of CYP1A2 inhibited HCC cell viability and clonogenicity, reduced cell migration and invasion abilities in vitro, and suppressed tumorigenicity in vivo, whereas CYP1A2 knockdown exhibited the opposite effects. CYP1A2 significantly hindered HGF/MET signaling and Matrix metalloproteinases (MMPs) expression in HCC cells. Mechanically, CYP1A2 decreased HGF level and diminished HIF-1α expression, both of which are recognized as key regulators of MET activation. As the transcriptional activator of MET, HIF-1α was identified as a binding partner of CYP1A2. Direct binding of CYP1A2 with HIF-1α induced ubiquitin-mediated degradation of HIF-1α, inhibiting HIF-1α-mediated transcriptions. Conclusions: In conclusion, our results have identified CYP1A2 as a novel antagonist of HGF/MET signaling, and CYP1A2 may serve as an independent new biomarker for the prognosis of HCC patients.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Citocromo P-450 CYP1A2/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator de Crescimento de Hepatócito/metabolismo , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Citocromo P-450 CYP1A2/genética , Fator de Crescimento de Hepatócito/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-met/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Oncogene ; 40(3): 492-507, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184472

RESUMO

Sorafenib resistance has become the main obstacle in the effective treatment of advanced hepatocellular carcinoma (HCC) patients. Activation of nuclear factor kappa B (NF-κB) is a newly identified mechanism that contributes to desensitized sorafenib. Cytochrome P450 1A2 (CYP1A2) functions as a tumor suppressor in HCC and its expression is negatively associated with NF-κB in the liver. This study aimed to study whether CYP1A2 could overcome sorafenib resistance. To investigate whether CYP1A2 and NF-κB p65 played roles in sorafenib desensitization, we established sorafenib-resistant (SR) HCC cells. SR cells decreased the expression of CYP1A2 along with the upregulation of NF-κB p65. CYP1A2 overexpression attenuated SR cell proliferation, increased sorafenib sensitivity, and inhibited the NF-κB pathway, whereas CYP1A2 silence showed opposite effects. Sorafenib, in combination with omeprazole, a CYP1A2 inducer, significantly hindered the growth and invasion of SR cells in vitro as well as decreased the tumor growth in vivo. The combination treatment markedly increased CYP1A2 expression and inhibited the sorafenib-induced NF-κB signaling. In addition, the overexpression of NF-κB p65 stimulated the SR cell growth and desensitized sorafenib in SR cells, where CYP1A2 overexpression reversed the phenomenon. Lastly, the majority of HCC tissue samples displayed decreased CYP1A2 but increased NF-κB p65 protein expression. Collectively, CYP1A2 can sensitize SR cells to sorafenib via inhibiting NF-κB p65 axis. Omeprazole in combination with sorafenib exerts a synergistic effect in alleviating acquired sorafenib resistance.


Assuntos
Carcinoma Hepatocelular/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hepáticas/metabolismo , NF-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Sorafenibe/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Citocromo P-450 CYP1A2/genética , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , NF-kappa B/genética , Proteínas de Neoplasias/genética
20.
J Virol ; 83(9): 4528-37, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19211752

RESUMO

Resting CD4(+) T cells restrict human immunodeficiency virus (HIV) infection at or before reverse transcription, resulting in slower kinetics of reverse transcription. In a previous study, we showed that, despite this restriction at reverse transcription, HIV integration occurs in resting CD4(+) T cells, albeit with slower kinetics. In that study, the resting T cells were a mixture of memory and naïve cells. Here we asked whether the more quiescent naïve cell subset could be directly infected by HIV and, if so, whether the level of integration in naïve cells was comparable to that in memory cells. We found that HIV integrates in the naïve subset of resting CD4(+) T cells without prior activation of the cells. The level of integration (proviruses/cell) in naïve cells was lower than that in memory cells. This difference between naïve and memory cells was observed whether we inoculated the cells with R5 or X4 HIV and could not be explained solely by differences in coreceptor expression. The presence of endogenous dendritic cells did not change the number of proviruses/cell in memory or naïve cells, and deoxynucleoside pools were equally limiting. Our results instead indicate the existence of a novel restriction point in naïve T cells at viral fusion that results in reduced levels of fusion to naïve CD4(+) T cells. We conclude that HIV can integrate into both naïve and memory cells directly. Our data further support our hypothesis that integrated proviral infection of resting T cells can be established without T-cell activation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , HIV/imunologia , Imunidade Inata/imunologia , Memória Imunológica/imunologia , Integração Viral/imunologia , Linhagem Celular , Separação Celular , Genoma/genética , HIV/genética , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA