Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Org Chem ; 88(18): 13272-13278, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37656971

RESUMO

A simple and efficient method for the synthesis of unsymmetrical disulfides is reported. Using sodium sulfites and 2-mercaptobenzo heterocyclic compounds as starting materials, the unsymmetrical sulfur-sulfur bonds could be quickly constructed in the PPh3/I2 reaction system under transition-metal-free conditions. This protocol has the advantages of mild reaction conditions, easily available starting materials, and wide substrate scope, showing potential synthetic value for the synthesis of a diversity of biologically or pharmaceutically active compounds.

2.
Environ Res ; 237(Pt 1): 116963, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619625

RESUMO

Phosphogypsum (PG) is a solid waste generated during the wet process of phosphoric acid production. The environmental-friendly disposal and recycling of PG is vital in the field of environmental solid waste treatment. In this study, PG is used for adsorbent of dyes in wastewater to achieve the goal of recycling waste with waste. Surfactant-modified phosphogypsum (ODBAC@PG) was prepared using octadecyl dimethyl benzyl ammonium chloride (ODBAC) as modifier. ODBAC@PG exhibits high adsorption capability for anionic dyes (methyl blue (MeB) and indocyanine carmine (IC)). The pseudo-second-order kinetic model fits the kinetic experimental data for the adsorption of two organic anionic dyes. Langmuir adsorption isotherm fits the adsorption characteristics of MeB and IC on ODBAC@PG, exhibiting a monolayer adsorption pattern. Thermodynamic parameters indicate the spontaneous and exothermic properties of MeB and IC on ODBAC@PG. MeB and IC have antagonistic effects on each other in binary adsorption system. High adsorption capacity after six cycles of experiments demonstrates the high reusability of ODBAC@PG. The nature for the adsorption includes electrostatic interaction, hydrogen bond and hydrophobic interaction. Using ODBAC@PG for dyes wastewater treatment can accomplish the goal of treating waste with waste and turning waste into treasure.

3.
Environ Res ; 216(Pt 4): 114838, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36402188

RESUMO

The immobilization of cadmium (Cd(II)) in soil using calcined rectorite (REC) was investigated in this research. The results of immobilization show that a small amount of REC calcined at 700 °C (REC-700 °C) could effectively immobilize 90% of Cd(II) in soil, while the immobilization efficiency of REC only reached 42%. Moreover, the immobilization efficiency of REC calcined at 300 °C and 500 °C (REC-300 °C and REC-500 °C) were lower than REC. To investigate the mechanism, the materials before and after immobilization were fully analyzed by Fourier transform infrared spectroscopy (FT-IR), powdery X-ray diffraction analysis (XRD), and scanning electron microscopy (SEM). The results indicate that the structure of REC has been changed after calcination at different temperatures and Cd(II) was successfully immobilized on materials. Losing free water, structural water and OH groups respectively, the layer spacing of REC-300 °C and REC-500 °C was shrunk. However, the crystal structure of REC was destroyed after calcination at 700 °C, resulting in the generation of new phases. According to the XRD result, more cadmium hydroxide (Cd(OH)2) were produced on REC-700 °C, indicating that more OH groups were formed during immobilization. Furthermore, Tessier test demonstrates that Cd(II) in soil changed from exchangeable state and water soluble state to carbonate bound state and iron manganese oxide bound state during immobilization. The result of microbial community indicates that REC-700 °C can restore the microbial composition of Cd(II)-contaminated soil. The effects of pH, freeze-thaw, REC dosage, and initial heavy metal concentration were also evaluated to provide a theoretical basis for the subsequent application of the material in the remediation of contaminated soil.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Solo/química , Poluentes do Solo/análise , Temperatura , Espectroscopia de Infravermelho com Transformada de Fourier , Água/análise
4.
J Environ Manage ; 346: 118983, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714083

RESUMO

Owing to uncontrolled mining activities and lack of ecological protection measures, phosphate-mining wastelands are contaminated with the heavy metal Cd. In this study, Penicillium oxalicum strain ZP6, a Cd-resistant phosphate-solubilizing fungus, was used in combination with the fast-growing, high-biomass plant Brassica juncea L. to enhance Cd remediation in phosphate-mining wastelands. Further, the bioremediation mechanisms were explored and elucidated. In pot experiments, strain ZP6 and Brassica juncea L. alone were significantly effective in removing Cd from phosphate-mining wastelands; however, their combination was more effective, exhibiting a high removal rate of 88.75%. The presence of phosphorite powder increases soil-enzyme activity, promotes plant growth, and reduces the bioaccumulation and translocation factors. However, Cd-inhibited plant growth and chlorophyll content increased malondialdehyde accumulation, which was alleviated by inoculation with strain ZP6. The results from the study indicate that bioremediation using a combination of strain ZP6 and plants is a restoration strategy with appreciable potential to resolve Cd contamination in phosphate-mining wastelands.

5.
Environ Res ; 210: 112935, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35157916

RESUMO

The release of residual ammonium (RA) leaching agent from weathered crust elution-deposited rare earth tailings would cause serious environmental pollution, and it was necessary to efficiently remove it from the ore body before the mine closure. In this study, occurrence states of the RA were determined and dynamic elution of RA from rare earth tailings by using magnesium chloride as eluent was investigated. Effects of initial concentration, pH, flow rate, and particle size on the ammonium removal efficiency were investigated, and variations of ammonium occurrence states before and after elution were determined. Lastly, elution mechanism was discussed. Results showed that removal efficiency of RA by magnesium chloride was significantly higher than that by deionized water, and elution efficiency of RA could reach about 95.7% at the optimum laboratory experiment conditions. Energy dispersive spectrometer (EDS) analysis illustrated that the residual ammonium was replaced by Mg2+ during the elution process, and occurrence state experimental results showed that 94.0% of water-soluble and adsorbable ammonium was eluted. The empirical kinetic equation of eluting RA by magnesium chloride was established as 1-2/3α-(1-α)2/3= 0.02*C00.6t. This study provided a valuable method for reducing environmental pollution caused by the release of the residual ammonium from the rare earth tailings.


Assuntos
Compostos de Amônio , Metais Terras Raras , Compostos de Amônio/análise , Poluição Ambiental/análise , Cloreto de Magnésio , Metais Terras Raras/análise , Água/análise
6.
Environ Res ; 215(Pt 2): 114394, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36150441

RESUMO

Here, an easy to prepare, environmentally friendly, and highly efficient biosorbent was synthesized for the selective recovery of glyphosine from glyphosate mother liquor. Batch adsorption and continuous fixed-bed column experiments were conducted to determine its adsorption properties and evaluate its potential towards practical applications. The results showed that the biosorbent exhibited a fast adsorption rate and high adsorption capacity (296.1 mg/g) toward glyphosine. Further, the biosorbent performed better under acidic conditions, and was easily regenerated using an alkaline solution, maintaining a high removal efficiency even after 5 adsorption-desorption cycles. Competitive adsorption experiments in binary and ternary systems revealed that the biosorbent showed a higher adsorption affinity toward the target glyphosine compared with glyphosate and phosphorous acid (which are the other main constituents of glyphosate mother liquor), enabling the selective recycling of glyphosine. These observations were further supported through density functional theory (DFT) calculations of the adsorption energy. Moreover, fixed-bed column experiments showed that the prepared biosorbent could maintain its high performance in actual glyphosate mother liquor. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses revealed that the adsorption mechanism is strongly associated with electrostatic attraction and hydrogen bonding between -NH3+ and glyphosine. Overall, the prepared biosorbent can be considered as an excellent candidate for the selective recovery of glyphosine from complicated industrial wastewater systems.


Assuntos
Praguicidas , Poluentes Químicos da Água , Adsorção , Feminino , Glicina/análogos & derivados , Humanos , Concentração de Íons de Hidrogênio , Cinética , Mães , Espectroscopia de Infravermelho com Transformada de Fourier , Águas Residuárias , Poluentes Químicos da Água/análise , Glifosato
7.
J Environ Manage ; 322: 116157, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36070649

RESUMO

Potentially toxic elements including lead (Pb), manganese (Mn), and copper (Cu) released from copper tailings would cause severe long-term environmental risks and potential threats to human health. To prevent these negative effects caused by the release of the metals, a novel magnetic carboxyl groups modified bagasse with high adsorption affinity and strong magnetism was synthesized through an in-situ precipitation method and used to simultaneously remove Pb, Mn, and Cu from the eluate of copper tailings. Results showed that release of Pb, Mn, and Cu from the copper tailings was pH, time, and particle size dependent, and maximum concentrations of them released in the eluate was 1.7, 1.9, and 4.1 mg L-1 under weak acid conditions. Batch adsorption experiment showed that the as-synthesized magnetic modified bagasse could selectively absorb Pb, Mn, and Cu from a complex solution with adsorption capacity of 137.3, 13.1, and 90.0 mg g-1, respectively. X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy-mapping (EDS-mapping) demonstrated that Pb, Mn, and Cu interacted with the magnetic modified biosorbent mainly through coordination and ion exchange. Column experiments showed that higher than 99.5% of the released Pb, Mn, and Cu could be simultaneously removed by the magnetic modified bagasse, and the maximum concentrations of them released in the eluate of the copper tailings were all decreased to lower than 0.01 mg L-1, which reached the discharge standards. After recycled by a magnet, the magnetic modified bagasse could be collected easily and used repeatedly. Because of the high efficiency and easy recovery, the used method had great practical application value in removal of potentially toxic elements released from metallic tailings.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Cobre/química , Humanos , Concentração de Íons de Hidrogênio , Íons , Chumbo , Fenômenos Magnéticos , Manganês , Poluentes Químicos da Água/análise
8.
Fish Shellfish Immunol ; 115: 27-34, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34052389

RESUMO

TLRs are the first and best-characterized pattern recognition receptors conserved across all the species. Different from mammals, the TLRs in teleost fishes are very diversified due to various evolutionary mechanisms. Here, we characterized one TLR1 gene in turbot, with a 2,415 bp open reading frame (ORF), that encoding 804 amino acid residues, and have the highest similarity and identity both to Paralichthys olivaceus with 88.9% and 79.9%. In phylogenetic analysis, it was firstly clustered with P. olivaceus, and then clustered with Takifugu rubripes. TLR1 was widely expressed in all the examined healthy tissues with the highest expression level in spleen, followed by head-kidney. In addition, it was significantly regulated in gill, skin and intestine following Edwardsiella tarda and Vibrio anguillarum challenge with different expression patterns. In in vitro stimulation with pathogen-associated molecular patterns, TLR1 showed significantly strong and elevated responses to LPS, but only responded to LTA and Poly(I:C) at the highest evaluated concentration, while no response was detected using PGN stimulation. Moreover, in subcellular localization analysis, TLR1 was distributed in the cytoplasm, membrane and nucleus. Taken together, TLR1 played vital roles for host immune response to bacterial infection, only with strong binding ability to LPS and involved in the production of inflammatory cytokines. However, the specific ligand for TLR1 and its functional association with other TLRs should be further characterized in fish species.


Assuntos
Doenças dos Peixes/imunologia , Linguados/genética , Linguados/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Receptor 1 Toll-Like/genética , Receptor 1 Toll-Like/imunologia , Animais , Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/veterinária , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Filogenia , Análise de Sequência de Proteína/veterinária , Receptor 1 Toll-Like/química , Vibrio/fisiologia , Vibrioses/imunologia , Vibrioses/veterinária
9.
J Environ Manage ; 299: 113642, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34467858

RESUMO

Weathered crust elution-deposited rare earth ore (WCE-DREO) are rich in middle and heavy rare earth, and ammonium sulfate ((NH4)2SO4) was often used as leaching agent to leach rare earths by in-situ leaching method. However, much of (NH4)2SO4 would remained in the ore body during the leaching process, and release of it would cause seriously environmental pollution after the mine closure. To efficiently remove it, the rare earth ore properties and vertical distribution and occurrence state of the residual leaching agent at mine roof (GP1), mine waist (GP2), and mine foot (GP3) with different depth were investigated and efficient elution method was proposed in this study. Results showed that the rare earth ore mainly consist of quartz, clay minerals (halloysite, illite, and kaolinite) and rock-forming minerals, and pH and moisture contents of them were ranged from 4.0 to 5.0 and 10-20%, respectively. Residual agent was mainly enriched in the middle and deep layer of the ore body with the main form of ammonium nitrogen (NH4+-N), and content of it at the three sites followed the order of GP1>GP3>GP2, which was related to the content of the clay minerals and the moisture. Occurrence state experimental results illustrated that about 95% of the NH4+-N existed as water-soluble ammonium (WS-AN) and adsorbable ammonium (AS-AN), and 5% of it existed as fixed ammonium (FX-AN), and concentration ratio of them was in order: WS-AN > AS-AN â‰« FX-AN. Based on the results above, MgCl2 solution was used as an eluent to remove the leaching agent from the ore, and results showed that higher than 90% of residual ammonium could be removed from the ore by it. This study provided a valuable guidance for the residual leaching agent removal from the WCE-DREO body.


Assuntos
Metais Terras Raras , Sulfato de Amônio , Argila , Poluição Ambiental , Metais Terras Raras/análise , Nitrogênio
10.
Environ Res ; 188: 109817, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32580048

RESUMO

MIL-101(Fe)/sugarcane bagasse (SCB) with high adsorption capacity and selectivity toward phosphate was prepared through in-situ synthesis method. Effects of bagasse size on the morphology and performances of the composites were investigated, and adsorption behavior and mechanism of phosphate on the composite prepared at the optimum bagasse size were studied. Results showed that composite prepared with bagasse size of 200-300 mesh (MIL-101(Fe)/SCB3) showed much higher adsorption capacity than SCB, blank MIL-101(Fe) and the composites prepared with the other bagasse size, which was due to the more positively charged surface and the more exposed adsorption active sites including FeOHx and exchangeable Cl-. Co-ions experimental results illustrated that the as prepared MIL-101(Fe)/SCB3 showed high adsorption affinity toward phosphate, and the common cationic and anionic ions exhibited negligible effects on phosphate adsorption capacity and rate. The optimum pH range for phosphate adsorption on MIL-101(Fe)/SCB3 was from 3.0 to 10.0, and in this range Fe release was less than 0.03%. Adsorption mechanism showed that phosphate was adsorbed mainly through electrostatic force, ion-exchange, and inner-sphere surface complex. Simulated wastewater treatment experiment showed that MIL-101(Fe)/SCB3 could efficiently remove phosphate from aqueous solution.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Celulose , Estruturas Metalorgânicas , Fosfatos , Poluentes Químicos da Água/análise
11.
Water Sci Technol ; 82(10): 2159-2167, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33263592

RESUMO

Double functional groups modified bagasse (DFMBs), a series of new zwitterionic groups of carboxyl and amine modified adsorbents, were prepared through grafting tetraethylenepentamine (TEPA) onto the pyromellitic dianhydride (PMDA) modified bagasse using the DCC/DMAP method. DFMBs' ability to simultaneously remove basic magenta (BM, cationic dye) and Congo red (CR, anionic dye) from aqueous solution in single and binary dye systems was investigated. FTIR spectra and Zeta potential analysis results showed that PMDA and TEPA were successfully grafted onto the surface of bagasse, and the ratio of the amount of carboxyl groups and amine groups was controlled by the addition of a dosage of TEPA. Adsorption results showed that adsorption capacities of DFMBs for BM decreased while that for CR increased with the increase of the amount of TEPA in both single and binary dye systems, and BM or CR was absorbed on the modified biosorbents was mainly through electrostatic attraction and hydrogen bond. The adsorption for BM and CR could reach equilibrium within 300 min, both processes were fitted well by the pseudo-second-order kinetic model. The cationic and anionic dyes removal experiment in the binary system showed that DMFBs could be chosen as adsorbents to treat wastewater containing different ratios of cationic and anionic dyes.


Assuntos
Celulose , Corantes , Adsorção , Soluções
12.
Chemosphere ; 358: 142221, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701861

RESUMO

Lanthanum modified bentonite (LMB) is typical P-inactivating agent that has been applied in over 200 lakes. Dissolved organic carbon (DOC) and high pH restrict the phosphorus (P) immobilization performance of LMB. However, the P immobilization/release behaviors of LMB-amended sediment when suspended to overlying water with high pH and DOC have not yet been studied. In the present work, batch adsorption and long-term incubation experiments were performed to study the combined effects of pH and DOC on the P control by LMB. The results showed that the coexistence of low concentration of DOC or preloading with some DOC had a negligible effect on P binding by LMB. In the presence of DOC, the P adsorption was more pronounced at pH 7.5 and was measurably less at pH 9.5. Additionally, the pH value was the key factor that decided the P removal at low DOC concentration. The increase in pH and DOC could significantly promote the release of sediment P with a higher EPC0. Under such condition, a higher LMB dosage was needed to effectively control the P releasing from sediment. In sediment/water system with intermittent resuspension, the alkaline conditions greatly facilitated the release of sediment P and DOC, which increased from 0.087 to 0.581 mg/L, and from 11.05 to 26.56 mg/L, respectively. Under the dual effect of pH and DOC, the P-immobilization performance of LMB was weakened, and a tailor-made scheme became essential for determining the optimum dosage. The desorption experiments verified that the previously loaded phosphorus on LMB was hard to be released even under high pH and DOC conditions, with an accumulative desorption rate of less than 2%. Accordingly, to achieve the best P controlling efficiency, the application strategies depending on LMB should avoid the high DOC loading period such as the rainy season and algal blooms.


Assuntos
Bentonita , Carbono , Sedimentos Geológicos , Lantânio , Fósforo , Poluentes Químicos da Água , Bentonita/química , Lantânio/química , Fósforo/química , Concentração de Íons de Hidrogênio , Sedimentos Geológicos/química , Carbono/química , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Lagos/química
13.
J Hazard Mater ; 465: 132977, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38008052

RESUMO

Freeze-thaw cycles (FTCs) cause dynamic microscale changes in ions and solvents. During freezing, heavy metals adsorbed on zero-valent iron (M-ZVI) and protons are excluded by ice crystals and concentrated in the liquid-like grain boundary region. The high proton concentration in this region leads to the dissolution of the passivation layer of ZVI. To assess the environmental risks of M-ZVI during FTCs, this study evaluated the stability of M-ZVI in this scenario from both microscale and macroscale perspectives. The results showed that the dissolution of the passivation layer had a dual effect on the stability of M-ZVI, which depends on the by-products of M-ZVI. The dissolution of the passivation layer was accompanied by the leaching of heavy metals, such as Ni-ZVI, but it also enhanced the reactivity of ZVI, causing it to re-react with desorbed heavy metals. The stability of Cr-ZVI and Cd-ZVI was improved due to frequent FTCs. Furthermore, changes in the surrounding environment (water dipole moment, ion concentration, etc.) of ZVI affected the crystallization of Fe oxides, increasing the content of amorphous Fe oxide. As low-crystallinity Fe oxides could facilitate ion doping, Ni2+ was doped into Fe3O4 lattice during FTCs, which reduced the mobility of heavy metals. Contrary to traditional views that freezing temperatures slow chemical reactions, this study provides new insights into the application of iron-based materials in cold environments.

14.
Environ Sci Pollut Res Int ; 31(11): 17511-17523, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342835

RESUMO

The leaching of ionic rare earth elements has caused serious environmental pollution and ecological damage. Microorganisms play a crucial role in soil ecosystems and are one of the most important components of these systems. However, there are fewer studies related to the changes that occur in microbial community structure and diversity before and after leaching in ionic rare earth mines. In this study, Illumina high-throughput sequencing was used to examine the diversity and composition of soil microorganisms on the summit, hillside, and foot valley surfaces of unleached and leached mines after in situ leaching. The results showed that microbial diversity and abundance in the surface soil of the unleached mine were higher than those in the leached mine, and leaching had a significant impact on the microbial community of mining soil. pH was the main factor affecting the microbial community. Proteobacteria, Actinobacteriota, and Chloroflexi were phyla that showed high abundance in the soil. Network analysis showed that microbial interactions can improve microbial adaptation and stability in harsh environments. PICRUSt2 predictions indicate functional changes and linkages in soil microbial communities.


Assuntos
Metais Terras Raras , Microbiota , Poluentes do Solo , Metais Terras Raras/análise , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise
15.
Water Res ; 255: 121446, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489963

RESUMO

Inorganic coagulants (aluminum and iron salt) are widely used to improve sludge dewaterability, resulting in numerous residues in dewatered sludge. Composting refers to the controlled microbial process that converts organic wastes into fertilizer, and coagulant residues in dewatered sludge can affect subsequent compost efficiency and resource recycling, which remains unclear. This work investigated the effects of two typical metal salt coagulants (poly aluminum chloride [PAC] and poly ferric sulfate [PFS]) conditioning on sludge compost. Our results revealed that PAC conditioning inhibited composting with decreased peak temperature, microbial richness, enzymatic reaction intensities, and compost quality, associated with decreased pH and microbial toxicity of aluminum. Nevertheless, PFS conditioning selectively enriched Pseudoxanthomonas sp. and resulted in more fertile compost with increased peak temperature, enzymatic reaction intensities, and humification degree. Spectroscopy and mass difference analyses indicated that PFS conditioning enhanced reaction intensities of labile biopolymers at the thermophilic stage, mainly comprising hydrolyzation (H2O), dehydrogenation (-H2, -H4), oxidation (+O1H2), and other reactions (i.e., +CH2, C2H4O1, C2H6O1). Unlike the common composting process primarily conducts humification at the cooling stage, PFS conditioning changed the main occurrence stage to the thermophilic stage. Non-targeted metabolomics revealed that indole (a humification intermediate) is responsible for the increased humification degree and indoleacetic acid content in the PFS-conditioned compost, which then promoted compost quality. Plant growth experiments further confirmed that the dissolved organic matter (DOM) in PFS-conditioned compost produced the maximum plant biomass. This study provided molecular-level evidence that PFS conditioning can promote humification and compost fertility during sludge composting, enabling chemical conditioning optimization for sustainable management of sludge.

16.
Water Res ; 252: 121231, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38324988

RESUMO

Alkali-hydrothermal treatment (AHT) of sewage sludge is often used to recover value-added dissolved organic matters (DOM) enriched with artificial humic acids (HA). Microplastics (MPs), as emerging contaminants in sewage sludge, can leach organic compounds (MP-DOM) during AHT, which potentially impact the characteristics of thermally treated sludge's DOM. This study employed spectroscopy and Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR-MS) to explore the impacts of MPs on DOM composition and transformation during AHT. The biological effects of DOM were also investigated by hydroponic experiments. The results showed that the leaching of MP-DOM led to a substantial increase in DOC content of DOM of thermally treated sludge. Conversely, the HA content significantly decreased in the presence of MPs, resulting in a decline of plant growth facilitation degree. FT-ICR-MS analysis revealed that the reduction in HA content was characterized by a notable decline in the abundance of O6-7 and N1-3O6-7 molecules. Reactomics results indicated that the leaching of MP-DOM inhibited the Maillard reaction but bolstered oxidation reactions. The inhibition of Maillard reaction, resulting in a decrease in crucial precursors (dicarbonyl compounds, ketoses, and deoxyglucosone), was responsible for the decrease of HA content. The primary mechanism responsible for inhibiting the Maillard reaction was the consumption of reactive amino reactants through two pathways. Firstly, the leaching of organic acids in MP-DOM caused decrease of sludge pH, leading to the protonation of amino groups. Secondly, the lipid-like compounds in MP-DOM underwent oxidation (-2H+O), producing fatty aldehydes that consumed the reactive amino reactants. These discoveries offer enhanced insights into the specific contribution of MPs to the composition, transformation, bioactivity of DOM during AHT process.


Assuntos
Microplásticos , Esgotos , Plásticos , Compostos Orgânicos/análise , Espectrometria de Massas , Substâncias Húmicas/análise , Matéria Orgânica Dissolvida
17.
Bioresour Technol ; 402: 130809, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723729

RESUMO

Phosphorus is enriched in waste activated sludge (WAS) during wastewater treatment, and organic phosphorus (OP) is a potential slow-release P fertilizer. The chemical coagulants used in sludge dewatering leave numerous residues in WAS that affect sludge composting. In this study, the effects of polyaluminum chloride (PAC) and polyferric sulfate (PFS) on the bioconversion of dissolved OP (DOP) during sludge composting were investigated. The results revealed that PFS conditioning promoted the transformation and bioavailability of DOP, whereas PAC conditioning inhibited. Results indicated that PFS conditioning enhanced the transformation of OP molecules in the thermophilic phase. Through oxidation and dehydrogenation reactions, 1-hydroxy-pentane-3,4-diol-5-phosphate and D-ribofuranose 5-phosphate with high bioactivity were generated in the PFS-conditioned compost. Enzymatic hydrolysis experiments further verified that PFS conditioning enhanced the DOP bioavailability in the compost, whereas PAC conditioning inhibited it. The study has provided molecular insights into the effects of chemical conditioning on DOP conversion during sludge composting.


Assuntos
Disponibilidade Biológica , Compostagem , Fósforo , Esgotos , Compostagem/métodos , Compostos Orgânicos/química , Solubilidade , Hidrólise , Hidróxido de Alumínio
18.
Environ Sci Pollut Res Int ; 31(21): 31605-31618, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38637484

RESUMO

For the serious situation of heavy metal pollution, the use of cheap, clean, and efficient biochar to immobilize heavy metals is a good treatment method. In this paper, SA@ZIF-8/BC was prepared for the adsorption of Pb2+ in solution using sodium alginate (SA) and zeolitic imidazolate framework-8 (ZIF-8) modified corn cob biochar. The results showed that the specific surface area of modified biochar was greatly improved, with good adsorption capacity for Pb2+, strong anti-interference ability, and good economy. At the optimal adsorption pH of 5, the adsorption model of Pb2+ by SA@ZIF-8/BC was more consistent with the pseudo-second-order kinetic model and Langmuir isotherm model. This indicates that the adsorption of Pb2+ by SA@ZIF-8/BC is chemisorption and monolayer adsorption. The maximum adsorption of modified biochar was 300 mg g-1, which was 2.38 times higher than that of before modified BC (126 mg g-1). The shift in binding energy of functional groups before and after adsorption of SA@ZIF-8/BC was studied by XPS, and it was found that hydroxyl and carboxyl groups played an important role in the adsorption of Pb2+. It was demonstrated that this novel adsorbent can be effectively used for the treatment of Pb pollution in wastewater.


Assuntos
Alginatos , Carvão Vegetal , Chumbo , Zeolitas , Adsorção , Carvão Vegetal/química , Alginatos/química , Chumbo/química , Zeolitas/química , Cinética , Poluentes Químicos da Água/química
19.
Front Immunol ; 15: 1389173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745666

RESUMO

Tumor immunotherapy is a promising approach for addressing the limitations of conventional tumor treatments, such as chemotherapy and radiotherapy, which often have side effects and fail to prevent recurrence and metastasis. However, the effectiveness and sustainability of immune activation in tumor immunotherapy remain challenging. Tumor immunogenic cell death, characterized by the release of immunogenic substances, damage associated molecular patterns (DAMPs), and tumor associated antigens, from dying tumor cells (DTCs), offers a potential solution. By enhancing the immunogenicity of DTCs through the inclusion of more immunogenic antigens and stimulating factors, immunogenic cell death (ICD) based cancer vaccines can be developed as a powerful tool for immunotherapy. Integrating ICD nanoinducers into conventional treatments like chemotherapy, photodynamic therapy, photothermal therapy, sonodynamic therapy, and radiotherapy presents a novel strategy to enhance treatment efficacy and potentially improve patient outcomes. Preclinical research has identified numerous potential ICD inducers. However, effectively translating these findings into clinically relevant applications remains a critical challenge. This review aims to contribute to this endeavor by providing valuable insights into the in vitro preparation of ICD-based cancer vaccines. We explored established tools for ICD induction, followed by an exploration of personalized ICD induction strategies and vaccine designs. By sharing this knowledge, we hope to stimulate further development and advancement in the field of ICD-based cancer vaccines.


Assuntos
Vacinas Anticâncer , Morte Celular Imunogênica , Neoplasias , Humanos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Morte Celular Imunogênica/efeitos dos fármacos , Neoplasias/imunologia , Neoplasias/terapia , Animais , Imunoterapia/métodos , Antígenos de Neoplasias/imunologia
20.
Sci Total Environ ; 912: 169243, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38101649

RESUMO

Trivalent lanthanum (La3+) exists widely in ammonia nitrogen (NH4+-N) tailing water from ionic rare earth mines; however, its effect on heterotrophic nitrification-aerobic denitrification (HN-AD) is unknown, thereby limiting the application of the HN-AD process in this field. In this study, we conducted an HN-AD process using a sequencing batch reactor (5 L) that was continuously operated to directly treat acidic (NH4)2SO4 wastewater (influent NH4+-N concentration of approximately 110 mg/L and influent pH of 5) containing different La3+ concentrations (0-100 mg/L). The NH4+-N removal efficiency of the reactor reached 98.25 % at a La3+ concentration of 100 mg/L. The reactor was in a neutral-to-alkaline environment, which favored La3+ precipitation and complexation. Metagenomic analysis revealed that the relative abundance of Thauera in the reactor remained high (88.62-92.27 %) under La3+ stress. The relative abundances of Pannonobacter and Hyphomonas significantly increased, whereas that of Azoarcus significantly decreased. Metabolic functions in the reactor were mainly contributed by Thauera, and the abundance of metabolic functions under low La3+ stress (≤5 mg/L) significantly differed from that under high La3+ stress (≥10 mg/L). The relative abundance of ammonia assimilation-related genes in the reactor was high and significantly correlated with ammonia removal. However, traditional ammonia oxidation genes were not annotated, and unknown ammonia oxidation pathways may have been present in the reactor. Moreover, La3+ stimulated amino acid biosynthesis and translocation, the citrate cycle, sulfur metabolism, and oxidative phosphorylation and promoted the overproduction of extracellular polymeric substances, which underwent complexation and adsorbed La3+ to reduce its toxicity. Our results showed that the HN-AD process had a strong tolerance to La3+, stable NH4+-N removal efficiency, the potential to recover La3+, and considerable application prospects in treating NH4+-N tailing water from ionic rare earth mines.


Assuntos
Microbiota , Nitrificação , Desnitrificação , Amônia/metabolismo , Reatores Biológicos , Processos Heterotróficos , Nitrogênio/análise , Redes e Vias Metabólicas , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA