Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hepatology ; 75(1): 196-212, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34392558

RESUMO

BACKGROUND AND AIMS: HEV infection is the most common cause of liver inflammation, but the pathogenic mechanisms remain largely unclear. We aim to explore whether HEV infection activates inflammasomes, crosstalk with antiviral interferon response, and the potential of therapeutic targeting. APPROACH AND RESULTS: We measured IL-1ß secretion, the hallmark of inflammasome activation, in serum of HEV-infected patients and rabbits, and in cultured macrophage cell lines and primary monocyte-derived macrophages. We found that genotypes 3 and 4 HEV infection in rabbits elevated IL-1ß production. A profound increase of IL-1ß secretion was further observed in HEV-infected patients (1,733 ± 1,234 pg/mL; n = 70) compared to healthy persons (731 ± 701 pg/mL; n = 70). Given that macrophages are the drivers of inflammatory response, we found that inoculation with infectious HEV particles robustly triggered NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation in primary macrophages and macrophage cell lines. We further revealed that the ORF2 capsid protein and the formed integral viral particles are responsible for activating inflammasome response. We also identified NF-κB signaling activation as a key upstream event of HEV-induced NLRP3 inflammasome response. Interestingly, inflammasome activation antagonizes interferon response to facilitate viral replication in macrophages. Pharmacological inhibitors and clinically used steroids can effectively target inflammasome activation. Combining steroids with ribavirin simultaneously inhibits HEV and inflammasome response without cross-interference. CONCLUSIONS: HEV infection strongly activates NLRP3 inflammasome activation in macrophages, which regulates host innate defense and pathogenesis. Therapeutic targeting of NLRP3, in particular when combined with antiviral agents, represents a viable option for treating severe HEV infection.


Assuntos
Vírus da Hepatite E/imunologia , Hepatite E/imunologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Modelos Animais de Doenças , Hepatite E/sangue , Hepatite E/tratamento farmacológico , Hepatite E/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inflamassomos/antagonistas & inibidores , Inflamassomos/imunologia , Interferons/metabolismo , Interleucina-1beta/sangue , Interleucina-1beta/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Cultura Primária de Células , Coelhos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Células THP-1
2.
J Biol Chem ; 295(23): 8036-8047, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32354743

RESUMO

Noroviruses are the main causative agents of acute viral gastroenteritis, but the host factors that restrict their replication remain poorly identified. Guanylate-binding proteins (GBPs) are interferon (IFN)-inducible GTPases that exert broad antiviral activity and are important mediators of host defenses against viral infections. Here, we show that both IFN-γ stimulation and murine norovirus (MNV) infection induce GBP2 expression in murine macrophages. Results from loss- and gain-of-function assays indicated that GBP2 is important for IFN-γ-dependent anti-MNV activity in murine macrophages. Ectopic expression of MNV receptor (CD300lf) in human HEK293T epithelial cells conferred susceptibility to MNV infection. Importantly, GBP2 potently inhibited MNV in these human epithelial cells. Results from mechanistic dissection experiments revealed that the N-terminal G domain of GBP2 mediates these anti-MNV effects. R48A and K51A substitutions in GBP2, associated with loss of GBP2 GTPase activity, attenuated the anti-MNV effects of GBP2. Finally, we found that nonstructural protein 7 (NS7) of MNV co-localizes with GBP2 and antagonizes the anti-MNV activity of GBP2. These findings reveal that GBP2 is an important mediator of host defenses against murine norovirus.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Imunidade Inata , Norovirus/imunologia , Proteínas não Estruturais Virais/metabolismo , Animais , Células COS , Chlorocebus aethiops , Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Imunidade Inata/imunologia , Interferon gama/imunologia , Macrófagos/imunologia , Macrófagos/virologia , Camundongos , Células RAW 264.7
3.
Arch Virol ; 165(11): 2605-2613, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32770483

RESUMO

Noroviruses are the main causative agents of acute viral gastroenteritis worldwide. However, no vaccine or specific antiviral treatment is available, imposing a heavy global health burden. The nucleoside analogue 2'-fluoro-2'-deoxycytidine (2'-FdC) has been reported to have broad antiviral activity. Here, we report that 2'-FdC significantly inhibits murine norovirus replication in macrophages. This effect was partially reversed by exogenous supplementation of cytidine triphosphate. The combination of 2'-FdC with mycophenolic acid, ribavirin or favipiravir (T705) exerts synergistic antiviral effects. These results indicate that 2'-FdC is a potential candidate for antiviral drug development against norovirus infection.


Assuntos
Antivirais/farmacologia , Desoxicitidina/análogos & derivados , Norovirus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Amidas/farmacologia , Animais , Infecções por Caliciviridae/tratamento farmacológico , Infecções por Caliciviridae/virologia , Linhagem Celular , Desoxicitidina/farmacologia , Humanos , Camundongos , Ácido Micofenólico/farmacologia , Norovirus/fisiologia , Pirazinas/farmacologia , Células RAW 264.7 , Ribavirina/farmacologia , Replicação Viral/fisiologia
4.
Exp Appl Acarol ; 73(2): 269-281, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28875270

RESUMO

Although tick-borne pathogens have been widely reported in ticks in China, there is little information available on the prevalence of information in Hyalomma ticks from cattle. This study aims to determine the occurrence of pathogens in Hyalomma anatolicum collected from cattle in Xinjiang Uygur Autonomous Region, China, by PCR, sequencing and phylogenetic analysis. Borrelia burgdorferi s.s., Rickettsia massiliae and Anaplasma bovis were identified, whereas DNA of Ehrlichia species and an Anaplasma platys-like pathogen were also detected. Our findings highlight the risk of infection of animals and humans with these pathogens in north-western China.


Assuntos
Infecções Bacterianas/veterinária , Ixodidae/microbiologia , Ixodidae/parasitologia , Doenças Transmitidas por Carrapatos/veterinária , Animais , Infecções Bacterianas/microbiologia , Proteínas da Membrana Bacteriana Externa/genética , Bovinos , Doenças dos Bovinos/parasitologia , China , DNA Bacteriano/genética , DNA de Protozoário/genética , Feminino , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Infestações por Carrapato/parasitologia , Infestações por Carrapato/veterinária , Doenças Transmitidas por Carrapatos/microbiologia
5.
Parasitology ; 143(14): 1990-1999, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27748232

RESUMO

Ovine babesiosis is one of the most important tick-borne haemoparasitic diseases of small ruminants. The ovine parasite Babesia sp. Xinjiang is widespread in China. In this study, recombinant full-length XJrRAP-1aα2 (rhoptry-associated protein 1aα2) and C-terminal XJrRAP-1aα2 CT of Babesia sp. Xinjiang were expressed and used to evaluate their diagnostic potential for Babesia sp. Xinjiang infections by indirect enzyme-linked immunosorbent assay (ELISA). Purified XJrRAP-1aα2 was tested for reactivity with sera from animals experimentally infected with Babesia sp. Xinjiang and other haemoparasites using Western blotting and ELISA. The results showed no cross-reactivities between XJrRAP-1aα2 CT and sera from animals infected by other pathogens. High level of antibodies against RAP-1a usually lasted 10 weeks post-infection (wpi). A total of 3690 serum samples from small ruminants in 23 provinces located in 59 different regions of China were tested by ELISA. The results indicated that the average positive rate was 30·43%, and the infections were found in all of the investigated provinces. This is the first report on the expression and potential use of a recombinant XJrRAP-1aα2 CT antigen for the development of serological assays for the diagnosis of ovine babesiosis, caused by Babesia sp. Xinjiang.


Assuntos
Anticorpos Antiprotozoários/sangue , Babesia/imunologia , Babesia/patogenicidade , Babesiose/diagnóstico , Ensaio de Imunoadsorção Enzimática/veterinária , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Doenças dos Ovinos/diagnóstico , Animais , Antígenos de Protozoários/genética , Babesia/química , Babesia/genética , Babesiose/epidemiologia , Babesiose/imunologia , Babesiose/parasitologia , China/epidemiologia , Proteínas Recombinantes/imunologia , Testes Sorológicos/métodos , Ovinos , Doenças dos Ovinos/parasitologia , Carneiro Doméstico
6.
Parasitol Res ; 115(5): 2035-44, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26896077

RESUMO

Sensitive and specific diagnostic method for rapid and simultaneous detection and discrimination of the different species is needed for an effective control of piroplasmosis. Here, a reverse line blot (RLB) assay was developed for piroplasm detection. A general pair of primer based on 18S ribosomal RNA (rRNA) gene was used to amplify V4 region of 18S rRNA gene. General and specific probes for 13 piroplasm species were cited from previous publications or designed according to the alignment of 18S rRNA gene sequences. For sensitivity test of RLB assay, serially diluted plasmids of the different species were used to access the sensitivity of the RLB. Four hundred and fifty tick samples collected from grass from different provinces of China were then detected. The result indicated that the RLB assay is highly specific and sensitive, detecting up to 10(2) copies/µl of recombinant plasmid DNA. Multiple piroplasms were detected as single or mixed infection from tick species. Eight piroplasm species, most of which were Theileria annulata (33/450, 7.3 %) or Babesia sp. Xinjiang (30/450, 6.7 %), were found to infect with 89 tick samples in four tick species; no infections with Babesia major, Babesia ovata, Babesia bigemina, Theileria sergenti, or Theileria equi were detected. The piroplasms species-specific RLB assay may have potential clinical application in the simultaneous detection and differentiation of Babesia and Theileria species.


Assuntos
Tipagem Molecular/veterinária , Piroplasmida/classificação , Piroplasmida/isolamento & purificação , Carrapatos/parasitologia , Animais , Babesia/classificação , Babesia/isolamento & purificação , Bovinos , China , Tipagem Molecular/métodos , RNA Ribossômico 18S/genética , Sensibilidade e Especificidade , Theileria/classificação , Theileria/isolamento & purificação , Theileria annulata/classificação , Theileria annulata/isolamento & purificação
7.
Int J Antimicrob Agents ; 58(3): 106383, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34157403

RESUMO

Hepatitis E virus (HEV) infection in immunocompromised patients, pregnant women and children requires treatment; however, no approved medication is currently available. The macrolide antibiotic azithromycin has been identified as a potent HEV inhibitor. Azithromycin inhibits HEV replication and viral protein expression in multiple cell culture models with genotype 1 and 3 strains. This is largely independent of its induction of an interferon-like response. Because it is safe and cheap, repurposing azithromycin for treating HEV infection is attractive, particularly in resource-limited settings.


Assuntos
Antibacterianos/farmacologia , Azitromicina/farmacologia , Células Cultivadas/efeitos dos fármacos , Reposicionamento de Medicamentos , Vírus da Hepatite E/efeitos dos fármacos , Hepatite E/tratamento farmacológico , Replicação Viral/efeitos dos fármacos , Adolescente , Adulto , Antivirais/farmacologia , Criança , Pré-Escolar , Feminino , Humanos , Hospedeiro Imunocomprometido , Masculino , Gravidez
8.
Gut Microbes ; 13(1): 1959839, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34347572

RESUMO

Although cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling has been well recognized in defending DNA viruses, the role of cGAS-STING signaling in regulating infection of RNA viruses remains largely elusive. Noroviruses, as single-stranded RNA viruses, are the main causative agents of acute viral gastroenteritis worldwide. This study comprehensively investigated the role of cGAS-STING in response to murine norovirus (MNV) infection. We found that STING agonists potently inhibited MNV replication in mouse macrophages partially requiring the JAK/STAT pathway that induced transcription of interferon (IFN)-stimulated genes (ISGs). Loss- and gain-function assays revealed that both cGAS and STING were necessary for host defense against MNV propagation. Knocking out cGAS or STING in mouse macrophages led to defects in induction of antiviral ISGs upon MNV infection. Overexpression of cGAS and STING moderately increased ISG transcription but potently inhibited MNV replication in human HEK293T cells ectopically expressing the viral receptor CD300lf. This inhibitory effect was not affected by JAK inhibitor treatment or expression of different MNV viral proteins. Interestingly, STING but not cGAS interacted with mouse RIG-I, and attenuated its N-terminus-mediated anti-MNV effects. Our results implicate an essential role for mouse cGAS and STING in regulating innate immune response and defending MNV infection. This further strengthens the evidence of cGAS-STING signaling in response to RNA virus infection.


Assuntos
Proteína DEAD-box 58/metabolismo , Imunidade Inata/imunologia , Proteínas de Membrana/metabolismo , Norovirus/crescimento & desenvolvimento , Nucleotidiltransferases/metabolismo , Animais , Infecções por Caliciviridae/patologia , Gastroenterite/patologia , Gastroenterite/virologia , Células HEK293 , Humanos , Interferons/imunologia , Janus Quinases/antagonistas & inibidores , Macrófagos/virologia , Proteínas de Membrana/agonistas , Proteínas de Membrana/genética , Camundongos , Norovirus/imunologia , Nucleotidiltransferases/genética , Células RAW 264.7 , Transdução de Sinais , Replicação Viral/fisiologia
9.
Sci Rep ; 11(1): 23465, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873274

RESUMO

Human coronavirus NL63 (HCoV-NL63) mainly affects young children and immunocompromised patients, causing morbidity and mortality in a subset of patients. Since no specific treatment is available, this study aims to explore the anti-SARS-CoV-2 agents including favipiravir and remdesivir for treating HCoV-NL63 infection. We first successfully modelled the 3D structure of HCoV-NL63 RNA-dependent RNA polymerase (RdRp) based on the experimentally solved SARS-CoV-2 RdRp structure. Molecular docking indicated that favipiravir has similar binding affinities to SARS-CoV-2 and HCoV-NL63 RdRp with LibDock scores of 75 and 74, respectively. The LibDock scores of remdesivir to SARS-CoV-2 and HCoV-NL63 were 135 and 151, suggesting that remdesivir may have a higher affinity to HCoV-NL63 compared to SARS-CoV-2 RdRp. In cell culture models infected with HCoV-NL63, both favipiravir and remdesivir significantly inhibited viral replication and production of infectious viruses. Overall, remdesivir compared to favipiravir is more potent in inhibiting HCoV-NL63 in cell culture. Importantly, there is no evidence of resistance development upon long-term exposure to remdesivir. Furthermore, combining favipiravir or remdesivir with the clinically used antiviral cytokine interferon-alpha resulted in synergistic effects. These findings provided a proof-of-concept that anti-SARS-CoV-2 drugs, in particular remdesivir, have the potential to be repurposed for treating HCoV-NL63 infection.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Amidas/química , Antivirais/química , Coronavirus Humano NL63/enzimologia , Pirazinas/química , RNA Polimerase Dependente de RNA/química , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , Alanina/química , Alanina/metabolismo , Alanina/farmacologia , Amidas/metabolismo , Amidas/farmacologia , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Sítios de Ligação , Técnicas de Cultura de Células , Linhagem Celular , Coronavirus Humano NL63/fisiologia , Haplorrinos , Humanos , Simulação de Acoplamento Molecular , Pirazinas/metabolismo , Pirazinas/farmacologia , RNA Polimerase Dependente de RNA/metabolismo , Replicação Viral/efeitos dos fármacos
10.
Virology ; 546: 109-121, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32452409

RESUMO

The inflammasome machinery has recently been recognized as an emerging pillar of innate immunity. However, little is known regarding the interaction between the classical interferon (IFN) response and inflammasome activation in response to norovirus infection. We found that murine norovirus (MNV-1) infection induces the transcription of IL-1ß, a hallmark of inflammasome activation, which is further increased by inhibition of IFN response, but fails to trigger the release of mature IL-1ß. Interestingly, pharmacological inflammasome inhibitors do not affect viral replication, but slightly reverse the inflammasome activator lipopolysaccharide (LPS)-mediated inhibition of MNV replication. LPS efficiently stimulates the transcription of IFN-ß through NF-ĸB, which requires the transcription factors IRF3 and IRF7. This activates downstream antiviral IFN-stimulated genes (ISGs) via the JAK-STAT pathway. Moreover, inhibition of NF-ĸB and JAK-STAT signaling partially reverse LPS-mediated anti-MNV activity, suggesting additional antiviral mechanisms activated by NF-ĸB. This study reveals additional insight in host defense against MNV infection.


Assuntos
Antivirais/farmacologia , Infecções por Caliciviridae/imunologia , Janus Quinases/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , NF-kappa B/imunologia , Norovirus/efeitos dos fármacos , Fatores de Transcrição STAT/imunologia , Animais , Infecções por Caliciviridae/genética , Infecções por Caliciviridae/virologia , Humanos , Inflamassomos/genética , Inflamassomos/imunologia , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Janus Quinases/genética , Macrófagos/virologia , Camundongos , NF-kappa B/genética , Norovirus/genética , Norovirus/fisiologia , Fatores de Transcrição STAT/genética , Transdução de Sinais/efeitos dos fármacos
11.
Antiviral Res ; 182: 104877, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32755662

RESUMO

Noroviruses are the main causative agents for acute viral gastroenteritis worldwide. RIG-I-like receptors (RLRs) triggered interferon (IFN) activation is essential for host defense against viral infections. In turn, viruses have developed sophisticated strategies to counteract host antiviral response. This study aims to investigate how murine norovirus (MNV) replicase interacts with RLRs-mediated antiviral IFN response. Counterintuitively, we found that the MNV replicase NS7 enhances the activation of poly (I:C)-induced IFN response and the transcription of downstream interferon-stimulated genes (ISGs). Interestingly, NS7 protein augments RIG-I and MDA5-triggered antiviral IFN response, which conceivably involves direct interactions with the caspase activation and recruitment domains (CARDs) of RIG-I and MDA5. Consistently, RIG-I and MDA5 exert anti-MNV activity in human HEK293T cells with ectopic expression of viral receptor CD300lf. This effect requires the activation of JAK/STAT pathway, and is further enhanced by NS7 overexpression. These findings revealed an unconventional role of MNV NS7 as augmenting RLRs-mediated IFN response to inhibit viral replication.


Assuntos
Proteína DEAD-box 58/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Norovirus/enzimologia , Receptores Imunológicos/imunologia , Receptores de Interferon/imunologia , Proteínas do Complexo da Replicase Viral/imunologia , Animais , Proteína DEAD-box 58/genética , Células HEK293 , Humanos , Imunidade Inata , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/imunologia , Interferons/imunologia , Camundongos , Norovirus/imunologia , Receptores Imunológicos/genética , Receptores de Interferon/genética , Proteínas do Complexo da Replicase Viral/genética , Replicação Viral/imunologia
12.
Antiviral Res ; 184: 104967, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33137361

RESUMO

Exposure to hepatitis E virus (HEV) bears a high risk of developing chronic infection in immunocompromised patients, including organ transplant recipients and cancer patients. We aim to identify effective anti-HEV therapies through screening and repurposing safe-in-human broad-spectrum antiviral agents. In this study, a safe-in-human broad-spectrum antiviral drug library comprising of 94 agents was used. Upon screening, we identified gemcitabine, a widely used anti-cancer drug, as a potent inhibitor of HEV replication. The antiviral effect was confirmed in a range of cell culture models with genotype 1 and 3 HEV strains. As a cytidine analog, exogenous supplementation of pyrimidine nucleosides effectively reversed the antiviral activity of gemcitabine, but the level of pyrimidine nucleosides per se does not affect HEV replication. Surprisingly, similar to interferon-alpha (IFNα) treatment, gemcitabine activates STAT1 phosphorylation. This subsequently triggers activation of interferon-sensitive response element (ISRE) and transcription of interferon-stimulated genes (ISGs). Cytidine or uridine effectively inhibits gemcitabine-induced activation of ISRE and ISGs. As expected, JAK inhibitor 1 blocked IFNα, but not gemcitabine-induced STAT1 phosphorylation, ISRE/ISG activation, and anti-HEV activity. These effects of gemcitabine were completely lost in STAT1 knockout cells. In summary, gemcitabine potently inhibits HEV replication by triggering interferon-like response through STAT1 phosphorylation but independent of Janus kinases. This represents a non-canonical antiviral mechanism, which utilizes the innate defense machinery that is distinct from the classical interferon response. These results support repurposing gemcitabine for treating hepatitis E, especially for HEV-infected cancer patients, leading to dual anti-cancer and antiviral effects.


Assuntos
Desoxicitidina/análogos & derivados , Vírus da Hepatite E/efeitos dos fármacos , Interferon-alfa , Fosforilação/efeitos dos fármacos , Fator de Transcrição STAT1/metabolismo , Antivirais/farmacologia , Linhagem Celular , Desoxicitidina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Sinergismo Farmacológico , Regulação da Expressão Gênica , Hepatite E/tratamento farmacológico , Vírus da Hepatite E/fisiologia , Interações entre Hospedeiro e Microrganismos , Humanos , Interferon-alfa/farmacologia , Janus Quinases/metabolismo , Ácido Micofenólico/antagonistas & inibidores , Nucleosídeos de Pirimidina/farmacologia , Elementos de Resposta , Ribavirina/antagonistas & inibidores , Transdução de Sinais , Replicação Viral/efeitos dos fármacos , Gencitabina
13.
Antiviral Res ; 176: 104743, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32057771

RESUMO

Enteric viruses including hepatitis E virus (HEV), human norovirus (HuNV), and rotavirus are causing global health issues. The host interferon (IFN) response constitutes the first-line defense against viral infections. Melanoma Differentiation-Associated protein 5 (MDA5) is an important cytoplasmic receptor sensing viral infection to trigger IFN production, and on the other hand it is also an IFN-stimulated gene (ISG). In this study, we investigated the effects and mode-of-action of MDA5 on the infection of enteric viruses. We found that MDA5 potently inhibited HEV, HuNV and rotavirus replication in multiple cell models. Overexpression of MDA5 induced transcription of important antiviral ISGs through IFN-like response, without triggering of functional IFN production. Interestingly, MDA5 activates the expression and phosphorylation of STAT1, which is a central component of the JAK-STAT cascade and a hallmark of antiviral IFN response. However, genetic silencing of STAT1 or pharmacological inhibition of the JAK-STAT cascade only partially attenuated the induction of ISG transcription and the antiviral function of MDA5. Thus, we have demonstrated that MDA5 effectively inhibits HEV, HuNV and rotavirus replication through provoking a non-canonical IFN-like response, which is partially dependent on JAK-STAT cascade.


Assuntos
Imunidade Inata , Helicase IFIH1 Induzida por Interferon/imunologia , Interferons/imunologia , Janus Quinases/imunologia , Fator de Transcrição STAT1/imunologia , Viroses/imunologia , Antivirais/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Vírus da Hepatite E , Humanos , Norovirus , Rotavirus , Transdução de Sinais , Replicação Viral
14.
Viruses ; 11(6)2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31212582

RESUMO

Hepatitis E virus (HEV) infection represents an emerging global health issue, whereas the clinical outcomes vary dramatically among different populations. The host innate immune system provides a first-line defense against the infection, but dysregulation may partially contribute to severe pathogenesis. A growing body of evidence has indicated the active response of the host innate immunity to HEV infection both in experimental models and in patients. In turn, HEV has developed sophisticated strategies to counteract the host immune system. In this review, we aim to comprehensively decipher the processes of pathogen recognition, interferon, and inflammatory responses, and the involvement of innate immune cells in HEV infection. We further discuss their implications in understanding the pathogenic mechanisms and developing antiviral therapies.


Assuntos
Vírus da Hepatite E/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Antivirais/farmacologia , Antivirais/uso terapêutico , Hepatite E/terapia , Hepatite E/virologia , Humanos , Inflamação/imunologia , Interferons/imunologia
15.
Antiviral Res ; 170: 104588, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31415805

RESUMO

Hepatitis E virus (HEV) infection is the leading cause of acute hepatitis worldwide and can develop into chronic infection in immunocompromised patients, promoting the development of effective antiviral therapies. In this study, we performed a screening of a library containing over 1000 FDA-approved drugs. We have identified deptropine, a classical histamine H1 receptor antagonist used to treat asthmatic symptoms, as a potent inhibitor of HEV replication. The anti-HEV activity of deptropine appears dispensable of the histamine pathway, but requires the inhibition on nuclear factor-κB (NF-κB) activity. This further activates caspase mediated by receptor-interacting protein kinase 1 (RIPK1) to restrict HEV replication. Given deptropine being widely used in the clinic, our results warrant further evaluation of its anti-HEV efficacy in future clinical studies. Importantly, the discovery that NF-κB-RIPK1-caspase pathway interferes with HEV infection reveals new insight of HEV-host interactions.


Assuntos
Antivirais/farmacologia , Caspases/metabolismo , Vírus da Hepatite E/efeitos dos fármacos , NF-kappa B/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Tropanos/farmacologia , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Hepatite E/tratamento farmacológico , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Ensaios de Triagem em Larga Escala , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Humanos , Bibliotecas de Moléculas Pequenas , Estados Unidos , United States Food and Drug Administration , Replicação Viral/efeitos dos fármacos
16.
J Parasitol ; 103(3): 221-227, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28355109

RESUMO

Piroplasmosis, a disease of domestic and wild animals, is caused by tick-borne protozoa in the genera of Theileria and Babesia. There is limited information available about the prevalence of piroplasmosis in ticks in China, and to assess the potential threat of piroplasmosis in China, we investigated the infections of ovine and bovine Babesia and Theileria species in ticks collected from cattle, yaks, sheep, horses, and camels in several regions of China where tick-borne diseases have been reported. In total, 652 ticks were collected from the animals in 6 provinces of China. Babesia spp. and Theileria spp. were detected with a PCR-RLB method and identified by sequencing. Overall, 157 ticks (24.1%) were infected with 5 Babesia and 4 Theileria species. Among tested tick samples, 134 (20.6%) were single infections with 1 of 7 piroplasm species, with Theileria annulata (118/652, 18.1%) being dominant. Only 23 (3.5%) tick samples were double or triple infected, Theileria luwenshuni and Theileria sinensis (18/652, 2.8%) were frequently observed in co-infections. Some piroplasm species were carried by ticks that were not previously reported to be vectors.


Assuntos
Babesia/isolamento & purificação , Theileria/isolamento & purificação , Carrapatos/parasitologia , Animais , Babesia/classificação , Babesia/genética , Camelus , Bovinos , China , Cavalos , Reação em Cadeia da Polimerase/métodos , Reação em Cadeia da Polimerase/veterinária , Prevalência , RNA Ribossômico 18S/genética , Ovinos , Theileria/classificação , Theileria/genética , Theileria annulata/classificação , Theileria annulata/genética , Theileria annulata/isolamento & purificação , Infestações por Carrapato/parasitologia , Infestações por Carrapato/veterinária
17.
Infect Genet Evol ; 41: 8-15, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26976477

RESUMO

Ovine babesioses, an important tick-borne disease of sheep and goats in China, is caused by the reproduction of intraerythrocytic protozoa of the Babesia genus. Babesia motasi-like is a Babesia parasite that infects small ruminant in China, and two sub-groups of B. motasi-like can be subdivided based on differences in the rhoptry-associated-protein-1 gene. This study aimed to characterize the distribution, epidemiology and genetics of B. motasi-like in animals and ticks. A molecular investigation was carried out from 2009 to 2015 in 16 provinces in China. In total, 1081 blood samples were collected from sheep and goats originating from 27 different regions, and 778 ixodid tick samples were collected from 8 regions; the samples were tested for the presence of B. motasi-like using a specific nested PCR assay based on the rap-1b gene. The results indicated that 139 (12.9%), 91 (8.4%), 48 (4.4%) and 6 (0.7%) of the blood samples were positive for general B. motasi-like, Babesia sp. BQ1 (Lintan and Ningxian), Babesia sp. Tianzhu and Babesia sp. Hebei sub-groups, mixed infections, respectively. Among the collected 778 ixodid ticks (including Haemaphysalis longicornis, Haemaphysalis qinghaiensis, Dermacentor silvarum, Ixodes persulcatus, Rhipicephalus sanguineus and Rhipicephalus (Boophilus) microplus), the most frequently infected with Babesia were D. silvarum and I. persulcatus (35.7%), followed by H. longicornis (26.8%), H. qinghaiensis (24.8%) and R. sanguineus (9.3%). The PCR results were confirmed by DNA sequencing. The positive rates of B. motasi-like infection in ticks were found to be higher in China, compared with previous studies in other countries. B. motasi-like infections have not previously been reported in D. silvarum, I. persulcatus or R. sanguineus. The findings obtained in this study could be used for planning effective control strategies against babesiosis in China.


Assuntos
Babesia/genética , Babesiose/epidemiologia , Doenças das Cabras/epidemiologia , Ixodidae/parasitologia , Filogenia , Proteínas de Protozoários/genética , Doenças dos Ovinos/epidemiologia , Animais , Babesia/classificação , Babesia/isolamento & purificação , Babesiose/parasitologia , China/epidemiologia , Vetores de Doenças , Expressão Gênica , Doenças das Cabras/parasitologia , Cabras , Epidemiologia Molecular , Filogeografia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Ovinos , Doenças dos Ovinos/parasitologia
19.
Acta Trop ; 158: 181-188, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26943995

RESUMO

An investigation was performed to detect eight pathogens in ticks collected from grass tips or animals in the southern, central and northeast regions of China. DNA samples extracted from ticks were collected from ten different locations in eight provinces of China and subjected to screening for tick-borne pathogens, including Borrelia burgdorferi sensu lato, Ehrlichia spp., Rickettsia spp., Babesia/Theileria spp., Ehrlichia ruminantium, Coxiella burnetii, and Francisella tularensis, using nested PCR assays and sequencing analysis. The results indicated that Borrelia spp., Rickettsia spp., and Babesia/Theileria spp. were detected in all of the investigated provinces. Ehrlichia spp. was also found in all of the surveyed areas, except Guangxi, Luobei and Tonghe counties in Heilongjiang province. The average prevalence of these pathogens was 18.4% (95% CI=12.8-42.5), 60.3% (95% CI=18.2-65.3), 26.0% (95% CI=25.8-65.1), and 28.7% (95% CI=5.6-35.2), respectively. A sequencing analysis of the pCS20 gene of E. ruminantium revealed an E. ruminantium-like organism (1/849, 0.1%, 95% CI=0-0.3) in one tick DNA sample extracted from Rhipicephalus (Boophilus) microplus in Hunan. In addition, Borrelia americana in Ixodes persulcatus, Babesia occultans in Haemaphysalis qinghaiensis and both Rhipicephalus sanguineus and an Ehrlichia muris-like organism in R. (B.) microplus was detected, possibly for the first time in China. Four DNA sequences closely related to Borrelia carolinensis and/or Borrelia bissettii from Haemaphysalis longicornis, Candidatus Rickettsia principis from H. qinghaiensis, and I. persulcatus and Ehrlichia canis (named E. canis-like) from Haemaphysalis bispinosa were also detected in this work.


Assuntos
Reação em Cadeia da Polimerase/métodos , Doenças Transmitidas por Carrapatos/epidemiologia , Carrapatos/microbiologia , Carrapatos/parasitologia , Animais , Babesia/genética , Babesia/isolamento & purificação , Borrelia/genética , Borrelia/isolamento & purificação , China/epidemiologia , Ehrlichia/genética , Ehrlichia/isolamento & purificação , Feminino , Epidemiologia Molecular , Rickettsia/genética , Rickettsia/isolamento & purificação
20.
Int J Oncol ; 48(6): 2247-56, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27098221

RESUMO

The diversity and specificity of T cell receptors (TCR), the characteristics of T-cell surface marker, are central to the adaptive immunity. TCR variability is required for successful immunization coverage because this structural foundation is indispensable for the valid identification of short antigen peptides (derived from degraded antigens) that are presented by major histocompatibility molecules on the surfaces of antigen-presenting cells. Despite the vast T-cell repertoire, biased αß TCR has become a common theme in immunology. To date, numerous examples of TCR bias have been observed in various diseases. Immunotherapy strategies that are based on αß T cell responses are also emerged as a prominent component of clinical treatment. In the present review, we briefly summarize the current knowledge regarding basic structural information and the molecular mechanisms underlying TCR diversity. Moreover, we outline the role of TCR repertoire bias in some diseases, and its application for therapeutic interventions, as these play significant roles in disease progression, even with patients with a good prognosis.


Assuntos
Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Rearranjo Gênico do Linfócito T , Humanos , Malária/genética , Malária/imunologia , Malária/terapia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Tuberculose/genética , Tuberculose/imunologia , Tuberculose/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA