Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Comput Inform Nurs ; 34(4): 159-68; quiz 191, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26829522

RESUMO

Critical thinking skills and clinical competence are for providing quality patient care. The purpose of this study is to develop the Computerized Model of Performance-Based Measurement system based on the Clinical Reasoning Model. The system can evaluate and identify learning needs for clinical competency and be used as a learning tool to increase clinical competency by using computers. The system includes 10 high-risk, high-volume clinical case scenarios coupled with questions testing clinical reasoning, interpersonal, and technical skills. Questions were sequenced to reflect patients' changing condition and arranged by following the process of collecting and managing information, diagnosing and differentiating urgency of problems, and solving problems. The content validity and known-groups validity was established. The Kuder-Richardson Formula 20 was 0.90 and test-retest reliability was supported (r = 0.78). Nursing educators can use the system to understand students' needs for achieving clinical competence, and therefore, educational plans can be made to better prepare students and facilitate their smooth transition to a future clinical environment. Clinical nurses can use the system to evaluate their performance-based abilities and weakness in clinical reasoning. Appropriate training programs can be designed and implemented to practically promote nurses' clinical competence and quality of patient care.


Assuntos
Competência Clínica , Simulação por Computador , Enfermeiras e Enfermeiros/psicologia , Pensamento , Humanos , Modelos Teóricos , Projetos Piloto , Psicometria , Reprodutibilidade dos Testes
2.
J Ethnopharmacol ; 327: 118008, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38458343

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Compendium of Materia Medica and the Classic of Materia Medica, the two most prominent records of traditional Chinese medicine, documented the therapeutic benefits of Ganoderma sinense particularly in addressing pulmonary-related ailments. Ganoderma formosanum, an indigenous subspecies of G. sinense from Taiwan, has demonstrated the same therapeutic properties. AIM OF THE STUDY: The aim of this study is to identify bioactive compounds and evaluate the potential of G. formosanum extracts as a novel treatment to alleviate pulmonary fibrosis (PF). Using an in-house drug screening platform, two-stage screening was performed to determine their anti-fibrotic efficacy. METHODS AND MATERIALS: G. formosanum was fractionated into four partitions by solvents of different polarities. To determine their antifibrotic and pro-apoptotic properties, the fractions were analyzed using two TGF-ß1-induced pulmonary fibrosis cell models (NIH-3T3) and human pulmonary fibroblast cell lines, immunoblot, qRT-PCR, and annexin V assays. Subsequently, transcriptomic analysis was conducted to validate the findings and explore possible molecular pathways. The identification of potential bioactive compounds was achieved through UHPLC-MS/MS analysis, while molecular interaction study was investigated by multiple ligands docking and molecular dynamic simulations. RESULTS: The ethyl acetate fraction (EAF) extracted from G. formosanum demonstrated substantial anti-fibrotic and pro-apoptotic effects on TGF-ß1-induced fibrotic models. Moreover, the EAF exhibited no discernible cytotoxicity. Untargeted UHPLC-MS/MS analysis identified potential bioactive compounds in EAF, including stearic acid, palmitic acid, and pentadecanoic acid. Multiple ligands docking and molecular dynamic simulations further confirmed that those bioactive compounds possess the ability to inhibit TGF-ß receptor 1. CONCLUSION: Potential bioactive compounds in G. formosanum were successfully extracted and identified in the EAF, whose anti-fibrotic and pro-apoptotic properties could potentially modulate pulmonary fibrosis. This finding not only highlights the EAF's potential as a promising therapeutic candidate to treat pulmonary fibrosis, but it also elucidates how Ganoderma confers pulmonary health benefits as described in the ancient texts.


Assuntos
Ganoderma , Materia Medica , Fibrose Pulmonar , Humanos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Materia Medica/farmacologia , Espectrometria de Massas em Tandem , Fibrose , Pulmão
3.
J Med Chem ; 66(15): 10528-10557, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37463500

RESUMO

Idiopathic pulmonary fibrosis is incurable, and its progression is difficult to control and thus can lead to pulmonary deterioration. Pan-histone deacetylase inhibitors such as SAHA have shown potential for modulating pulmonary fibrosis yet with off-target effects. Therefore, selective HDAC inhibitors would be beneficial for reducing side effects. Toward this goal, we designed and synthesized 24 novel HDAC6, HDAC8, or dual HDAC6/8 inhibitors and established a two-stage screening platform to rapidly screen for HDAC inhibitors that effectively mitigate TGF-ß-induced pulmonary fibrosis. The first stage consisted of a mouse NIH-3T3 fibroblast prescreen and yielded five hits. In the second stage, human pulmonary fibroblasts (HPFs) were used, and four out of the five hits were tested for caco-2 permeability and liver microsome stability to give two potential leads: J27644 (15) and 20. This novel two-stage screen platform will accelerate the discovery and reduce the cost of developing HDAC inhibitors to mitigate TGF-ß-induced pulmonary fibrosis.


Assuntos
Inibidores de Histona Desacetilases , Fibrose Pulmonar Idiopática , Camundongos , Animais , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Fator de Crescimento Transformador beta , Histona Desacetilases/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Células CACO-2 , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Desacetilase 6 de Histona , Proteínas Repressoras
4.
Front Immunol ; 13: 832394, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464491

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in countless infections and caused millions of deaths since its emergence in 2019. Coronavirus disease 2019 (COVID-19)-associated mortality is caused by uncontrolled inflammation, aberrant immune response, cytokine storm, and an imbalanced hyperactive immune system. The cytokine storm further results in multiple organ failure and lung immunopathology. Therefore, any potential treatments should focus on the direct elimination of viral particles, prevention strategies, and mitigation of the imbalanced (hyperactive) immune system. This review focuses on cytokine secretions of innate and adaptive immune responses against COVID-19, including interleukins, interferons, tumor necrosis factor-alpha, and other chemokines. In addition to the review focus, we discuss potential immunotherapeutic approaches based on relevant pathophysiological features, the systemic immune response against SARS-CoV-2, and data from recent clinical trials and experiments on the COVID-19-associated cytokine storm. Prompt use of these cytokines as diagnostic markers and aggressive prevention and management of the cytokine storm can help determine COVID-19-associated morbidity and mortality. The prophylaxis and rapid management of the cytokine storm appear to significantly improve disease outcomes. For these reasons, this study aims to provide advanced information to facilitate innovative strategies to survive in the COVID-19 pandemic.


Assuntos
COVID-19 , Quimiocinas , Síndrome da Liberação de Citocina , Citocinas , Humanos , Pandemias , SARS-CoV-2
5.
Cell Transplant ; 30: 9636897211010632, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33949207

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV-2) first emerged in December 2019 in Wuhan, China, and has since spread rapidly worldwide. As researchers seek to learn more about COVID-19, the disease it causes, this novel virus continues to infect and kill. Despite the socioeconomic impacts of SARS-CoV-2 infections and likelihood of future outbreaks of other pathogenic coronaviruses, options to prevent or treat coronavirus infections remain limited. In current clinical trials, potential coronavirus treatments focusing on killing the virus or on preventing infection using vaccines largely ignore the host immune response. The relatively small body of current research on the virus indicates pathological responses by the immune system as the leading cause for much of the morbidity and mortality caused by COVID-19. In this review, we investigated the host innate and adaptive immune responses against COVID-19, collated information on recent COVID-19 experimental data, and summarized the systemic immune responses to and histopathology of SARS-CoV-2 infection. Finally, we summarized the immune-related biomarkers to define patients with high-risk and worst-case outcomes, and identified the possible usefulness of inflammatory markers as potential immunotherapeutic targets. This review provides an overview of current knowledge on COVID-19 and the symptomatological differences between healthy, convalescent, and severe cohorts, while offering research directions for alternative immunoregulation therapeutic targets.


Assuntos
Imunidade Adaptativa/fisiologia , Imunidade Inata/fisiologia , SARS-CoV-2/imunologia , Biomarcadores , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA