Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Med Virol ; 95(2): e28499, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36653877

RESUMO

Owing to the emergence of drug resistance and high morbidity and mortality, the need for novel anti-influenza A virus (IAV) drugs with divergent targets is highly sought after. Herein, a novel quinolone alkaloid (QLA) derived from marine fungus was discovered with broad-spectrum anti-IAV activities with low toxicity. Distinct from current anti-IAV drugs, QLA may block virus replication and viral RNA (vRNA) export from the nucleus by targeting virus nucleoprotein (NP). QLA can block the binding of chromosome region maintenance 1 to nuclear export signal 3 of NP to inhibit the nuclear export of NP and vRNP. QLA may also affect vRNP assembly by interfering with the binding of NP to RNA rather than NP oligomerization. Arg305 and Phe488-Gly490 may be required for the interaction between QLA and NP, and the binding pocket around these amino acids may be a promising target for anti-IAV drugs. Importantly, oral administration of QLA can protect the mice against IAV-induced death and weight loss, superior to the effects of the clinical drug oseltamivir. In summary, the marine derived compound QLA has the potential to be developed into a novel anti-IAV agent targeting virus NP protein in the future.


Assuntos
Alcaloides , Vírus da Influenza A , Quinolonas , Replicação Viral , Animais , Camundongos , Alcaloides/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/fisiologia , Nucleoproteínas , Quinolonas/farmacologia , Proteínas do Core Viral/metabolismo , Replicação Viral/efeitos dos fármacos
2.
Virol J ; 16(1): 163, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31870450

RESUMO

BACKGROUND: Patchouli alcohol (PA) is a tricyclic sesquiterpene extracted from Pogostemonis Herba, which is a traditional Chinese medicine used for therapy of inflammatory diseases. Recent studies have shown that PA has various pharmacological activities, including anti-bacterial and anti-viral effects. METHODS: In this study, the anti-influenza virus (IAV) activities and mechanisms were investigated both in vitro and in vivo. The inhibitory effects of PA against IAV in vitro were evaluated by plaque assay and immunofluorescence assay. The neuraminidase inhibition assay, hemagglutination inhibition (HI) assay, and western blot assay were used to explore the anti-viral mechanisms. The anti-IAV activities in vivo were determined by mice pneumonia model and HE staining. RESULTS: The results showed that PA significantly inhibited different IAV strains multiplication in vitro, and may block IAV infection through inactivating virus particles directly and interfering with some early stages after virus adsorption. Cellular PI3K/Akt and ERK/MAPK signaling pathways may be involved in the anti-IAV actions of PA. Intranasal administration of PA markedly improved mice survival and attenuated pneumonia symptoms in IAV infected mice, comparable to the effects of Oseltamivir. CONCLUSIONS: Therefore, Patchouli alcohol has the potential to be developed into a novel anti-IAV agent in the future.


Assuntos
Antivirais/farmacologia , Vírus da Influenza A/crescimento & desenvolvimento , Sesquiterpenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Administração Intranasal , Animais , Antivirais/administração & dosagem , Modelos Animais de Doenças , Pulmão/patologia , Camundongos , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/patologia , Sesquiterpenos/administração & dosagem , Análise de Sobrevida , Resultado do Tratamento
3.
J Med Chem ; 63(13): 6924-6940, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32520560

RESUMO

Owing to the emergence of drug resistance and high morbidity and mortality, the need for novel anti-influenza A virus (IAV) drugs with divergent targets is highly sought after. Herein, we reveal the discovery of an anti-IAV agent as a dual inhibitor to block hemagglutinin-mediated adsorption and membrane fusion using a chemoreactive ortho-quinone methide (o-QM) equivalent. Based on the o-QM equivalent nonenzymatically multipotent behavior, we created a series of clavatol-derived pseudo-natural products and found that penindolone (PND), a new diclavatol indole adduct, exhibited potent and broad-spectrum anti-IAV activities with low risk of inducing drug resistance. Distinct from current anti-IAV drugs, PND possesses a novel scaffold and is the first IAV inhibitor targeting both HA1 and HA2 subunits of virus hemagglutinin to dually block the IAV adsorption and membrane fusion process. More importantly, intranasal and oral administration of PND can protect mice against IAV-induced death and weight loss, superior to the effects of the clinical drug oseltamivir. Thus, the use of chemoreactive intermediates could expand our understanding of chemical diversity and aid in the development of anti-IAV drugs with novel targets.


Assuntos
Antivirais/química , Antivirais/farmacologia , Descoberta de Drogas , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/fisiologia , Fusão de Membrana/efeitos dos fármacos , Acetofenonas/química , Acetofenonas/farmacocinética , Acetofenonas/farmacologia , Adsorção/efeitos dos fármacos , Animais , Antivirais/farmacocinética , Cães , Farmacorresistência Viral/efeitos dos fármacos , Feminino , Vírus da Influenza A/metabolismo , Células Madin Darby de Rim Canino , Camundongos , Distribuição Tecidual , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA