Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Haematologica ; 109(3): 751-764, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37496439

RESUMO

Leukemia stem cells (LSC) require frequent adaptation to maintain their self-renewal ability in the face of longer exposure to cell-intrinsic and cell-extrinsic stresses. However, the mechanisms by which LSC maintain their leukemogenic activities, and how individual LSC respond to stress, remain poorly understood. Here, we found that DNAJC10, a member of HSP40 family, was frequently up-regulated in various types of acute myeloid leukemia (AML) and in LSC-enriched cells. Deficiency of DNAJC10 leads to a dramatic increase in the apoptosis of both human leukemia cell lines and LSC-enriched populations. Although DNAJC10 is not required for normal hematopoiesis, deficiency of Dnajc10 significantly abrogated AML development and suppressed self-renewal of LSC in the MLL-AF9-induced murine leukemia model. Mechanistically, inhibition of DNAJC10 specifically induces endoplasmic reticulum stress and promotes activation of PERK-EIF2α-ATF4 branch of unfolded protein response (UPR). Blocking PERK by GSK2606414 (PERKi) or shRNA rescued the loss of function of DNAJC10 both in vitro and in vivo. Importantly, deficiency of DNAJC10 increased sensitivity of AML cells to daunorubicin (DNR) and cytarabine (Ara-C). These data revealed that DNAJC10 functions as an oncogene in MLL-AF9-induced AML via regulation of the PERK branch of the UPR. DNAJC10 may be an ideal therapeutic target for eliminating LSC, and improving the effectiveness of DNR and Ara-C.


Assuntos
Leucemia Mieloide Aguda , Animais , Humanos , Camundongos , Citarabina , Daunorrubicina , Proteínas de Choque Térmico HSP40/genética , Leucemia Mieloide Aguda/genética , Chaperonas Moleculares/genética , Células-Tronco , Resposta a Proteínas não Dobradas
2.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891802

RESUMO

Soybean, a major source of oil and protein, has seen an annual increase in consumption when used in soybean-derived products and the broadening of its cultivation range. The demand for soybean necessitates a better understanding of the regulatory networks driving storage protein accumulation and oil biosynthesis to broaden its positive impact on human health. In this study, we selected a chromosome segment substitution line (CSSL) with high protein and low oil contents to investigate the underlying effect of donor introgression on seed storage through multi-omics analysis. In total, 1479 differentially expressed genes (DEGs), 82 differentially expressed proteins (DEPs), and 34 differentially expressed metabolites (DEMs) were identified in the CSSL compared to the recurrent parent. Based on Gene Ontology (GO) term analysis and the Kyoto Encyclopedia of Genes and Genomes enrichment (KEGG), integrated analysis indicated that 31 DEGs, 24 DEPs, and 13 DEMs were related to seed storage functionality. Integrated analysis further showed a significant decrease in the contents of the seed storage lipids LysoPG 16:0 and LysoPC 18:4 as well as an increase in the contents of organic acids such as L-malic acid. Taken together, these results offer new insights into the molecular mechanisms of seed storage and provide guidance for the molecular breeding of new favorable soybean varieties.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max , Sementes , Glycine max/genética , Glycine max/metabolismo , Sementes/genética , Sementes/metabolismo , Cromossomos de Plantas/genética , Redes Reguladoras de Genes , Melhoramento Vegetal/métodos , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Transcriptoma/genética , Multiômica
3.
Apoptosis ; 28(7-8): 1128-1140, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37119432

RESUMO

Cuproptosis is a new form of programmed cell death, which is associated with the mitochondrial TCA (tricarboxylic acid) cycle. But the functions of cuproptosis in endometriosis progression are still unknown. Here, we find that cuproptosis suppresses the growth of endometriosis cells and the growth of ectopic endometrial tissues in a mouse model. FDX1 as a key regulator in cuproptosis pathway could promote cuproptosis in endometriosis cells. Interestingly, FDX1 interacts with G6PD, and reduces its protein stability, which predominantly affects the cellular redox-regulating systems. Then, the reduced G6PD activity enhances cuproptosis via down-regulating NADPH and GSH levels. Collectively, our study demonstrates that FDX1 mediates cuproptosis in endometriosis via G6PD pathway, resulting in repression of endometriosis cell proliferation and metastasis.


Assuntos
Endometriose , Animais , Feminino , Camundongos , Apoptose , Proliferação de Células , Endometriose/genética , Ferredoxinas , Glucosefosfato Desidrogenase , Homeostase , Oxirredução
4.
Plant Biotechnol J ; 21(12): 2625-2640, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37594728

RESUMO

High light stress is an important factor limiting crop yield. Light receptors play an important role in the response to high light stress, but their mechanisms are still poorly understood. Here, we found that the abundance of GmPLP1, a positive blue light receptor protein, was significantly inhibited by high light stress and mainly responded to high blue light. GmPLP1 RNA-interference soybean lines exhibited higher light energy utilization ability and less light damage and reactive oxygen species (ROS) accumulation in leaves under high light stress, while the phenotype of GmPLP1:GmPLP1-Flag overexpression soybean showed the opposite characteristics. Then, we identified a protein-protein interaction between GmPLP1 and GmVTC2, and the intensity of this interaction was primarily affected by sensing the intensity of blue light. More importantly, overexpression of GmVTC2b improved soybean tolerance to high light stress by enhancing the ROS scavenging capability through increasing the biosynthesis of ascorbic acid. This regulation was significantly enhanced after interfering with a GmPLP1-interference fragment in GmVTC2b-ox soybean leaves, but was weakened when GmPLP1 was transiently overexpressed. These findings demonstrate that GmPLP1 regulates the photosynthetic capacity and ROS accumulation of soybean to adapt to changes in light intensity by sensing blue light. In summary, this study discovered a new mechanism through which GmPLP1 participates in high light stress in soybean, which has great significance for improving soybean yield and the adaptability of soybean to high light.


Assuntos
Glycine max , Fotossíntese , Espécies Reativas de Oxigênio/metabolismo , Glycine max/genética , Glycine max/metabolismo , Fotossíntese/genética , Luz , Folhas de Planta/genética , Folhas de Planta/metabolismo
5.
BMC Cardiovasc Disord ; 23(1): 599, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066416

RESUMO

BACKGROUND: Many studies have shown that both elevated serum uric acid (SUA) levels and hyperhomocysteinemia are risk factors for atherosclerosis. However, the relationship between the two has not been thoroughly investigated. OBJECTIVE: This study aimed to explore the possible link between SUA levels and homocysteine (Hcy) levels. METHODS: In this cross-sectional study, 17,692 adults aged > 19 years in National Health and Nutrition Examination Survey from 1999 to 2006 were analyzed. Multivariable linear regression analysis was performed to assess the association between SUA and Hcy levels. In addition, smooth curve fitting (penalized spline method) and threshold effect analysis were performed. RESULTS: Multivariable linear analysis showed that Hcy levels increased by 0.48 µmol/L (ß = 0.48, 95%CI: 0.43-0.53) for every 1 mg/dL increase in SUA levels. We found a nonlinear relationship between SUA and Hcy levels. The results of threshold effect analysis showed that the inflection point for SUA levels was 7.1 mg/dL (ß = 0.29, 95% CI: 0.23-0.36 and ß = 1.05, 95% CI: 0.67-1.43 on the left and right sides of the inflection point, respectively). The p-values was less than 0.001 when using the log likelihood ratio test. This nonlinear relationship was also found in both sexes. The inflection point for SUA levels was 5.4 mg/dL in males and 7.3 mg/dL in females, respectively. CONCLUSIONS: This cross-sectional study showed that the SUA levels were positively correlated with Hcy levels. And we found a nonlinear relationship between SUA and Hcy levels.


Assuntos
Homocisteína , Ácido Úrico , Adulto , Masculino , Feminino , Humanos , Estados Unidos/epidemiologia , Estudos Transversais , Inquéritos Nutricionais , Fatores de Risco
6.
Cell Mol Life Sci ; 80(1): 13, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536161

RESUMO

Ovarian endometriosis is a common gynecological condition that can cause infertility in women of childbearing age. However, the pathogenesis is still unknown. We demonstrate that the carboxyl terminus of Hsc70-interacting protein (CHIP) is a negative regulator in the development of endometriosis and reduces HMGB1 expression in endometriotic cells. Meanwhile, CHIP interacts with HMGB1 and promotes its ubiquitinated degradation, thereby inhibiting aerobic glycolysis and the progression of endometriosis. Furthermore, the CHIP agonist YL-109 effectively suppresses the growth of ectopic endometrium in endometriosis mouse model, which could be a potential therapeutic approach for endometriosis. In conclusion, our data suggest that CHIP may inhibit the development of endometriosis by suppressing the HMGB1-related glycolysis.


Assuntos
Endometriose , Proteína HMGB1 , Ubiquitina-Proteína Ligases , Animais , Feminino , Humanos , Camundongos , Endometriose/patologia , Glicólise , Proteína HMGB1/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo
7.
Biochem Biophys Res Commun ; 619: 137-143, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-35760010

RESUMO

Acute myeloid leukemia (AML) is the most common acute leukemia affecting adults. The tight junction protein CLDN4 is closely related to the development of various epithelial cell carcinomas. However, whether CLDN4 contributes to AML development remains unclear. For the first time, we found that expression of CLDN4 is aberrantly up-regulated in AML cells. Knockdown of CLDN4 expression resulted in a dramatic decreased cell growth, elevated apoptosis of AML cells. Further, we revealed that knockdown of CLDN4 inhibits mRNA expression of PIK3R3 and MAP2K2, thus suppresses activation of AKT and ERK1/2. More importantly, activating AKT branch by SC79 partially compromised CLDN4 knockdown induced cell viability inhibition. In addition, we found that higher expression of CLDN4 is connected to worse survival and is an independent indicator of shorter disease free survival (DFS) in AML patients. Together, our results indicate that CLDN4 contributes to AML pathogenesis, and suggests that targeting CLDN4 is a promising option for AML treatment.


Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-akt , Adulto , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células , Claudina-4/metabolismo , Humanos , Leucemia Mieloide Aguda/patologia , Sistema de Sinalização das MAP Quinases , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
8.
Microb Pathog ; 150: 104707, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33352216

RESUMO

OBJECTIVE: To investigate the communities of fecal microbiota and the role of Toll-like receptors in patients with ulcerative colitis in the coastal area of northern China. METHODS: Stool samples from 31 patients with ulcerative colitis and 12 healthy individuals were collected. The total bacterial genomic DNA was extracted, and the V3+V4 hypervariable region in the bacterial 16S rRNA gene sequence was amplified by polymerase chain reaction (PCR). High-throughput sequencing analysis was performed on the Illumina Hiseq platform. The expression of TLR2, TLR4, Tollip, PPAR-γ, IL-6, and TNF-α in the colonic mucosa was measured by Western blots. RESULTS: The diversity of the fecal microbiota in patients with ulcerative colitis was significantly less than that in healthy control individuals (p < 0.05). The proportion of Bacteroidetes was significantly reduced (p < 0.01), whereas Proteobacteria was prevalent (p < 0.01) in patients with ulcerative colitis. At the genus level, the relative abundance of Streptococcus and Anaerostipes was significantly increased (p < 0.05), whereas the proportion of Bacteroides, Lachnospira, Ruminococcus, Phascolarctobacterium, and Coprococcus was significantly decreased in patients with ulcerative colitis (p < 0.05). The diversity indexes of fecal microbiota in patients with ulcerative colitis were negatively correlated with disease severity (p < 0.05). The relative abundance of Enterobacteriaceae was positively correlated with disease severity, and the relative abundance of Phascolarctobacterium, Anaerostipes, Fusobacterium, Parabacteroides, Oscillospira, and Ochrobactrum were negatively correlated with disease severity. The expression levels of TLR2 and TLR4 in the intestinal mucosa were positively correlated with the relative abundance of Streptococcus and Enterobacteriaceae, respectively (r = 0.481, p = 0.007; r = 0.455, p = 0.017). CONCLUSION: There were significant changes in the diversity and composition of the fecal microbiota in patients with ulcerative colitis compared to healthy individuals. The dysbiosis of gut microbiota and correlation with TLRs might play important roles in the pathogenesis and progression of ulcerative colitis.


Assuntos
Colite Ulcerativa , Microbioma Gastrointestinal , China , Disbiose , Fezes , Humanos , RNA Ribossômico 16S/genética
9.
Phys Rev Lett ; 126(3): 036402, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33543962

RESUMO

Metallization of hydrogen as a key problem in modern physics is the pressure-induced evolution of the hydrogen electronic band from a wide-gap insulator to a closed gap metal. However, due to its remarkably high energy, the electronic band gap of insulating hydrogen has never before been directly observed under pressure. Using high-brilliance, high-energy synchrotron radiation, we developed an inelastic x-ray probe to yield the hydrogen electronic band information in situ under high pressures in a diamond-anvil cell. The dynamic structure factor of hydrogen was measured over a large energy range of 45 eV. The electronic band gap was found to decrease linearly from 10.9 to 6.57 eV, with an 8.6 times densification (ρ/ρ_{0}∼8.6) from zero pressure up to 90 GPa.

10.
Reprod Biol Endocrinol ; 19(1): 86, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34107992

RESUMO

BACKGROUND: Endometriosis is a chronic hormonal inflammatory disease characterized by the presence of endometrial tissue outside the uterus. Endometriosis often causes infertility, which brings physical and mental pain to patients and their families. METHODS: We examined the functions of heat shock factor 1 (HSF1) in endometriosis development through cell count assay, cell-scratch assay and clone formation experiments. We used quantitative real-time PCR (qRT-PCR) and Western blot (WB) to detect HSF1 expression. Glucose and lactate levels were determined using a glucose (GO) assay kit and a lactate assay kit. Furthermore, we used a HSF1 inhibitor-KRIBB11 to establish a mouse model of endometriosis. RESULTS: Our data demonstrated that HSF1 promoted endometriosis development. Interestingly, HSF1 enhanced glycolysis via up-regulating PFKFB3 expression in endometriosis cells, which was a key glycolysis enzyme. Consistently, the HSF1 inhibitor KRIBB11 could abrogate endometriosis progression in vivo and in vitro. CONCLUSIONS: Findings indicate that HSF1 plays an important role in endometriosis development, which might become a new target for the treatment of endometriosis. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary data are available.


Assuntos
Endometriose/genética , Glicólise/genética , Fatores de Transcrição de Choque Térmico/genética , Fosfofrutoquinase-2/genética , Aminopiridinas/farmacologia , Animais , Western Blotting , Contagem de Células , Linhagem Celular , Movimento Celular/genética , Proliferação de Células/genética , Modelos Animais de Doenças , Endometriose/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Fatores de Transcrição de Choque Térmico/antagonistas & inibidores , Humanos , Indazóis/farmacologia , Ácido Láctico/metabolismo , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima
11.
Cell Tissue Bank ; 22(3): 419-430, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34115245

RESUMO

Decellularized nerve extracellular matrix (NECM) composited with chitosan are moldable materials suitable for spinal cord repair. But the rapid biodegradation of the materials may interrupt neural tissue reconstruction in vivo. To improve the stability of the materials, the materials produced by NECM and chitosan hydrogels were crosslinked by genipine, glutaraldehyde or ultraviolet ray. Physicochemical property, degradation and biocompatibility of materials crosslinked by genipin, glutaraldehyde or ultraviolet ray were evaluated. The scaffold crosslinked by genipin possessed a porous structure, and the porosity ratio was 89.07 + 4.90%, the average diameter of pore was 85.32 + 5.34 µm. The crosslinked degree of the scaffold crosslinked by genipin and glutaraldehyde was 75.13 ± 4.87%, 71.25 ± 5.06% respectively; Uncrosslinked scaffold disintegrated when immerged in distilled water while the scaffold crosslinked by genipin and glutaraldehyde group retained their integrity. The scaffold crosslinked by genipin has better water absorption, water retention and anti-enzymatic hydrolysis ability than the other three groups. Cell cytotoxicity showed that the cytotoxicity of scaffold crosslinked by genipin was lower than that crosslinked by glutaraldehyde. The histocompatibility of scaffold crosslinked by genipin was also better than glutaraldehyde group. More cells grew well in the scaffold crosslinked by genipin when co-cultured with L929 cells. The decellularized nerve extracellular matrix/chitosan scaffold crosslinked by the genipin has good mechanical properties, micro structure and biocompatibility, which is an ideal scaffold for the spinal cord tissue engineering.


Assuntos
Quitosana , Resinas Acrílicas , Materiais Biocompatíveis , Reagentes de Ligações Cruzadas , Matriz Extracelular , Iridoides , Engenharia Tecidual , Alicerces Teciduais
12.
Reprod Biol Endocrinol ; 17(1): 52, 2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31288842

RESUMO

BACKGROUND: Recurrent pregnancy loss (RPL) refers to two or more spontaneous abortions that occur consecutively with the same spouse. RPL severely affects human reproduction health, and causes extreme physical and mental suffering to patients and their families. METHODS: We used isobaric tags for relative and absolute quantitation (iTRAQ), which was coupled with liquid chromatography mass spectrometry (LC-MS) proteomic analysis, in order to identify differentially expressed proteins. Moreover, we used western blot to analyze differentially expressed proteins. RESULTS: Of the 2350 non-redundant proteins identified, 38 proteins were significantly altered and were identified as potential biomarkers for RPL. The protein-protein interaction network constructed using GeneMANIA revealed that 35.55% displayed similar co-expression, 30.87% were predicted, and 20.95% had physical interaction characteristics. Based on Gene ontology classification and KEGG pathway enrichment analyses, the majority of these differentially expressed proteins were found to be related to biological regulation, metabolic and cellular processes, protein binding and different enzymes activities, as well as disorder of fat and glucose metabolic pathways. It is noteworthy that three metabolism related biomarkers (HK1, ACLY, and FASN) were further confirmed through western blot analysis. CONCLUSIONS: These results suggest that these differentially expressed proteins may be used as biomarkers for RPL, and related signaling pathways may play crucial roles in male induced RPL.


Assuntos
Aborto Habitual/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Espermatozoides/metabolismo , Aborto Habitual/genética , Cromatografia Líquida , Feminino , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Humanos , Masculino , Gravidez , Mapas de Interação de Proteínas/genética , Proteoma/genética , Transdução de Sinais/genética , Espectrometria de Massas em Tandem
13.
Cell Mol Neurobiol ; 39(3): 341-353, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30684112

RESUMO

The present study aimed to investigate the efficacy of transplantation of bone marrow neural tissue-committed stem cell-derived sensory neuron-like cells for the repair of peripheral nerve sensory impairments in rats. Bone marrow was isolated and cultured to obtain the neural tissue-committed stem cells (NTCSCs), and the differentiation of these cells into sensory neuron-like cells was induced. Bone marrow mesenchymal stem cells (BMSCs), bone marrow NTCSCs, and bone marrow NTCSC-derived sensory neurons (NTCSC-SNs) were transplanted by microinjection into the L4 and L5 dorsal root ganglions (DRGs) in an animal model of sensory defect. On the 2nd, 4th, 8th, and 12th week after the transplantation, the effects of the three types of stem cells on the repair of the sensory functional defect were analyzed via behavioral observation, sensory function evaluation, electrophysiological examination of the sciatic nerve, and morphological observation of the DRGs. The results revealed that the transplanted BMSCs, NTCSCs, and NTCSC-SNs were all able to repair the sensory nerves. In addition, the effect of the NTCSC-SNs was significantly better than that of the other two types of stem cells. The general posture and gait of the animals in the sensory defect model exhibited evident improvement over time. Plantar temperature sensitivity and pain sensitivity gradually recovered, and the sensation latency was reduced, with faster sensory nerve conduction velocity. Transplantation of NTCSC-SNs can improve the repair of peripheral nerve sensory defects in rats.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Regeneração Nervosa , Tecido Nervoso/citologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Traumatismos dos Nervos Periféricos/terapia , Células Receptoras Sensoriais/transplante , Potenciais de Ação , Animais , Comportamento Animal , Separação Celular , Forma Celular , Sobrevivência Celular , Modelos Animais de Doenças , Masculino , Proteínas do Tecido Nervoso/metabolismo , Condução Nervosa , Neurônios/citologia , Traumatismos dos Nervos Periféricos/patologia , Ratos Sprague-Dawley , Células Receptoras Sensoriais/citologia , Esferoides Celulares/citologia
15.
Cell Physiol Biochem ; 51(5): 2172-2184, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30537727

RESUMO

BACKGROUND/AIMS: Although red blood cells (RBCs) transfusions can be lifesaving, they are not without risk. RBCs storage is associated with the abnormal metabolism of glutathione (GSH), which may increase the risk of the oxidative damage of RBCs after transfusion. The responsible mechanisms remain unknown. METHODS: We determined the L-cysteine efflux and influx by evaluating the changes of free -SH concentrations in stored RBCs. The glutamate cysteine ligase (GCL) activities and protein content in stored RBCs was determined by fluorescence assay and western blotting. In addition, the glucose metabolism enzyme activity of RBCs was measured by spectrophotometric assay under in vitro incubation conditions. RESULTS: We found that both L-cysteine transport and GCL activity significantly declined, thereby inducing the dysfunction of GSH synthesis during blood storage, which could be attenuated by ATP supplement and DTT treatment. In addition, the glycometabolic enzyme (G6PDH, HK, PK and LDH) activity significantly decreased after 6 weeks storage. Oxidant stress-induced dysfunction in glucose metabolism was the driving force for decreased GSH synthesis during storage. CONCLUSION: These experimental findings reflect an underlying molecular mechanism that oxidant stress induced glucose metabolism dysfunction contribute to decreased GSH synthesis in stored RBCs.


Assuntos
Preservação de Sangue , Eritrócitos/metabolismo , Glucose/metabolismo , Glutationa/metabolismo , Trifosfato de Adenosina/metabolismo , Vias Biossintéticas , Preservação de Sangue/métodos , Cisteína/metabolismo , Contagem de Eritrócitos , Índices de Eritrócitos , Eritrócitos/citologia , Glutamato-Cisteína Ligase/metabolismo , Humanos , Adulto Jovem
16.
Proc Natl Acad Sci U S A ; 112(48): 14766-70, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627230

RESUMO

CrAs was observed to possess the bulk superconductivity under high-pressure conditions. To understand the superconducting mechanism and explore the correlation between the structure and superconductivity, the high-pressure structural evolution of CrAs was investigated using the angle-dispersive X-ray diffraction (XRD) method. The structure of CrAs remains stable up to 1.8 GPa, whereas the lattice parameters exhibit anomalous compression behaviors. With increasing pressure, the lattice parameters a and c both demonstrate a nonmonotonic change, and the lattice parameter b undergoes a rapid contraction at ∼ 0.18-0.35 GPa, which suggests that a pressure-induced isostructural phase transition occurs in CrAs. Above the phase transition pressure, the axial compressibilities of CrAs present remarkable anisotropy. A schematic band model was used to address the anomalous compression behavior of CrAs. The present results shed light on the structural and related electronic responses to high pressure, which play a key role toward understanding the superconductivity of CrAs.

17.
Cell Tissue Bank ; 19(4): 591-601, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29974309

RESUMO

The demineralized bone matrix (DBM) putty is a traditional bone graft utilized to facilitate the repair and reconstruction of bone. Recent studies indicated the DBM putties with the various carriers were different in bone repairing ability. In order to prepare a kind of DBM putty with a good biocompatibility and bioactivity, the DBM gel was processed from the DBM and the feasibility as a carrier for the DBM putty was evaluated. After the bovine DBM gel was prepared, the BMPs content as well as the ability to promote osteogenic differentiation of MC3T3-E1 cells in vitro were investigated. Then the DBM putty was prepared and filled into the rat calvarial defect model to evaluate the bone repairing ability by micro-CT and histology. The result showed there was 2.953 ± 0.054 ng BMP contained in per gram of the DBM gel. And the ALP production of MC3T3-E1 cells in the DBM gels group increased with prolonged culturing, the mineralized nodules formed in MC3T3-E1 cells on 14th day after co-culture. The putty prepared by DBM gel was easy to handle without loss of DBM particles at room temperature. In the rat calvarial bone defect experiment, histological observation showed more mature bone formed in the DBM putty group than that in the type I collagen group at 12 weeks, which indicated the bone putty prepared by DBM gel exhibited a better bone repair capability.


Assuntos
Técnica de Desmineralização Óssea , Osso e Ossos/química , Hidrogéis/farmacologia , Animais , Bioensaio , Matriz Óssea , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/efeitos dos fármacos , Bovinos , Linhagem Celular , Camundongos , Osteogênese/efeitos dos fármacos , Ratos Sprague-Dawley , Microtomografia por Raio-X
18.
Biochem Biophys Res Commun ; 489(2): 96-102, 2017 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-28528974

RESUMO

Endometrial cancer (EC) is the estrogen-dependent gynecologic malignancy, however the molecular mechanism involved in the development and progression of EC remain unclear. The aim of this study was to investigate the role of RIZ1 in EC. Immunohistochemical analysis revealed that RIZ1was decreased in EC than in normal endometrium. Lower RIZ1 level was correlated with high-grade carcinoma (p = 0.048) and positive expression of ERα (p = 0.004). In EC cells, estrogen could down regulated the expression of RIZ1, however, ICI182,780 could up regulated the expression of RIZ1. Besides, in vitro and in vivo, RIZ1 could remarkably suppress tumor proliferation, metastasis and invasion. Our data support that RIZ1 was a novel tumor suppressor and could provide a potential therapeutic target in human EC.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Regulação para Baixo , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Estrogênios/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias do Endométrio/tratamento farmacológico , Estradiol/análogos & derivados , Estradiol/farmacologia , Feminino , Fulvestranto , Histona-Lisina N-Metiltransferase/biossíntese , Histona-Lisina N-Metiltransferase/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Relação Estrutura-Atividade , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Células Tumorais Cultivadas
19.
Phys Chem Chem Phys ; 19(3): 2207-2216, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28054052

RESUMO

Recently, A2B3-type tetradymites have developed into a hot topic in physical and material research fields, where the A and B atoms represent V and VI group elements, respectively. In this study, in situ angle-dispersive X-ray diffraction measurements were performed on Bi2Te2Se, BiSbTeSe2, and Sb2Te2Se tetradymites under high pressure. Bi2Te2Se transforms from a layered rhombohedral structure (phase I) into 7-fold monoclinic (phase II) and body-centered tetragonal (phase IV) structures at about 8.0 and 14.3 GPa, respectively, without an 8-fold monoclinic structure (phase III) similar to that in Bi2Te3. Thus, the compression behavior of Bi2Te2Se is the same as that of Bi2Se3, which could also be obtained from first-principles calculations and in situ high-pressure electrical resistance measurements. Under high pressure, BiSbTeSe2 and Sb2Te2Se undergo similar structural phase transitions to Bi2Te2Se, which indicates that the compression process of tellurides can be modulated by doping Se in Te sites. According to these high-pressure investigations of A2B3-type tetradymites, the decrease of the B-site atomic radius shrinks the stable pressure range of phase III and expands that of phase II, whereas the decrease of the A-site atomic radius induces a different effect, i.e. expanding the stable pressure range of phase III and shrinking that of phase II. The influence of the atomic radius on the compression process of tetradymites is closely related to the chemical composition and the atom arrangement in the quintuple layer.

20.
Med Sci Monit ; 23: 5237-5245, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29097649

RESUMO

BACKGROUND The special features of nonsteroidal anti-inflammatory drugs (NSAIDs) enteropathy were partially clarified by single-balloon endoscopy(SBE). We aimed to investigate the characteristics of NSAIDs injuries that were differ from other ulcer diseases and efficacy of SBE compared with capsule endoscopy(CE). MATERIAL AND METHODS 1,644 symptomatic patients (221 patients taking NSAIDs) hospitalized between January 2006 and March 2016 were recruited and underwent SBE and/or CE. RESULTS NSAIDs damages were identified in 110 patients (49.77%). The special features of NSAIDs lesions included: variform, superficial, multiple and irregular arrangement; <1 cm in diameter (67.27%); the location in jejunum and ileum was similar; ileocecal valve was rarely influenced (20.91%). The specificity and positive predictive value of SBE for diagnosing NSAIDs breaks were higher than CE (95.74% vs. 80.00%; 95.45% vs. 81.63%, p<0.05). There were no differences in the detection rate and the diagnostic accuracy rate of small bowel diseases between SBE and CE in the NSAIDs group (69.4% vs. 66.3% and 83.58% vs. 80.65%, p>0.05 respectively). The consistency in diagnosing NSAIDs breaks for the 2 methods was 82.61%. More tiny lesions at the distal ileum were detected by SBE. Four patients misdiagnosed by CE got accurate diagnose through biopsy by SBE. Three patients with active bleeding caused by NSAIDs-induced ulcers underwent hemostasis successfully by SBE. CONCLUSIONS NSAIDs injuries might be distinguished from other diseases by endoscopic features and biopsy through SBE, which appeared to be an effective method for diagnosis and treatment.


Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Endoscopia por Cápsula , Intestino Delgado/lesões , Enteroscopia de Balão Único , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Úlcera/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA