Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(40): e2306673120, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37748073

RESUMO

Electrocatalytic nitrogen reduction is a challenging process that requires achieving high ammonia yield rate and reasonable faradaic efficiency. To address this issue, this study developed a catalyst by in situ anchoring interfacial intergrown ultrafine MoO2 nanograins on N-doped carbon fibers. By optimizing the thermal treatment conditions, an abundant number of grain boundaries were generated between MoO2 nanograins, which led to an increased fraction of oxygen vacancies. This, in turn, improved the transfer of electrons, resulting in the creation of highly active reactive sites and efficient nitrogen trapping. The resulting optimal catalyst, MoO2/C700, outperformed commercial MoO2 and state-of-the-art N2 reduction catalysts, with NH3 yield and Faradic efficiency of 173.7 µg h-1 mg-1cat and 27.6%, respectively, under - 0.7 V vs. RHE in 1 M KOH electrolyte. In situ X-ray photoelectron spectroscopy characterization and density functional theory calculation validated the electronic structure effect and advantage of N2 adsorption over oxygen vacancy, revealing the dominant interplay of N2 and oxygen vacancy and generating electronic transfer between nitrogen and Mo(IV). The study also unveiled the origin of improved activity by correlating with the interfacial effect, demonstrating the big potential for practical N2 reduction applications as the obtained optimal catalyst exhibited appreciable catalytic stability during 60 h of continuous electrolysis. This work demonstrates the feasibility of enhancing electrocatalytic nitrogen reduction by engineering grain boundaries to promote oxygen vacancies, offering a promising avenue for efficient and sustainable ammonia production.

2.
Small ; 20(4): e2305965, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37702142

RESUMO

Developing high-efficiency and stable oxygen evolution reaction (OER) electrocatalysts is an imperative requirement to produce green and clean hydrogen energy. In this work, the FeCoSy /NCDs composite with nitrogen-doped carbon dots (NCDs) modified Fe-Co sulfide (FeCoSy ) nanosheets is prepared by using a facile and mild one-pot solvothermal method. Benefiting from the low crystallinity and the synergistic effect between FeCoSy and NCDs, the optimal FeCoSy /NCDs-3 composite exhibits an overpotential of only 284 mV at 10 mA cm-2 , a small Tafel value of 52.1 mV dec-1 , and excellent electrochemical durability in alkaline solution. Remarkably, unlike ordinary metal sulfide electrocatalysts, the morphology, components, and structure of the FeCoSy /NCDs composite can be well retained after OER test. The NCDs modified FeCoSy composite with excellent electrocatalytic performance provides an effective approach to boost metal sulfide electrocatalysts for practical application.

3.
Small ; 20(15): e2306236, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009511

RESUMO

The core strategy for constructing ultra-high-performance hybrid supercapacitors is the design of reasonable and effective electrode materials. Herein, a facile solvothermal-calcination strategy is developed to deposit the phosphate-functionalized Fe2O3 (P-Fe2O3) nanosheets on the reduced graphene oxide (rGO) framework. Benefiting from the superior conductivity of rGO and the high conductivity and fast charge storage dynamics of phosphate ions, the synthesized P-Fe2O3/rGO anode exhibits remarkable electrochemical performance with a high capacitance of 586.6 F g-1 at 1 A g-1 and only 4.0% capacitance loss within 10 000 cycles. In addition, the FeMoO4/Fe2O3/rGO nanosheets are fabricated by utilizing Fe2O3/rGO as the precursor. The introduction of molybdates successfully constructs open ion channels between rGO layers and provides abundant active sites, enabling the excellent electrochemical features of FeMoO4/Fe2O3/rGO cathode with a splendid capacity of 475.4 C g-1 at 1 A g-1. By matching P-Fe2O3/rGO with FeMoO4/Fe2O3/rGO, the constructed hybrid supercapacitor presents an admirable energy density of 82.0 Wh kg-1 and an extremely long working life of 95.0% after 20 000 cycles. Furthermore, the continuous operation of the red light-emitting diode for up to 30 min demonstrates the excellent energy storage properties of FeMoO4/Fe2O3/rGO//P-Fe2O3/rGO, which provides multiple possibilities for the follow-up energy storage applications of the iron-based composites.

4.
Chemistry ; : e202400927, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773816

RESUMO

Tris(2,4,6-trichlorophenyl)methyl (TTM) group has been widely used for constructing organic radicals, but the poor optical stabilities limit the application prospects of the TTM radicals. In this work, the rigid B- and N-embedded dioxygen-bridged (BO and NO) units were attached to the TTM skeleton as the strong electron-withdrawing and electron-donating groups, respectively. The rigidity and strong electronic effect of the BO and NO units contribute to the high chemical and optical stability of BO-TTM and NO-TTM radicals. Notably, NO-TTM exhibits near-infrared emission at 830 nm with a narrow full width at half maximum (FWHM) of 55 nm (100 meV), while BO-TTM shows blue-shifted luminescence at 635 nm and a narrower FWHM of merely 43 nm (130 meV). This study has developed a methodology to produce highly efficient and enduring luminescent radicals, which could tune emission properties such as wavelength and FWHM.

5.
Inorg Chem ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917329

RESUMO

A new class of three-charge (0, -1, -2) ligand-based binuclear and mononuclear iridium complexes bearing benzo[d]oxazole-2-thiol ligand have been synthesized. Notably, the binuclear complexes (IrIr1 and IrIr2) can be generated at low temperatures by reacting the iridium complex precursors (2a and 2b) with equal amounts of the benzo[d]oxazole-2-thiol ligands, while the corresponding mononuclear complexes (Ir1 and Ir2) are formed at high temperatures. X-ray diffraction analysis shows that the benzo[d]oxazole-2-thiol ligand plays an unusual and interesting bridging role in binuclear complexes and induces rich intermolecular and intramolecular interactions, while in mononuclear complexes, it forms an interesting four-membered ring coordination. More importantly, all complexes experienced efficient deep-red emission in the 628-674 nm range, and the mononuclear complexes have higher luminescent efficiency and longer excited state lifetime than the binuclear complexes. As a result, organic light-emitting diode devices incorporating two mononuclear complexes (Ir1 and Ir2) as guest material of the light-emitting layer can obtain good maximum external quantum efficiency (3.5% and 5.5%) in the deep-red region (629 and 632 nm) with CIE coordinates (0.61, 0.33) and (0.62, 0.34), along with a low turn-on voltage (2.8 V).

6.
Phys Chem Chem Phys ; 26(3): 2395-2401, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38168797

RESUMO

Two novel B-embedded disulfide-bridged π-conjugated compounds (BS-CZ and BS-N) bearing different electron donor groups (phenyl carbazole and triphenylamine) have been prepared and show different optical mechanisms. The compound BS-CZ exhibits significant multiple resonance thermal activation delayed fluorescence (MR-TADF) properties with a small singlet-triplet energy gap (ΔEST = 0.16 eV) and a narrow half-peak full width (FWHM = 33 nm), while the compound BS-N shows traditional fluorescence luminescence (FL) characteristics with a larger ΔEST (0.28 eV) and FWHM (57 nm). Time-dependent density functional theory (TD-DFT) calculations show that the lowest excited singlet state (S1) of the compound BS-CZ exhibits local excited (LE) state characteristics, while the charge transfer (CT) state characteristics can be found in S1 of the compound BS-N. Considering good optical performance, the compound BS-CZ is used as an emitting layer of the organic light-emitting diode device and achieved saturated blue emission (473 nm) with a narrow FWHM (39 nm), and CIE color coordinates of (0.12, 0.21). This work provides an important strategy for the optical mechanism regulation and photoelectric applications of B-embedded disulfide-bridged π-conjugated molecules.

7.
Psychol Med ; 53(7): 2868-2877, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-34991756

RESUMO

BACKGROUND: Schizophrenia is a severely debilitating psychiatric disorder with high heritability and polygenic architecture. A higher polygenic risk score for schizophrenia (SzPRS) has been associated with smaller gray matter volume, lower activation, and decreased functional connectivity (FC). However, the effect of polygenic inheritance on the brain white matter microstructure has only been sparsely reported. METHODS: Eighty-four patients with first-episode schizophrenia (FES) patients and ninety-three healthy controls (HC) with genetics, diffusion tensor imaging (DTI), and resting-state functional magnetic resonance imaging (rs-fMRI) data were included in our study. We investigated impaired white matter integrity as measured by fractional anisotropy (FA) in the FES group, further examined the effect of SzPRS on white matter FA and FC in the regions connected by SzPRS-related white matter tracts. RESULTS: Decreased FA was observed in FES in many commonly identified regions. Among these regions, we observed that in the FES group, but not the HC group, SzPRS was negatively associated with the mean FA in the genu and body of corpus callosum, right anterior corona radiata, and right superior corona radiata. Higher SzPRS was also associated with lower FCs between the left inferior frontal gyrus (IFG)-left inferior temporal gyrus (ITG), right IFG-left ITG, right IFG-left middle frontal gyrus (MFG), and right IFG-right MFG in the FES group. CONCLUSION: Higher polygenic risks are linked with disrupted white matter integrity and FC in patients with schizophrenia. These correlations are strongly driven by the interhemispheric callosal fibers and the connections between frontotemporal regions.


Assuntos
Esquizofrenia , Substância Branca , Humanos , Substância Branca/patologia , Corpo Caloso/patologia , Imagem de Tensor de Difusão , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Esquizofrenia/patologia , Herança Multifatorial , Anisotropia , Encéfalo
8.
Inorg Chem ; 62(15): 6032-6046, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37000896

RESUMO

Transition-metal oxides as anodes for lithium-ion batteries (LIBs) have attracted enormous interest because of their high theoretical capacity, low cost, and high reserve abundance. Unfortunately, they commonly suffer from poor electronic and ionic conductivity and relatively large volume expansion during discharge/charge processes, thereby triggering inferior cyclic performance and rate capability. Herein, a molybdenum-zinc bimetal oxide-based composite structure (Zn2Mo3O8/ZnO/rGO) with rectangular Zn2Mo3O8/ZnO nanosheets uniformly dispersed on reduced graphene oxide (rGO) has been prepared by using a simple and controllable cyanometallic framework template method. The Zn2Mo3O8/ZnO rectangular nanosheets with desirable porous features are composed of nanocrystalline subunits, facilitating the exposure of abundant active sites and providing sufficient contact with the electrolyte. Benefiting from the composition and structural merits as well as the induced synergistic effects, the Zn2Mo3O8/ZnO/rGO composite as LIB anodes delivers superior electrochemical properties, including high reversible capacity (960 mA h g-1 after 100 cycles at 200 mA g-1), outstanding rate performance (417 mA h g-1 at 10,000 mA g-1), and admirable long-term cyclic stability (862 mA h g-1 after 400 cycles at 1000 mA g-1). The mechanism of lithium storage and the formation of SEI film are systematically elucidated. This work provides an effective strategy for synthesizing promising Mo-cluster compound-based anodes for high-performance LIBs.

9.
Phys Chem Chem Phys ; 25(42): 29165-29172, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37870160

RESUMO

Based on a computational approach that can accurately describe their geometric structures and electronic spectra, we have theoretically studied the nonlinear optical (NLO) properties of H-capped carbon chains, H-(CC)n-H (n = 3-15), for the first time. Special attention was paid to the size dependence of the molecular (hyper)polarizability of these species through the nonlinear fitting of the data, which formed two power-law formulas of αiso(∞) = -0.206 + 0.264n1.498 and γ‖(∞) = -0.624 + 0.006n3.368 and was thoroughly discussed at the electronic structure level by in-depth wavefunction analyses. The fundamental gap (ΔE) between vertical ionization energy (VIE) and vertical electron affinity (VEA) is found to be related to the molecular (hyper)polarizability. The calculated (hyper)polarizability of the carbon chains H-(CC)n-H (n = 3-15) is more sensitive to the density functional theory (DFT) applied than to the basis set selected. The results are expected to provide theoretical guidance for the property prediction of arbitrarily long carbon chains not yet synthesized.

10.
Angew Chem Int Ed Engl ; 62(23): e202302297, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36914595

RESUMO

Microplatform with timed automata has been leveraged for guiding the preparation of molecules, whereas the requirement of handling expertise and sophisticated instrument is inevitable in combination with heterogeneous catalysis. Here we report a microfluidic-based autolab with open structures, called Put & Play Automated Microplatform (PPAM). It shows the efficient hydrogenation performance of palladium nanoparticles on the triphenylene-based covalent organic frameworks (Pd/TP-COFs) in which the π-π interactions of TP rings in the vicinity of Pd is optimized by easy change-over of catalyst and simple tuning of reactor geometries in PPAM. Using experiment/simulation of the Pd/TP-COFs coating (PCC) and mixing (PCM) across PPAM with different channel sizes, the turnover frequencies are 60 times the commonly used batch reactor, and aniline productivity of 8.8 g h-1 is achieved in 0.09 cm3 . This work will raise awareness about the benefits of the catalyst-loaded microplatform in future materials performance campaigns.

11.
J Psychiatry Neurosci ; 47(2): E134-E147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35361701

RESUMO

BACKGROUND: For decades, the dopamine D2 receptor (D2R) has been known as the main target of antipsychotic medications, but the mechanism for antipsychotic effects beyond this pharmacological target remains unclear. Disrupted-in-schizophrenia 1 (DISC1) is a gene implicated in the etiology of schizophrenia, and we have found elevated levels of the D2R-DISC1 complex in the postmortem brain tissue of patients with schizophrenia. METHODS: We used coimmunoprecipitation to measure D2R-DISC1 complex levels in peripheral blood samples from patients with schizophrenia and unaffected controls in 3 cohorts (including males and females) from different hospitals. We also used label-free mass spectrometry to conduct proteomic analysis of these samples. RESULTS: Levels of the D2R-DISC1 complex were elevated in the peripheral blood samples of patients with schizophrenia from 3 independent cohorts, and were normalized with antipsychotic treatment. Proteomic analysis of the blood samples from patients with high D2R-DISC1 complex levels that were normalized with antipsychotic treatment revealed a number of altered proteins and pathways associated with D2R, DISC1 and the D2R-DISC1 complex. We identified additional proteins and pathways that were associated with antipsychotic treatment in schizophrenia, and that may also be novel targets for schizophrenia treatment. LIMITATIONS: Sample sizes were relatively small, but were sufficient to detect associations between D2R-DISC1 levels, schizophrenia and treatment response. The relevance of leukocyte changes to the symptoms of schizophrenia is unknown. The coimmunoprecipitation lanes included several nonspecific bands. CONCLUSION: Levels of the D2R-DISC1 complex were elevated in patients with schizophrenia and reduced with antipsychotic treatment. This finding reinforces the independent role of each protein in schizophrenia. Our results enhanced our understanding of the molecular pathways involved in schizophrenia and in antipsychotic medications, and identified novel potential molecular targets for treating schizophrenia.


Assuntos
Antipsicóticos , Proteínas do Tecido Nervoso , Receptores de Dopamina D2 , Esquizofrenia , Antipsicóticos/uso terapêutico , Feminino , Humanos , Masculino , Proteínas do Tecido Nervoso/genética , Proteômica , Receptores de Dopamina D2/genética , Esquizofrenia/genética
12.
Inorg Chem ; 61(51): 20942-20948, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36520067

RESUMO

Organic radical luminescent materials with doublet excited state character based on tris(2,4,6-trichlorophenyl)methyl (TTM) have attracted extensive attention in recent years. However, how they affect the phosphorescent iridium(III) complex characterized by the triplet excited state has not been studied yet. Herein, a new iridium(III) complex radical (Ir-TTM) and corresponding ligand radical (ppy-TTM) with a TTM unit have been designed and synthesized, and their radical properties were confirmed by the single crystal structure and EPR spectra. Notably, the ligand radical ppy-TTM shows an efficient red light emission, whereas the iridium complex radical Ir-TTM emits no light, which resulted from the intramolecular quenching effect of the TTM radical unit on the iridium luminescence center. DFT calculations demonstrate that the lowest doublet (D1) excited state of ppy-TTM shows an intramolecular charge transfer character from the 2-phenylpyridine moieties to the TTM unit, whereas the D1 of Ir-TTM exhibits a significant charge transfer character from the iridium luminescence center moieties to the TTM unit, which further explains the luminescence quenching mechanism of the phosphorescent iridium complex radical.

13.
Inorg Chem ; 61(27): 10548-10556, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35763374

RESUMO

We have designed and synthesized a new family of neutral phosphorescent iridium(III) complexes (Ir1-Ir6) featuring three differently charged (0, -1, and -2) ligands, in which biphenyl (bp) is used as a dianionic (-2) ligand, 4,6-difluorophenylpyridine (dfppy) or 1-phenylisoquinoline (piq) is used as a monoanionic (-1) ligand, and 2,2'-bipyridyl (bpy), 1,10-phenanthroline (phen), 1,2-bis(diphenylphosphanyl)benzene (dppb), or 1,2-bis(diphenylphosphanyl)ethane (dppe) is used as a neutral (0) ligand. The X-ray structures confirm that three coordination carbon atoms of all complexes assume a facial geometry, which can be beneficial to the stability of the structure. More importantly, the emitting color of the complexes can be tuned from deep red/near-infrared (NIR) (680-710 nm) to blue-green (466-496 nm) with different monoanionic (-1) ligands and neutral (0) ligands. Interestingly, the complex Ir5 shows a significant aggregation-induced phosphorescent emission effect, while Ir6 with a similar structure shows an opposite aggregation-caused quenching effect, mainly due to slight differences in the neutral (0) ligand structure. Notably, all deep red/NIR-emitting complexes (Ir1-Ir4) exhibit a distinct charge transfer (CT) excited state from the dianionic (-2) ligand to the neutral (0) ligand according to density functional theory calculations, whereas the excited state of blue-green-emitting complexes (Ir5-Ir6) displays the CT from the dianionic (-2) ligand to the monoanionic (-1) ligand. Considering better stability and optical performance, the deep red-emitting complexes (Ir2 and Ir4) with a simple structure are used as emitting layers of organic light-emitting diode devices and achieved good maximum external quantum efficiency (4.9 and 5.8%) peaking at 676 and 655 nm, respectively, with a very low turn-on voltage (2.5 V). This research provides a good strategy for the design of phosphorescent iridium complexes based on three differently charged (0, -1, and -2) ligands and their optoelectric applications.

14.
Inorg Chem ; 61(8): 3664-3673, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35171611

RESUMO

Taking advantage of the pentaethylene glycol (EO5) and deprotonation of EO5, a family of new structurally hexagonal bipyramidal Dy(III) complexes, [Dy(EO5)(2,6-dichloro-4-nitro-PhO)2](2,6-dichloro-4-nitro-PhO) (1), [Dy(EO5-BPh2)(2,6-dichloro-4-nitro-PhO)2] (2), and [Dy(EO5-BPh2)(2,6-dichloro-4-nitro-PhO)Cl] (3), were controbllably synthesized and structurally characterized. Magnetic measurements show that complex 1 is a zero-field SIM and has an observable hysteresis opening up to 4 K. Conversely, only under extra magnetic field is slow magnetic relaxation observed in 2 and 3. This considerable difference in the magnetic behavior is mainly caused by the change of the equatorial negative charge. Detailed ab initio calculations further elucidate that the quantum tunneling is induced by the presence of equatorial negative charge, and the magnetic anisotropy depends on the axial ligands. This work demonstrates that the absence of the equatorial negative charge should also be considered in the rational design of promising single molecular magnets based on the oblate ions.

15.
Inorg Chem ; 61(49): 19726-19734, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36417790

RESUMO

The choice of axial ligands is of great importance for the construction of high-performance Dy-based single-molecule magnets (SMMs). Here, combining axial ligands Ph3SiO- (anion of triphenylsilanol) and 2,6-dichloro-4-nitro-PhO- (the anion of 2,6-dichloro-4-nitrophenol) with a neutral macrocyclic ligand 2,14-dimethyl-3,6,10,13,19-pentaazabicyclo[13.3.1]nonadeca-1(19),2,13,15,17-pentaene (L2N5) generates two new pentagonal bipyramidal Dy(III) complexes [DyIII(L2N5) (X)2](BPh4) (X = Ph3SiO-, 1; 2,6-dichloro-4-nitro-PhO-, 2) with strong axial ligand fields. Magnetic characterizations show that 1 possesses a large energy barrier above 1000 K and a magnetic hysteresis up to 9 K, whereas 2 only displays field-induced peaks of alternating-current susceptibilities without the hysteresis loop, even though 2 has a similar coordination geometry with 1. Detailed Ab initio calculations indicate an apparent difference in the axial negative charge between both complexes, which is caused by the diverse electron-donating properties of the axial ligands. The present work provides an efficient strategy to enhance the SMMs' properties, which highlights that the electron-donating property of the axial ligands is especially important for constructing the high-performance Dy-based SMMs.


Assuntos
Antifúngicos , Imãs , Ligantes , Elétrons , Nitrofenóis
16.
Appl Opt ; 61(9): 2237-2246, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35333239

RESUMO

The spot mode has a great influence on the effect of laser paint removal, but it has not been clarified. This paper studies the influence of a Gaussian beam and a flat-top beam on surface quality. The results show that for the laser paint removal with the Gaussian beam, the surface hardness, corrosion resistance, and adhesion of marine steel improved significantly. The surface hardness increased by a factor of 20.8% compared to the original substrate, and the paint adhesion increased by 32.7%. For the flat-top beam, the surface quality of the substrate is unchanged, but the cleaning efficiency was observed to be 20% higher than that of the Gaussian beam. This paper can provide technical support for the control of surface cleaning quality in the laser paint removal process.

17.
Molecules ; 27(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35630769

RESUMO

Molybdenum disulfide (MoS2), with a two-dimensional (2D) structure, has attracted huge research interest due to its unique electrical, optical, and physicochemical properties. MoS2 has been used as a co-catalyst for the synthesis of novel heterojunction composites with enhanced photocatalytic hydrogen production under solar light irradiation. In this review, we briefly highlight the atomic-scale structure of MoS2 nanosheets. The top-down and bottom-up synthetic methods of MoS2 nanosheets are described. Additionally, we discuss the formation of MoS2 heterostructures with titanium dioxide (TiO2), graphitic carbon nitride (g-C3N4), and other semiconductors and co-catalysts for enhanced photocatalytic hydrogen generation. This review addresses the challenges and future perspectives for enhancing solar hydrogen production performance in heterojunction materials using MoS2 as a co-catalyst.

18.
Small ; 17(34): e2101080, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34263546

RESUMO

Transition metal oxides (TMOs) are promising anode materials for next-generation lithium-ion batteries (LIBs). Nevertheless, their poor electronic and ionic conductivity as well as huge volume change leads to low capacity release and rapid capacity decay. Herein, a reduced graphene oxide (rGO)-encapsulated TMOs strategy is developed to address the above problems. The Co3 O4 -CoFe2 O4 @rGO composites with rGO sheets-encapsulated Co3 O4 -CoFe2 O4 microcubes are successfully constructed through a simple metal-organic frameworks precursor route, in which Co[Fe(CN)5 NO] microcubes are in situ coated by graphene oxide sheets, followed by a two-step calcination process. As anode material of LIBs, Co3 O4 -CoFe2 O4 @rGO exhibits remarkable reversible capacity (1393 mAh g-1 at 0.2 A g-1 after 300 cycles), outstanding long-term cycling stability (701 mAh g-1 at 2.0 A g-1 after 500 cycles), and excellent rate capability (420 mAh g-1 at 4.0 A g-1 ). The superior lithium storage performance can be attributed to the unique double-buffer structure, in which the outer flexible rGO shells can prevent the structure collapse of the electrode and improve its conductivity, while the hierarchical porous cores of Co3 O4 -CoFe2 O4 microcubes can buffer the volume expansion. This work provides a general and straightforward strategy for the construction of novel rGO-encapsulated bimetal oxides for energy storage and conversion application.

19.
Inorg Chem ; 60(2): 525-534, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33378182

RESUMO

A new series of neutral and cationic platinum(II) complexes containing a B- or N-embedded π-conjugation unit has been prepared. Notably, significantly different intermolecular interactions (Pt-Pt, π-π, head to tail, and head to head) and interesting optical properties exist in these complexes, which can be attributed to the difference in spatial structures and π-electron properties between B- and N-embedded π-conjugation units. Unexpectedly, under a hypoxic atmosphere, N-embedded neutral complex PtNacac can display a distinct dual-emission with both fluorescence and phosphorescence, whereas only a single fluorescence emission was observed in the air, which is different from the B-embedded neutral complex PtBacac with only a single phosphorescence emission at any atmosphere, as well confirmed by lifetime measurement and oxygen sensing experiments. DFT calculations reveal that unusual ligand-to-metal charge transfer (LMCT) excited state character and low spin orbit coupling (SOC) elements can be found in N-embedded complexes due to the strong electron-donating ability of the N-embedded unit. Based on this, as a novel ratiometric oxygen probe with a simple structure, PtNacac can be successfully used to examine intracellular oxygen levels by monitoring both fluorescence and phosphorescence signals via ratiometric photoluminescence imaging and time-resolved luminescence imaging (TRLI) technology. This work provides a completely new idea for designing fluorescence/phosphorescence dual-emissive complexes.

20.
Inorg Chem ; 60(23): 17699-17704, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34739254

RESUMO

A novel family of three types of charged (0, -1, -2) ligands based phosphorescent iridium(III) complexes with different carboxyl-containing dianionic (-2) ligands have been synthesized. Their single-crystal structures show that all neutral complexes (Ir1, Ir2, and Ir3) show a trans-N^N configuration between dianionic (-2) and monoanionic (-1) ligands, which is in contrast with the trans-N^C configuration in cationic complex Ir4, which has an interesting hydrogen bond in the solid state. Notably, Ir4 shows higher luminescence efficiency and an obvious blue shift emission relative to those in Ir1, Ir2, and Ir3. DFT calculations demonstrate that all neutral complexes (Ir1, Ir2, and Ir3) exhibit ligand-to-ligand charge transfer (LLCT) excited state character from the dianionic (-2) ligand to the neutral (0) ligand, which are completely different from the cationic complex Ir4 that exhibits an LLCT excited state from the monoanionic (-1) ligand to the neutral (0) ligand. Considering better solubility, Ir1 was eventually used in solution-processed OLED and achieved moderate efficiency (6.6%, 14.3 cd A-1, 2.8 lm W-1) with an orange light displaying CIEx,y coordinates of (0.53, 0.46). This work provides a new strategy to construct three types of charged (0, -1, -2) ligands based phosphorescent iridium(III) complexes and extends the range of iridium complex luminescent materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA