Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(42): 13388-13396, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39383340

RESUMO

Polarization-sensitive optoelectronic detection has been achieved by an all-Si detector in the NIR range, based on plasmon hot electron generation/internal photoemission effect. An advanced architecture with a specially designed anisotropic metasurface was developed and structurally optimized for maximizing the internal quantum efficiency (IQE). Assisted by finite difference time domain (FDTD) simulations, the well-designed device exhibits a maximum optical absorption of 80% around 1.45 µm, corresponding to an optical discrimination ratio of 120. Optoelectronic measurements show the peak responsivity and detectivity of 51.2 mA/W and 8.05 × 1010 cm Hz1/2/W, respectively, at 1.45 µm. A high polarization photocurrent ratio of 35 nm is also achieved at 1.55 µm. Moreover, the optoelectronic response can be tuned by a back-gate bias. Last but not least, we built up a model for theoretically estimating the IQE, which provides instructive guidance for further enhancing the optoelectronic performance of hot electron detectors.

2.
J Am Chem Soc ; 146(27): 18341-18349, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38942067

RESUMO

Identifying the active phase with the highest activity, which is long-believed to be a steady state of the catalyst, is the basis of rational design of heterogeneous catalysis. In this work, we performed detailed in situ investigations, successfully capturing the instantaneous structure-activity change in oscillating Pd nanocatalysts during methane oxidation, which reveals an unprecedented oscillatory active state. Combining in situ quantitative environmental transmission electron microscopy and highly sensitive online mass spectrometry, we identified two distinct phases for the reaction: one where the Pd nanoparticles refill with oxygen, and the other, a period of abrupt pumping of oxygen and boosted methane oxidation within about 1 s. It is the rapid reduction process that shows the highest activity for total oxidation of methane, not a PdO or Pd steady state under the conditions applied here (methane:oxygen = 5:1). This observation challenges the traditional understanding of the active phase and requires a completely different strategy for catalyst optimization.

3.
Opt Express ; 32(4): 5022-5030, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439239

RESUMO

Metasurfaces, composed by metals and dielectrics in periodical order with subwavelength pitches, are of great importance for their unique ability to abruptly manipulate optical fields. So far, all the reported metasurfaces are constructed by thermally deposited metals and dielectric films, based on semiconductor processes which are expensive and time-consuming. Inspired by the outstanding dry etch property of spin-on-carbon (SOC) as the interlayer material in CMOS technology, this paper proposes to utilize the SOC as the dielectric layer in a chessboard metasurface with dual layer of gold to form an array of local surface plasmonic resonators (localized surface plasmon resonance). Finite difference and time domain (FDTD) method is used to investigate the spectral characteristics in reflectance of the metasurface in both visible and short wavelengths of infrared light. Electron beam lithography is applied to generate the nanoscale chessboard pattern on ZEP520A, followed by a conventional oxygen-based plasma etch to form high aspect ratio nanopillar arrays in SOC with the feature width under 50 nm, and ended by a thermal deposition of gold to form self-aligned dual layer local surface plasmonic resonators (LSPRs). The measured reflectance spectra agree with the simulated. A wealth of optical properties, such as coupling induced modulations of spectra by LSPRs, are revealed and analyzed. These special modes result in tunable structural colors and wavelength-selective antireflection ability. To the best of our knowledge, this is the first time that SOC is applied in the construction of metasurfaces, which has great potential for next generation nanophotonic devices.

4.
Clin Lab ; 70(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38747924

RESUMO

BACKGROUND: The global incidence and mortality rate of gastric carcinoma (GC) persists at elevated levels, often manifesting no overt symptoms in its early stages. Hsa_circ_0002762 has been identified as an important modulator in cervical cancer. This study aims to explore its role in the context of GC. METHODS: A quantitative real-time polymerase chain reaction (qPCR) was implemented to assess the expression level of hsa_circ_0002762. The over-expression was confirmed through an examination of 28 cases of gastric cancer and their corresponding adjacent tissues. In addition, plasma samples from 78 healthy individuals, from 45 benign gastritis patients, and from 106 gastric cancer patients were collected, and the diagnostic efficacy was assessed by analyzing the receiver operating characteristic (ROC) curve. Simultaneously, postoperative specimens from 36 GC cases were collected, and a Kaplan-Meier survival analysis curve was used to evaluate the prognosis of GC. RESULTS: The study revealed an up-regulation in the expression of hsa_circ_0002762 in gastric cancer plasma and tissues. The area under the receiver operating characteristic (ROC) curve for serum hsa_circ_0002762 was 0.784 (95% CI: 0.719 - 0.851), indicating a higher diagnostic efficiency compared to CEA (0.687, 95% CI: 0.611 - 0.763) and CA199 (0.699, 95% CI: 0.625 - 0.744). Combining these three biomarkers demonstrated an increased sensitivity in the diagnostic effectiveness. Finally, postoperative dynamic monitoring revealed a practical utility in predicting the clinical prognosis using serum has_circ_0002762. CONCLUSIONS: The findings from our study suggest that hsa_circ_0002762 holds promise as a novel diagnostic and prognostic marker for individuals with GC.


Assuntos
Biomarcadores Tumorais , RNA Circular , Neoplasias Gástricas , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Estimativa de Kaplan-Meier , Prognóstico , RNA Circular/sangue , RNA Circular/genética , Curva ROC , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/sangue , Neoplasias Gástricas/mortalidade , Regulação para Cima
5.
Nano Lett ; 23(16): 7260-7266, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37534944

RESUMO

Understanding the oxidation mechanism of metal nanoparticles under ambient pressure is extremely important to make the best use of them in a variety of applications. Through ambient pressure transmission electron microscopy, we in situ investigated the dynamic oxidation processes of Ni nanoparticles at different temperatures under atmospheric pressure, and a temperature-dependent oxidation behavior was revealed. At a relatively low temperature (e.g., 600 °C), the oxidation of Ni nanoparticles underwent a classic Kirkendall process, accompanied by the formation of oxide shells. In contrast, at a higher temperature (e.g., 800 °C), the oxidation began with a single crystal nucleus at the metal surface and then proceeded along the metal/oxide interface without voids formed during the whole process. Through our experiments and density functional theory calculations, a temperature-dependent oxidation mechanism based on Ni nanoparticles was proposed, which was derived from the discrepancy of gas adsorption and diffusion rates under different temperatures.

6.
Angew Chem Int Ed Engl ; : e202415637, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39327548

RESUMO

In contrast to the high efficiency of room temperature phosphorescence in crystal states, the generally utilized nanoparticles of organic materials in bioimaging demonstrated sharply decreased performance by orders of magnitude under physiological conditions, badly limiting the realization of their unique advantages. This case, especially for organic red/near-infrared (NIR) phosphorescence materials, is not only the challenge present in reality but more importantly, for the theoretical problem of deeply understanding and avoiding the quenching effect by oxygen and water toward excited triplet states. Herein, thanks to the intelligent molecular design by the introduction of abundant hydrophobic chains and highly-branched structures, bright and persistent red/NIR phosphorescence under physiological conditions has been realized, which demonstrated the shielding effect towards oxygen, and strengthened the intermolecular interactions to suppress the non-radiative transitions. Accordingly, the record phosphorescence intensity of nanoparticles in bioimage, up to 8.21 ± 0.36 × 108 p s-1 cm-2 sr-1, was achieved, to realize the clear phosphorescence imaging of liver and tumors in living mice, even lymph nodes in rabbit models with high SBRs. This work afforded an efficient way to achieve the bright red/NIR phosphorescence nanoparticles, guiding their further applications in biology and medicine.

7.
Small ; 19(29): e2302046, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37173813

RESUMO

The long-range ordering of bulk-heterojunctions (BHJs) significantly facilitates exciton diffusion and dissociation as well as charge transport. A feasible bio-inspired strategy to realize such a heterostructure is crystallization in gel media where the growing host crystals incorporate the surrounding guest materials of gel networks. Until now, the host-guest pairs forming ordered BHJs are still very limited and, more importantly, the used gel-network guests are structurally amorphous, spurring investigation toward crystalline gel-networks. Here, single crystals of fullerene and non-fullerene acceptors (NFAs) in poly(3-hexylthiophene) (P3HT) organogel are prepared, forming C60 :P3HT and (5Z,5″Z)-5,5″-((7,7″-(4,4,9,9-tetraoctyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b″]dithiophene-2,7-diyl)bis(benzo[c][1,2,5]thiadiazole-7,4-diyl))bis(methanylylidene))bis(3-ethyl-2-thioxothiazolidin-4-one) (O-IDTBR):P3HT BHJs. The crystalline P3HT network penetrates the crystal matrix without significantly disturbing the single crystallinity, resulting in long-range ordered BHJs. This bi-continuous structure, together with an improved overall ordering, contributes to enhanced charge/energy transfer. As a result, photodetectors based on these ordered BHJs exhibit ameliorated responsivity, detectivity, bandwidth, and stability as compared to the conventional BHJs with short-range ordering. Therefore, this work further extends the scope of long-range ordered BHJs toward crystalline polymer donors and NFAs, providing a generally applicable strategy for the design of organic optoelectronic devices with superior performance.

8.
J Clin Lab Anal ; 37(3): e24842, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36644969

RESUMO

BACKGROUND: There is mounting evidence that Circular RNAs (circRNAs) are essential for the initiation and development of gastric cancer (GC). In this study, we further investigated the clinical importance and applicability of serum hsa_circ_0000702 in the diagnosis and treatment of GC. METHODS: Sanger sequencing, agarose gel electrophoresis, and RNase R assay were used to confirm the origin, alterations, and stability of hsa_circ_0000702 in GC patients. Real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to detect the expression level of hsa_circ_0000702 in GC cell lines, serum, and tissues. Additionally, receiver operating characteristic (ROC) curves were built to evaluate their prognostic value and how well they would work in conjunction with popular biochemical markers for GC. Finally, real-time dynamic monitoring was used to assess its prognostic usefulness. RESULTS: Hsa_circ_0000702 exhibited the fundamental traits of circRNA. Hsa_circ_0000702 had good sensitivity, specificity, and stability. It was discovered that hsa_circ_0000702 was down-regulated in GC cell lines, serum, and tissues, and that the level of tumor differentiation and tumor node metastasis (TNM) staging were connected with serum hsa_circ_0000702. The area under the ROC curve of serum hsa_circ_0000702 was calculated to be 0.745 (95% CI: 0.669-0.821), indicating high diagnostic efficacy. The diagnostic value was greatly increased by combining serum CEA and CA19-9. Finally, preoperative and postoperative dynamic monitoring revealed serum hsa_circ_0000702 to be of clinical application. CONCLUSION: Serum hsa_circ_0000702 was variably expressed in GC patients, indicating that serum hsa_circ_0000702 may be a novel biomarker for GC diagnosis and dynamic monitoring.


Assuntos
RNA Circular , Neoplasias Gástricas , Humanos , RNA Circular/genética , Neoplasias Gástricas/genética , Biomarcadores Tumorais/genética , Prognóstico , Estadiamento de Neoplasias , RNA/genética
9.
Nano Lett ; 22(11): 4333-4339, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35584407

RESUMO

Achieving metal nanocrystals with metastable phase draws much attention due to their anticipated fascinating properties, wheras it is still challenging because their polymorphism nature and phase transition mechanism remain elusive. Here, phase stability of face-centered cubic (fcc) Pd nanocrystals was studied via in situ spherical aberration (Cs)-corrected transmission electron microscopy (TEM). By constructing a well-defined Pd/C composite structure, Pd nanocrystals encapsulated by graphite, the dispersion process of fcc Pd was observed through a nucleation and growth process. Interestingly, Cs-corrected scanning TEM analysis demonstrated that the newly formed Pd nanocrystals could adopt a metastable hexagonal phase, which was considered challenging to obtain. Accordingly, formation mechanism of the hexagonal Pd nanocrystals was proposed, which involved the combined effect of two factors: (1) templating of graphite and (2) size effect. This work is expected to offer new insight into the polymorphism of Pd nanocrystals and pave the way for the future design of metastable metal nanomaterials.


Assuntos
Grafite , Nanopartículas Metálicas , Nanoestruturas , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Transição de Fase
10.
Angew Chem Int Ed Engl ; 62(10): e202218386, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36637169

RESUMO

Crystallography modulation of zinc (Zn) metal anode is promising to promote Zn reversibility in aqueous electrolytes, but efficiently constructing Zn with specific crystallographic texture remains challenging. Herein, we report a current-controlled electrodeposition strategy to texture the Zn electrodeposits in conventional aqueous electrolytes. Using the electrolytic cell with low-cost Zn(CH3 COO)2 electrolyte and Cu substrate as a model system, the texture of as-deposited Zn gradually transforms from (101) to (002) crystal plane as increasing the current density from 20 to 80 mA cm-2 . Moreover, the high current accelerates the Zn nucleation rate with abundant nuclei, enabling uniform deposition. The (002) texture permits stronger resistance to dendrite growth and interfacial side reactions than the (101) texture. The resultant (002)-textured Zn electrode achieves deep cycling stability and supports the stable operation of full batteries with conventional V/Mn-based oxide cathodes.

11.
Angew Chem Int Ed Engl ; 62(27): e202304444, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37129439

RESUMO

The irreversible issues of Zn anode stemming from dendrite growth and water-induced erosion have severely hindered the commercialization of rechargeable aqueous Zn batteries. Herein, a hydrophobic and fast-Zn2+ -conductive zinc hexacyanoferrate (HB-ZnHCF) interphase layer is in situ integrated on Zn by a rapid room-temperature wet-chemistry method to address these dilemmas. Different from currently proposed hydrophilic inorganic cases, the hydrophobic and compact HB-ZnHCF interphase effectively prevents the access of water molecules to Zn surface, thus avoiding H2 evolution and Zn corrosion. Moreover, the HB-ZnHCF with large internal ion channels, strong zincophilicity, and high Zn2+ transference number (0.86) permits fast Zn2+ transport and enables smooth Zn deposition. Remarkably, the resultant HB-ZnHCF@Zn electrode delivers unprecedented reversibility with 99.88 % Coulombic efficiency over 3000 cycles, realizes long-term cycling over 5800 h (>8 months, 1 mA cm-2 ) and 1000 h (10 mA cm-2 ), and assures the stable operation of full Zn battery with both coin- and pouch-type configurations.

12.
Opt Express ; 30(26): 47983-47991, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558714

RESUMO

Applications of subwavelength grating based-polarizers for polarimetric detections are being hindered due to the limited extinction ratio. In this work, the structural effect, including the line edge roughness (LER), of the gratings on the polarizing characteristics was studied by both numerical simulations using finite difference and time domain (FDTD) method and experiments, aiming to figure out the optimal grating profile for achieving high transmittance as well as high extinction ratio. Two different configurations of the gratings, one is dual layer Au lines and the other is parabolic shaped Al lines on structured spin-on-carbon (SOC) films were systematically studied and compared. Nanofabrication of the gratings by electron beam lithography without lift-off process were conducted and optical measurements of their polarization properties demonstrate superior performance of the developed polarizers. The origin of the structural effect was explained by the local surface plasmonic modes, existing in the nano-slits in metallic gratings, which is instructive for further enhancement of the polarization performance.

13.
Appl Opt ; 61(10): 2490-2496, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35471313

RESUMO

Spectral filters with polarimetric character in short-wave infrareds are urgently needed because of their broad applications in optic-fiber communications, polarimetric detections, and imaging. Based on our earlier progress in developing polarimetric devices in infrared wavelengths, in this work, a plasmonic-metasurface-based polarization-dependency multi-channel narrowband filter in short-wave infrareds was developed. To meet the requirement by the developing trend of polarimetric detection/spectral imaging in short-wave infrareds, a resonant cavity in the form of the Au hat/elliptical Si/SiO2 pillars/Au layer as the filters was proposed. Numerical simulations by finite-difference time-domain (FDTD) show resonant and polarized transmissions of the designed devices to infrared light in short wavelengths, and the peak positions are relevant to the structural dimensions. Optical characteristics of the filters, fabricated by electron beam lithography/dry-etch technique, agree well with the simulated behavior. To enhance the transmission efficiency to the applicable level, nanoprocessing of the filters still needs to be optimized. Nevertheless, the progress reported is promising for this new type of spectral filters based on modern metasurfaces.

14.
Nano Lett ; 21(17): 7309-7316, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34410724

RESUMO

Understanding surface reconstruction of nanocrystals is of great importance to their applications, however it is still challenging due to lack of atomic-level structural information under reconstruction conditions. Herein, through in situ spherical aberration corrected scanning transmission electron microscopy (STEM), the reconstruction of nanocrystalline SnO2 (110) surface was studied. By identifying the precise arrangements of surface/subsurface Sn and O columns through both in situ bright-field and high-angle annular dark-field STEM images, an unexpected added Sn2O model was determined for SnO2 (110)-(1 × 2) surface. The protruded Snδ+ of this surface could act as the active sites for activating O2 molecules according to our density functional theory (DFT) calculations. On the basis of in situ observation of atomic-level reconstruction behaviors and DFT calculations, an energy-driven reconstruction process was also revealed. We anticipate this work would help to clarify the long-standing debate regarding the reconstruction of SnO2 (110) surface and its intrinsic property.

15.
PLoS Genet ; 14(4): e1007275, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29621232

RESUMO

To identify genetic contributions to type 2 diabetes (T2D) and related glycemic traits (fasting glucose, fasting insulin, and HbA1c), we conducted genome-wide association analyses (GWAS) in up to 7,178 Chinese subjects from nine provinces in the China Health and Nutrition Survey (CHNS). We examined patterns of population structure within CHNS and found that allele frequencies differed across provinces, consistent with genetic drift and population substructure. We further validated 32 previously described T2D- and glycemic trait-loci, including G6PC2 and SIX3-SIX2 associated with fasting glucose. At G6PC2, we replicated a known fasting glucose-associated variant (rs34177044) and identified a second signal (rs2232326), a low-frequency (4%), probably damaging missense variant (S324P). A variant within the lead fasting glucose-associated signal at SIX3-SIX2 co-localized with pancreatic islet expression quantitative trait loci (eQTL) for SIX3, SIX2, and three noncoding transcripts. To identify variants functionally responsible for the fasting glucose association at SIX3-SIX2, we tested five candidate variants for allelic differences in regulatory function. The rs12712928-C allele, associated with higher fasting glucose and lower transcript expression level, showed lower transcriptional activity in reporter assays and increased binding to GABP compared to the rs12712928-G, suggesting that rs12712928-C contributes to elevated fasting glucose levels by disrupting an islet enhancer, resulting in reduced gene expression. Taken together, these analyses identified multiple loci associated with glycemic traits across China, and suggest a regulatory mechanism at the SIX3-SIX2 fasting glucose GWAS locus.


Assuntos
Glicemia/genética , Diabetes Mellitus Tipo 2/genética , Inquéritos Epidemiológicos , China , Jejum , Feminino , Estudo de Associação Genômica Ampla , Humanos , Ilhotas Pancreáticas/metabolismo , Masculino , Mutação de Sentido Incorreto , Inquéritos Nutricionais , Locos de Características Quantitativas
16.
Angew Chem Int Ed Engl ; 60(41): 22339-22344, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34352928

RESUMO

The strong metal-support interaction (SMSI) is widely used in supported metal catalysts and extensive studies have been performed to understand it. Although considerable progress has been achieved, the surface structure of the support, as an important influencing factor, is usually ignored. We report a facet-dependent SMSI of Pd-TiO2 in oxygen by using in situ atmospheric pressure TEM. Pd NPs supported on TiO2 (101) and (100) surfaces showed encapsulation. In contrast, no such cover layer was observed in Pd-TiO2 (001) catalyst under the same conditions. This facet-dependent SMSI, which originates from the variable surface structure of the support, was demonstrated in a probe reaction of methane combustion catalyzed by Pd-TiO2 . Our discovery of the oxidative facet-dependent SMSI gives direct evidence of the important role of the support surface structure in SMSI and provides a new way to tune the interaction between metal NPs and the support as well as catalytic activity.

17.
Nano Lett ; 19(6): 4205-4210, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31145634

RESUMO

Layer-by-layer growth played a critical role in the fine design of novel materials and devices. Although it has been widely studied during materials synthesis, the atomic mechanism of the growth remains unclear due to the lack of direct observation at the atomic scale. Here, we report a new mode in layer-by-layer growth via surface reconstruction on MoO2 (011) by environmental transmission electron microscopy and density functional theory calculations. Our in situ environmental transmission electron microscopy results demonstrate that the layer-by-layer growth of MoO2 experiences two steps that occur in an oscillatory manner: (1) the formation of an atomic ledge by transforming a section of the reconstructed layer to the intrinsic surface layer and then (2) the spontaneous reconstruction of the newly formed intrinsic surface section. Thus, the surface reconstruction can be considered as an intermediated phase during the layer-by-layer growth of MoO2. A similar phenomenon was also observed in the MoO2 dissolution procedure.

18.
Angew Chem Int Ed Engl ; 59(6): 2171-2180, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31298462

RESUMO

The shape of metal nanoparticles (NPs) is one of the key factors determining their catalytic reactivity. Recent in situ TEM observations show that dynamic reshaping of metal NPs occurs under the reaction conditions, which becomes a major hurdle for fully understanding catalytic mechanisms at the molecular level. This Minireview provides a summary of the latest progress in characterizing and modeling the equilibrium shape of metal NPs in various reactive environments through the joint effort of state-of-the-art in situ environmental transmission electron microscopy experiments and a newly developed multiscale structure reconstruction model. The quantitative agreement between the experimental observations and theoretical modeling demonstrate that the fundamental mechanism of the reshaping phenomenon is driven by anisotropically changed surface energies under gas adsorption. The predictable reshaping of metal NPs paves the way for the rational design of truly efficient nanocatalysts in real reactions.

19.
Phys Chem Chem Phys ; 21(6): 3134-3139, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30675619

RESUMO

Bimetallic core-shell nanoparticles have received considerable attention for their unique optical, magnetic and catalytic properties. However, these properties will be dramatically modified under ambient conditions by their structure and/or composition change. Thus, it is of primary importance to study the complex transformation pathway of core-shell nanoparticles at an elevated temperature. In this work, by using an aberration-corrected scanning transmission electron microscope equipped with an energy dispersive X-ray mapping system, the complete transformation process from a well-designed Pd@Au core-shell nanoparticle to a uniform alloy particle was visualized. It is revealed that this transformation process went through three steps, i.e., surface refacetting, particle resphering and complete alloying. Combining with a developed atomic kinetic Monte Carlo simulation, we found that surface energy is the driving force for shape variation, and the different atomic activation barriers of surface diffusion and bulk migration result in the multistep transformation pathway. Our results offered important information for understanding the structure evolution of bimetallic core-shell nanoparticles, which is beneficial for the rational design of nanoparticles with kinetic stability.

20.
Angew Chem Int Ed Engl ; 57(35): 11344-11348, 2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-29979826

RESUMO

Acquiring the kinetics of gas-nanoparticle fast reactions under ambient pressure is a challenge owing to the lack of appropriate in situ techniques. Now an approach has been developed that integrates time-resolved in situ electron diffraction and an atmospheric gas cell system in transmission electron microscopy, allowing quantitative structural information to be obtained under ambient pressure with millisecond time resolution. The ultrafast oxidation kinetics of Ni nanoparticles in oxygen was vividly obtained. In contrast to the well-accepted Wagner and Mott-Cabrera models (diffusion-dominated), the oxidation of Ni nanoparticles is linear at the initial stage (<0.5 s), and follows the Avrami-Erofeev model (n=1.12) at the following stage, which indicates the oxidation of Ni nanoparticles is a nucleation and growth dominated process. This study gives new insights into Ni oxidation and paves the way to study the fast reaction kinetics of nanoparticles using ultrafast in situ techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA