Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(11): e202319211, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38198190

RESUMO

Li-N2 batteries have received widespread attention for their potential to integrate N2 fixation, energy storage, and conversion. However, because of the low activity and poor stability of cathode catalysts, the electrochemical performance of Li-N2 batteries is suboptimal, and their electrochemical reversibility has rarely been proven. In this study, a novel bifunctional photo-assisted Li-N2 battery system was established by employing a plasmonic Au nanoparticles (NPs)-modified defective carbon nitride (Au-Nv -C3 N4 ) photocathode. The Au-Nv -C3 N4 exhibits strong light-harvesting, N2 adsorption, and N2 activation abilities, and the photogenerated electrons and hot electrons are remarkably beneficial for accelerating the discharge and charge reaction kinetics. These advantages enable the photo-assisted Li-N2 battery to achieve a low overpotential of 1.32 V, which is the lowest overpotential reported to date, as well as superior rate capability and prolonged cycle stability (≈500 h). Remarkably, a combination of theoretical and experimental results demonstrates the high reversibility of the photo-assisted Li-N2 battery. The proposed novel strategy for developing efficient cathode catalysts and fabricating photo-assisted battery systems breaks through the overpotential bottleneck of Li-N2 batteries, providing important insights into the mechanism underlying N2 fixation and storage.

2.
Angew Chem Int Ed Engl ; 63(5): e202317949, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38078904

RESUMO

Solid-state lithium (Li) batteries promise both high energy density and safety while existing solid-state electrolytes (SSEs) fail to satisfy the rigorous requirements of battery operations. Herein, novel polyoxometalate SSEs, Li3 PW12 O40 and Li3 PMo12 O40 , are synthesized, which exhibit excellent interfacial compatibility with electrodes and chemical stability, overcoming the limitations of conventional SSEs. A high ionic conductivity of 0.89 mS cm-1 and a low activation energy of 0.23 eV are obtained due to the optimized three-dimensional Li+ migration network of Li3 PW12 O40 . Li3 PW12 O40 exhibits a wide window of electrochemical stability that can both accommodate the Li anode and high-voltage cathodes. As a result, all-solid-state Li metal batteries fabricated with Li/Li3 PW12 O40 /LiNi0.5 Co0.2 Mn0.3 O2 display a stable cycling up to 100 cycles with a cutoff voltage of 4.35 V and an areal capacity of more than 4 mAh cm-2 , as well as a cost-competitive SSEs price of $5.68 kg-1 . Moreover, Li3 PMo12 O40 homologous to Li3 PW12 O40 was obtained via isomorphous substitution, which formed a low-resistance interface with Li3 PW12 O40 . Applications of Li3 PW12 O40 and Li3 PMo12 O40 in Li-air batteries further demonstrate that long cycle life (650 cycles) can be achieved. This strategy provides a facile, low-cost strategy to construct efficient and scalable solid polyoxometalate electrolytes for high-energy solid-state Li metal batteries.

3.
Oncotarget ; 8(30): 49574-49591, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28484095

RESUMO

Cancer as a large group of complex diseases is believed to result from the interactions of numerous genetic and environmental factors but may develop in people without any known genetic or environmental risks, suggesting the existence of other powerful factors to influence the carcinogenesis process. Much attention has been focused recently on particular members of the intestinal microbiota for their potential roles in promoting carcinogenesis. Here we report the identification and characterization of intestinal bacteria that exhibited potent anti-malignancy activities on a broad range of solid cancers and leukemia. We collected fecal specimens from healthy individuals of different age groups (preschool children and university students), inspected their effects on cancer cells, and obtained bacteria with potent anti-malignancy activities. The bacteria mostly belonged to Actinobacteria but also included lineages of other phyla such as Proteobacteria and Firmicutes. In animal cancer models, sterile culture supernatant from the bacteria highly effectively inhibited tumor growth. Remarkably, intra-tumor administration of the bacterial products prevented metastasis and even cleared cancer cells at remote locations from the tumor site. This work demonstrates the prevalent existence of potent malignancy-killers in the human intestinal microbiota, which may routinely clear malignant cells from the body before they form cancers.


Assuntos
Microbioma Gastrointestinal , Neoplasias/etiologia , Adolescente , Adulto , Animais , Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Sobrevivência Celular , Criança , Pré-Escolar , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Células HeLa , Humanos , Masculino , Metagenoma , Metagenômica/métodos , Camundongos , Neoplasias/patologia , Filogenia , RNA Ribossômico 16S/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA