Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cardiothorac Surg ; 19(1): 232, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627783

RESUMO

BACKGROUND: The gastric conduit is the most commonly used replacement organ for reconstruction after minimally invasive McKeown esophagectomy. Although the optimal route of gastric conduit remains controversial, the posterior mediastinal route is physiologically preferable but is not without disadvantages. Here, we report the safety and efficacy of a method of gastric conduit reconstruction via the anterior of the pulmonary hilum route. METHODS: We have used the anterior of the pulmonary hilum route since 2021. This procedure involves pulling the gastric conduit up through a substernal tunnel between the right thoracic cavity and the abdominal cavity and passing it into the neck via the anterior of the pulmonary hilum route. In this retrospective study, we compared the clinical outcomes between 20 patients who underwent this procedure and 20 patients who underwent the posterior mediastinal route from 2021 to 2022. RESULTS: No mortality was reported in either group. No significant differences were observed between the two groups in duration of surgery, blood loss, incidence of postoperative complications, and postoperative hospital stay. As a result of the anterior of the pulmonary hilum route, the primary tumor bed and lymph node drainage area were effectively bypassed, which facilitates postoperative adjuvant radiotherapy or chemoradiotherapy. The distance of the gastric conduit accompanying the airway was significantly shorter in the anterior of the pulmonary hilum route group. CONCLUSIONS: Our method is considered to be a safe and useful technique for the reconstruction of gastric conduit.


Assuntos
Neoplasias Esofágicas , Esofagectomia , Humanos , Esofagectomia/métodos , Estudos Retrospectivos , Estômago/cirurgia , Complicações Pós-Operatórias/etiologia , Mediastino/cirurgia , Neoplasias Esofágicas/cirurgia
2.
Sci Total Environ ; 820: 153257, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35065115

RESUMO

Identifying the drivers of the response of soil microbial respiration to warming is integral to accurately forecasting the carbon-climate feedbacks in terrestrial ecosystems. Microorganisms are the fundamental drivers of soil microbial respiration and its response to warming; however, the specific microbial communities and properties involved in the process remain largely undetermined. Here, we identified the associations between microbial community and temperature sensitivity (Q10) of soil microbial respiration in alpine forests along an altitudinal gradient (from 2974 to 3558 m) from the climate-sensitive Tibetan Plateau. Our results showed that changes in microbial community composition accounted for more variations of Q10 values than a wide range of other factors, including soil pH, moisture, substrate quantity and quality, microbial biomass, diversity and enzyme activities. Specifically, co-occurring microbial assemblies (i.e., ecological clusters or modules) targeting labile carbon consumption were negatively correlated with Q10 of soil microbial respiration, whereas microbial assemblies associated with recalcitrant carbon decomposition were positively correlated with Q10 of soil microbial respiration. Furthermore, there were progressive shifts of microbial assemblies from labile to recalcitrant carbon consumption along the altitudinal gradient, supporting relatively high Q10 values in high-altitude regions. Our results provide new insights into the link between changes in major microbial assemblies with different trophic strategies and Q10 of soil microbial respiration along an altitudinal gradient, highlighting that warming could have stronger effects on microbially-mediated soil organic matter decomposition in high-altitude regions than previously thought.


Assuntos
Microbiota , Solo , Respiração , Solo/química , Microbiologia do Solo , Temperatura
3.
Adv Mater ; 34(51): e2207777, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36210725

RESUMO

Optical-microcavity-enhanced light-matter interaction offers a powerful tool to develop fast and precise sensing techniques, spurring applications in the detection of biochemical targets ranging from cells, nanoparticles, and large molecules. However, the intrinsic inertness of such pristine microresonators limits their spread in new fields such as gas detection. Here, a functionalized microlaser sensor is realized by depositing graphene in an erbium-doped over-modal microsphere. By using a 980 nm pump, multiple laser lines excited in different mode families of the microresonator are co-generated in a single device. The interference between these splitting mode lasers produce beat notes in the electrical domain (0.2-1.1 MHz) with sub-kHz accuracy, thanks to the graphene-induced intracavity backward scattering. This allows for lab-free multispecies gas identification from a mixture, and ultrasensitive gas detection down to individual molecule.

4.
Sci Rep ; 8(1): 14113, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30237577

RESUMO

Deficit irrigation has usually improved crop water use efficiency (WUE), but there are still gaps in our understanding of the mechanisms. Four irrigation treatments were a conventional furrow irrigation (CFI), border irrigation (BI), alternate furrow irrigation (AFI), and an AFI(M/2) (the amount of irrigation was 50% of the AFI). The volume of irrigation water applied were nearly the same for CFI, BI, and AFI. The isotope (δ18O and δD) method was used to quantify corn root water uptake (RWU) during 2013-2014. Compared to CFI and BI, corn yield and WUE were 17.0-30.2% and 13.3-33.8% higher in AFI, respectively. No significant yield reduction were observed between AFI and AFI(M/2). Corn RWU was more from deeper soil with increasing growth stage for AFI(M/2), AFI, and CFI, but from shallower depth for BI. The depth for RWU varied in the order of AFI(M/2) > AFI > CFI > BI. The maximum root density was in the depth of 40-80 cm at the growing stage in AFI, and 4-26% more water was extracted from the wetter and deeper root zones. The WUE increased under deficit irrigation, and stimulated the root growth with attendant decreases in water loss to deep percolation.


Assuntos
Irrigação Agrícola/métodos , Isótopos de Oxigênio/análise , Água , Zea mays/química , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA