Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genet Sel Evol ; 56(1): 26, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565986

RESUMO

BACKGROUND: Chinese indigenous sheep are valuable resources with unique features and characteristics. They are distributed across regions with different climates in mainland China; however, few reports have analyzed the environmental adaptability of sheep based on their genome. We examined the variants and signatures of selection involved in adaptation to extreme humidity, altitude, and temperature conditions in 173 sheep genomes from 41 phenotypically and geographically representative Chinese indigenous sheep breeds to characterize the genetic basis underlying environmental adaptation in these populations. RESULTS: Based on the analysis of population structure, we inferred that Chinese indigenous sheep are divided into four groups: Kazakh (KAZ), Mongolian (MON), Tibetan (TIB), and Yunnan (YUN). We also detected a set of candidate genes that are relevant to adaptation to extreme environmental conditions, such as drought-prone regions (TBXT, TG, and HOXA1), high-altitude regions (DYSF, EPAS1, JAZF1, PDGFD, and NF1) and warm-temperature regions (TSHR, ABCD4, and TEX11). Among all these candidate genes, eight ABCD4, CNTN4, DOCK10, LOC105608545, LOC121816479, SEM3A, SVIL, and TSHR overlap between extreme environmental conditions. The TSHR gene shows a strong signature for positive selection in the warm-temperature group and harbors a single nucleotide polymorphism (SNP) missense mutation located between positions 90,600,001 and 90,650,001 on chromosome 7, which leads to a change in the protein structure of TSHR and influences its stability. CONCLUSIONS: Analysis of the signatures of selection uncovered genes that are likely related to environmental adaptation and a SNP missense mutation in the TSHR gene that affects the protein structure and stability. It also provides information on the evolution of the phylogeographic structure of Chinese indigenous sheep populations. These results provide important genetic resources for future breeding studies and new perspectives on how animals can adapt to climate change.


Assuntos
Genoma , Seleção Genética , Ovinos/genética , Animais , China , Análise de Sequência de DNA , Altitude , Polimorfismo de Nucleotídeo Único
2.
Anim Biotechnol ; 34(4): 1429-1435, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35192431

RESUMO

Protein tyrosine phosphatase non-receptor type 3 (PTPN3), a member of the membrane-associated non-receptor protein tyrosine phosphatase (PTP) family, plays significant roles in the cytoplasm and affects the development and growth of skin and hair. A recent study identified the PTPN3 as the potential gene related to sheep wool quality. To detect single-nucleotide polymorphisms (SNPs) of PTPN3 and elucidate its association with wool production and growth traits in fine wool sheep a total of 644 healthy SG (South African mutton merino♂ × Gansu alpine fine-wool sheep♀, SG) and SSG (South African mutton merino♂ × SG♀, SSG) hybrid sheep were selected. Pooled-DNA sequencing and SNPscan methods were used to scan and genotype SNPs within PTPN3. Association analyses between SNPs and wool production and growth traits were implemented. Consequently, the results revealed that PTPN3 has six SNPs (two missense mutations, one synonymous mutation, and three intron mutations), of which four loci (SNP2, SNP3, SNP4, and SNP5) were significantly positively correlated with growth and wool traits (p < 0.05). SNP4 was significantly (p < 0.05) linked with thigh wool length, and SNP6 was significantly (p < 0.05) associated with abdomen wool length. Moreover, one strongly linked SNP block was identified to be correlated with wool production and growth traits (body weight and body size). The significant SNPs founded by this study could serve as useful genetic markers for breeding fine-wool sheep.®.


Assuntos
Polimorfismo de Nucleotídeo Único , , Ovinos/genética , Animais , Polimorfismo de Nucleotídeo Único/genética , Fenótipo , Carneiro Doméstico/genética , Proteínas Tirosina Fosfatases/genética
3.
Anim Biotechnol ; 34(7): 3016-3026, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36200839

RESUMO

Dorper and Hu sheep exhibit different characteristics in terms of reproduction, growth, and meat quality. Comparison of the genomes of two breeds help to reveal important genomic information. In this study, whole genome resequencing of 30 individuals (Dorper, DB and Hu sheep, HY) identified 15,108,125 single nucleotide polymorphisms (SNPs). Population differentiation (Fst) and cross population extended haplotype homozygosity (XP-EHH) were performed for selective signal analysis. In total, 106 and 515 overlapped genes were present in both the Fst results and XP-EHH results in HY vs DB and in DB vs HY, respectively. In HY vs DB, 106 genes were enriched in 12 GO terms and 83 KEGG pathways, such as ATP binding (GO:0005524) and PI3K-Akt signaling pathway (oas04151). In DB vs HY, 515 genes were enriched in 109 GO terms and 215 KEGG pathways, such as skeletal muscle cell differentiation (GO:0035914) and MAPK signaling pathway (oas04010). According to the annotation results, we identified a series of candidate genes associated with reproduction (UNC5C, BMPR1B, and GLIS1), meat quality (MECOM, MEF2C, and MYF6), and immunity (GMDS, GALK1, and ITGB4). Our investigation has uncovered genomic information for important traits in sheep and provided a basis for subsequent studies of related traits.


Assuntos
Fosfatidilinositol 3-Quinases , Seleção Genética , Humanos , Ovinos/genética , Animais , Fosfatidilinositol 3-Quinases/genética , Genoma/genética , Análise de Sequência de DNA , Genômica/métodos , Polimorfismo de Nucleotídeo Único/genética
4.
Anim Biotechnol ; 34(7): 2691-2700, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36001393

RESUMO

This study aimed to understand the expression level of YAP1 in the skeletal muscle of Hu sheep and to reveal the regulatory mechanism of YAP1 on Hu sheep skeletal muscle satellite cells (SMSCs). Previous research by our group has found that YAP1 may affect the growth and development of Hu sheep skeletal muscle. In the present study, we found the expression of YAP1 in the skeletal muscle is higher than in other tissues of Hu sheep. Then, we detected the effect of YAP1 on proliferation and differentiation in Hu sheep SMSCs. According to the results of qPCR, CCK-8, EDU, and Western blot, compared to the group of negative control, overexpression of YAP1 promoted the proliferation and inhibited the differentiation of SMSCs according to the results of qPCR, CCK-8, EDU, Western blot, while the interference of YAP1 was on the contrary. Overall, our study suggests that YAP1 is an important functional molecule in the growth and development of skeletal muscle by regulating the proliferation and differentiation of SMSCs. These findings are of great use for understanding the roles of YAP1 in the skeletal muscle of Hu sheep.


Assuntos
Células Satélites de Músculo Esquelético , Animais , Diferenciação Celular , Proliferação de Células , Músculo Esquelético , Ovinos
5.
Int J Mol Sci ; 24(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37511326

RESUMO

Reducing fat deposition in sheep (Ovis aries) tails is one of the most important ways to combat rising costs and control consumer preference. Our previous studies have shown that oar-miR-432 is differentially expressed in the tail adipose tissue of Hu (a fat-tailed sheep breed) and Tibetan (a thin-tailed sheep breed) sheep and is a key factor in the negative regulation of fat deposition through BMP2 in ovine preadipocytes. This study investigated the effect of oar-miR-432 and its target genes in ovine preadipocytes. A dual luciferase assay revealed that DDI1 is a direct target gene of oar-miR-432. We transfected an oar-miR-432 mimic and inhibitor into preadipocytes to analyze the expression of target genes. Overexpression of oar-miR-432 inhibits DDI1 expression, whereas inhibition showed the opposite results. Compared with thin-tailed sheep, DDI1 was highly expressed in the fat-tailed sheep at the mRNA and protein levels. Furthermore, we transfected the overexpression and knockdown target genes into preadipocytes to analyze their influence after inducing differentiation. Knockdown of DDI1 induced ovine preadipocyte differentiation into adipocytes but suppressed oar-miR-432 expression. Conversely, the overexpression of DDI1 significantly inhibited differentiation but promoted oar-miR-432 expression. DDI1 overexpression also decreased the content of triglycerides. Additionally, DDI1 is a nested gene in intron 1 of PDGFD. When DDI1 was overexpressed, the PDGFD expression also increased, whereas DDI1 knockdown showed the opposite results. This is the first study to reveal the biological mechanisms by which oar-miR-432 inhibits preadipocytes through DDI1 and provides insight into the molecular regulatory mechanisms of DDI1 in ovine preadipocytes. These results have important applications in animal breeding and obesity-related human diseases.


Assuntos
Tecido Adiposo , MicroRNAs , Animais , Adipócitos/metabolismo , Adipogenia/genética , Diferenciação Celular/genética , Íntrons , MicroRNAs/genética , MicroRNAs/metabolismo , Ovinos/genética
6.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068994

RESUMO

SRY-box transcription factor 18 (SOX18) is known to play a crucial role in the growth and development of hair follicles (HF) in both humans and mice. However, the specific effect of SOX18 on sheep hair follicles remains largely unknown. In our previous study, we observed that SOX18 was specifically expressed within dermal papilla cells (DPCs) in ovine hair follicles, leading us to investigate its potential role in the growth of hair follicles in sheep. In the present study, we aimed to examine the effect of SOX18 in DPCs and preliminarily study its regulatory mechanism through RNA-seq. We initially found that the overexpression of SOX18 promoted the proliferation of DPCs compared to the negative control group, while the interference of SOX18 had the opposite effect. To gain further insight into the regulatory mechanism of SOX18, we conducted RNA-seq analysis after knocking down SOX18 in Hu sheep DPCs. The result showed that the Wnt/ß-Catenin signaling pathway was involved in the growth process of DPC after SOX18 knockdown. Subsequently, we investigated the effect of SOX18 on the Wnt/ß-Catenin signaling pathway in DPCs using TOP/FOP-flash, qRT-PCR, and Western blot (WB) analysis. Our data demonstrated that SOX18 could activate the Wnt/ß-Catenin signaling pathway in DPCs. Additionally, we observed that SOX18 could rescue the proliferation of DPCs after inhibiting the Wnt/ß-Catenin signaling pathway. These findings underscore the essential role of SOX18 as a functional molecule governing the proliferation of DPCs. Additionally, these findings also greatly enhance our understanding of the role of SOX18 in the proliferation of DPCs and the growth of wool in Hu sheep.


Assuntos
Folículo Piloso , Ovinos , Via de Sinalização Wnt , Animais , Proliferação de Células , Células Cultivadas , Folículo Piloso/metabolismo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo
7.
Anim Genet ; 53(2): 193-202, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34963194

RESUMO

Variations in the Y-chromosome are usually correlated with male-specific traits. However, this condition has been described only sporadically, even in human genetics. The present study was conducted to clone the full-length gene sequence of ovine DEAD-box helicase 3, Y-linked (DDX3Y), and investigate the effect of the expression and variation of DDX3Y on the reproductive traits of Hu sheep. Consequently, we identified the full coding sequence and genomic sequence of ovine DDX3Y. Quantitative PCR (qPCR) analysis showed that ovine DDX3Y was highly expressed in testis, and the expression level increased during testicular development. Furthermore, individuals with larger testis at 6 months expressed significantly more DDX3Y mRNA in the testis than individuals with smaller testis. Notably, a novel SNP (g. 12657 C>A) in the 3' untranslated region was identified in Hu sheep and Tan sheep according to the investigation of the full DDX3Y genomic sequence of 1069 individuals from nine sheep breeds. Association analysis revealed that the SNP was significantly related to testis size in Hu sheep. Meanwhile, Hu rams with the derived C allele showed significantly higher expression levels of DDX3Y in testis than those with the ancestral A allele. In addition, data mining in a previous study showed that the C allele cosegregated with the globally major Y-chromosomal haplogroups y-HA and y-HC, and the A allele is found in all rams with haplogroups y-HB1, y-HB2 and y-HD. This study suggests that the association of the Y-chromosomal haplogroups with testis size in Hu sheep can be extrapolated to the sheep population worldwide.


Assuntos
RNA Helicases DEAD-box , Testículo , Animais , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/farmacologia , Expressão Gênica , Masculino , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/farmacologia , Mutação , Ovinos/genética , Testículo/metabolismo
8.
Anim Biotechnol ; : 1-10, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36448692

RESUMO

The content of intramuscular fat (IMF) is one of the most important factors that has a large impact on meat quality, and it is an effective way to improve IMF according to marker-assisted selection (MAS). Fatty-acid synthase (FASN) is a key gene in meat lipid deposition and fatty acid composition. Thus, this study was conducted to investigate the expression profile of FASN in mRNA and protein levels using real-time quantitative PCR (RT-qPCR) and western-blot methods. In addition, single nucleotide polymorphisms (SNPs) within FASN in 921 Hu rams with IMF content records were investigated using DNA-pooling sequencing and improved multiple ligase detection reaction (iMLDR) methods. Consequently, the highest mRNA expression level of FASN was observed in the perinephric fat, and the lowest in the liver among the 11 tissues analyzed, while no significant difference was found in mRNA and protein expression levels in longissimus dorsi among individuals with different IMF contents. A total of 10 putative SNPs were identified within FASN, and 9 of them can be genotyped by iMLDR method. Notably, two SNPs were significantly associated with IMF content, including NC_040262.1: g.5157 A > G in intron 5 (p = 0.046) and NC_040262.1: g.9413 T > C in intron 16 (p = 0.041), which supply molecular markers for improving meat quality in sheep breeding.

9.
Anim Biotechnol ; : 1-9, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36384387

RESUMO

Previous studies have shown that melatonin has a certain regulatory effect on the growth of sheep wool. However, the mechanism of melatonin action remains unknown. In the present study, we aimed to understand the role of exogenous melatonin in the dermal papilla cells of Hu sheep. To confirm the optimal melatonin treatment regimen for Hu sheep dermal papilla cells, we detected the cell viability by exposing them to different concentrations of melatonin and different treatment times. The results showed that cell viability was best when dermal papilla cells were treated with 1000 pg/ml of melatonin for 48 h. According to the results of qPCR, CCK-8, EDU, Western blot, and Flow cytometry analysis, we found that 1000 pg/ml melatonin promoted the proliferation and inhibited the apoptosis of dermal papilla cells compared with the exogenous melatonin blank group (control group). Furthermore, we also found that 1000 pg/ml of melatonin promoted the cell cycle progress of dermal papilla cells according to the results of qPCR and Flow cytometry analysis. Overall, our findings showed that melatonin plays an important role in the dermal papilla cells of Hu sheep.

10.
Genet Sel Evol ; 53(1): 8, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33461502

RESUMO

BACKGROUND: Variants that regulate transcription, such as expression quantitative trait loci (eQTL), have shown enrichment in genome-wide association studies (GWAS) for mammalian complex traits. However, no study has reported eQTL in sheep, although it is an important agricultural species for which many GWAS of complex meat traits have been conducted. Using RNA sequence data produced from liver and muscle from 149 sheep and imputed whole-genome single nucleotide polymorphisms (SNPs), our aim was to dissect the genetic architecture of the transcriptome by associating sheep genotypes with three major molecular phenotypes including gene expression (geQTL), exon expression (eeQTL) and RNA splicing (sQTL). We also examined these three types of eQTL for their enrichment in GWAS of multi-meat traits and fatty acid profiles. RESULTS: Whereas a relatively small number of molecular phenotypes were significantly heritable (h2 > 0, P < 0.05), their mean heritability ranged from 0.67 to 0.73 for liver and from 0.71 to 0.77 for muscle. Association analysis between molecular phenotypes and SNPs within ± 1 Mb identified many significant cis-eQTL (false discovery rate, FDR < 0.01). The median distance between the eQTL and transcription start sites (TSS) ranged from 68 to 153 kb across the three eQTL types. The number of common variants between geQTL, eeQTL and sQTL within each tissue, and the number of common variants between liver and muscle within each eQTL type were all significantly (P < 0.05) larger than expected by chance. The identified eQTL were significantly (P < 0.05) enriched in GWAS hits associated with 56 carcass traits and fatty acid profiles. For example, several geQTL in muscle mapped to the FAM184B gene, hundreds of sQTL in liver and muscle mapped to the CAST gene, and hundreds of sQTL in liver mapped to the C6 gene. These three genes are associated with body composition or fatty acid profiles. CONCLUSIONS: We detected a large number of significant eQTL and found that the overlap of variants between eQTL types and tissues was prevalent. Many eQTL were also QTL for meat traits. Our study fills a gap in the knowledge on the regulatory variants and their role in complex traits for the sheep model.


Assuntos
Fígado/metabolismo , Músculo Esquelético/metabolismo , Polimorfismo Genético , Locos de Características Quantitativas , Carne Vermelha/normas , Ovinos/genética , Animais , Ácidos Graxos/metabolismo , Feminino , Masculino , Característica Quantitativa Herdável , Transcriptoma
11.
BMC Genomics ; 19(1): 521, 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973141

RESUMO

BACKGROUND: Mammalian phenotypes are shaped by numerous genome variants, many of which may regulate gene transcription or RNA splicing. To identify variants with regulatory functions in cattle, an important economic and model species, we used sequence variants to map a type of expression quantitative trait loci (expression QTLs) that are associated with variations in the RNA splicing, i.e., sQTLs. To further the understanding of regulatory variants, sQTLs were compare with other two types of expression QTLs, 1) variants associated with variations in gene expression, i.e., geQTLs and 2) variants associated with variations in exon expression, i.e., eeQTLs, in different tissues. RESULTS: Using whole genome and RNA sequence data from four tissues of over 200 cattle, sQTLs identified using exon inclusion ratios were verified by matching their effects on adjacent intron excision ratios. sQTLs contained the highest percentage of variants that are within the intronic region of genes and contained the lowest percentage of variants that are within intergenic regions, compared to eeQTLs and geQTLs. Many geQTLs and sQTLs are also detected as eeQTLs. Many expression QTLs, including sQTLs, were significant in all four tissues and had a similar effect in each tissue. To verify such expression QTL sharing between tissues, variants surrounding (±1 Mb) the exon or gene were used to build local genomic relationship matrices (LGRM) and estimated genetic correlations between tissues. For many exons, the splicing and expression level was determined by the same cis additive genetic variance in different tissues. Thus, an effective but simple-to-implement meta-analysis combining information from three tissues is introduced to increase power to detect and validate sQTLs. sQTLs and eeQTLs together were more enriched for variants associated with cattle complex traits, compared to geQTLs. Several putative causal mutations were identified, including an sQTL at Chr6:87392580 within the 5th exon of kappa casein (CSN3) associated with milk production traits. CONCLUSIONS: Using novel analytical approaches, we report the first identification of numerous bovine sQTLs which are extensively shared between multiple tissue types. The significant overlaps between bovine sQTLs and complex traits QTL highlight the contribution of regulatory mutations to phenotypic variations.


Assuntos
Variação Genética , Splicing de RNA , Animais , Células Sanguíneas/metabolismo , Caseínas/genética , Bovinos , Éxons , Feminino , Fígado/metabolismo , Glândulas Mamárias Animais/metabolismo , Músculos/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Transcriptoma
12.
Cell Physiol Biochem ; 49(2): 447-462, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30153668

RESUMO

BACKGROUND/AIMS: Long noncoding RNAs (lncRNAs) are RNA transcripts that are more than 200 nt long but have little protein-coding potential. Within the last few years, thousands of lncRNAs have been identified and their functions in biological processes have begun to be understood. Although many studies havebegun to examine the functions of many noncoding RNAs, very little is known about the functions of long noncoding (lncRNA) function of livestock production and molecular mechanisms of their functions are still lackingrelated to livestock production. METHODS: Expression of sheep enhanced muscularityTranscript lncRNA (lnc-SEMT) and miR-125b were examined in sheep using quantitative reverse-transcription polymerase chain reaction. Expression of Myod (myogenic determination factor), Myog (myoglobin) and Insulin-like growth factor 2 (IGF2)were examined by Western Blot.Luciferase reporter assays were performedto confirm the relationship between lnc-SEMT and miR-125b. RESULTS: Here, we identified a novel lnc-SEMT that promote sheep myoblast differentiation in vitro and enhanced sheep muscularity in vivo. Functional analyses showed that lnc-SEMT accelerates sheep myoblast differentiation in vitro. lnc-SEMT transgenic sheep exhibit a muscle hypertrophy phenotype characterized by increased body weight, and increased the number of muscle fibers indicating that lnc-SEMT play an important role in the regulation of skeletal muscle differentiation in vivo. Our results show that lnc-SEMT acts as a molecular sponge by antagonizing miR-125b to control IGF2 protein labundance in vitro and in vivo. CONCLUSION: In brief, lnc-SEMT is the first example of a lncRNA could be a useful candidate for improving biological growth traits such as skeletal muscle production in sheep.


Assuntos
Fator de Crescimento Insulin-Like II/metabolismo , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , RNA Longo não Codificante/metabolismo , Regiões 3' não Traduzidas , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Antagomirs/metabolismo , Sequência de Bases , Diferenciação Celular , Células Cultivadas , Fator de Crescimento Insulin-Like II/genética , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Proteína MyoD/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Mioglobina/metabolismo , Interferência de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , Alinhamento de Sequência , Ovinos
13.
Anim Genet ; 47(5): 618-22, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27435482

RESUMO

Our previous genome-wide association study in sheep revealed that OAR3-84073899.1 (SNP31) in intron 8 of the CAMKMT gene was significantly associated with post-weaning gain at the genomic level. Herein, we performed a replication study to investigate single nucleotide polymorphisms (SNPs) within the CAMKMT gene exons, and 1000 bp of the 5'- and 3'-intranslated regions (UTRs) and their associations with growth traits in Ujumqin sheep. Five SNPs were identified through DNA pool sequencing technology: SNP26 in the 5'-UTR, SNP06 in exon 5, SNP07 in exon 8 and SNP27 and SNP28 in the 3'-UTR. Six SNPs, including SNP31 in intron 8, were genotyped in the validation group of 343 Ujumqin sheep, and each SNP was classified into three genotypes. The chi-square test suggested that all the variations were in Hardy-Weinberg equilibrium (P > 0.05) except for SNP28 and SNP31. Linkage disequilibrium analysis showed that SNP07 and SNP31 were strongly linked. An association analysis suggested that SNP06 was significantly associated with chest girth at 6 months of age (P < 0.05). SNP07 exhibited significant correlation with body weight and chest girth at 4 months of age and with body weight, chest girth and chest width at 6 months of age (P < 0.05). SNP27 was highly associated with body weight and chest girth at 4 months of age (P < 0.05), and SNP28 was extremely significantly associated with body weight and chest girth at 4 months of age and with chest girth at 6 months of age (P < 0.01). SNP31 was significantly associated with body weight and shin circumference at 4 months of age and with post-weaning gain (P < 0.05). Association analysis of the combined effect of SNP07 and SNP31 showed significant correlation with body weight and chest girth at four of months of age (P < 0.05) and with body weight and chest girth at 6 months of age (P < 0.05). These results indicate that the SNPs could be used as meritorious and available genetic markers in growth traits breeding and that the CAMKMT gene may be one of the key candidate genes that affect Ujumqin economic traits.


Assuntos
Metiltransferases/genética , Polimorfismo de Nucleotídeo Único , Carneiro Doméstico/crescimento & desenvolvimento , Carneiro Doméstico/genética , Animais , Peso Corporal , Cruzamento , Éxons , Marcadores Genéticos , Genótipo , Desequilíbrio de Ligação , Modelos Genéticos , Mutação de Sentido Incorreto , Análise de Sequência de DNA
14.
Int J Mol Sci ; 16(9): 20360-74, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26343642

RESUMO

Artificial selection has played a critical role in animal breeding. Detection of artificial selection footprints in genomic regions can provide insights for understanding the function of specific phenotypic traits and better guide animal breeding. To more fully understand the relationship between genomic composition and phenotypic diversity arising from breed development, a genome-wide scan was conducted using an OvineSNP50 BeadChip and integrated haplotype score and fixation index analyses to detect selection signatures on the X chromosome in three sheep breeds. We identified 49, 34, and 55 candidate selection regions with lengths of 27.49, 16.47, and 25.42 Mb in German Mutton, Dorper, and Sunit sheep, respectively. Bioinformatics analysis showed that some of the genes in these regions with selection signatures, such as BMP15, were relevant to reproduction. We also identified some selection regions harboring genes that had human orthologs, including BKT, CENPI, GUCY2F, MSN, PCDH11X, PLP1, VSIG4, PAK3, WAS, PCDH19, PDHA1, and SRPX2. The VSIG4 and PCDH11X genes are associated with the immune system and disease, PDHA1 is associated with biosynthetic related pathways, and PCDH19 is expressed in the nervous system and skin. These genes may be useful as candidate genes for molecular breeding.


Assuntos
Evolução Molecular , Seleção Genética , Cromossomo X , Animais , Cruzamento , Marcadores Genéticos , Genômica/métodos , Haplótipos , Polimorfismo de Nucleotídeo Único , Ovinos
15.
Animals (Basel) ; 14(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473071

RESUMO

Compared to Chinese indigenous sheep, Western sheep have rapid growth rate, larger physique, and higher meat yield. These excellent Western sheep were introduced into China for crossbreeding to expedite the enhancement of production performance and mutton quality in local breeds. Here, we investigated population genetic structure and genome-wide selection signatures among the Chinese indigenous sheep and the introduced sheep based on whole-genome resequencing data. The PCA, N-J tree and ADMIXTURE results showed significant genetic difference between Chinese indigenous sheep and introduced sheep. The nucleotide diversity (π) and linkage disequilibrium (LD) decay results indicated that the genomic diversity of introduced breeds were lower. Then, Fst & π ratio, XP-EHH, and de-correlated composite of multiple signals (DCMS) methods were used to detect the selection signals. The results showed that we identified important candidate genes related to growth rate and body size in the introduced breeds. Selected genes with stronger selection signatures are associated with growth rate (CRADD), embryonic development (BVES, LIN28B, and WNT11), body size (HMGA2, MSRB3, and PTCH1), muscle development and fat metabolism (MSTN, PDE3A, LGALS12, GGPS1, and SAR1B), wool color (ASIP), and hair development (KRT71, KRT74, and IRF2BP2). Thus, these genes have the potential to serve as candidate genes for enhancing the growth traits of Chinese indigenous sheep. We also identified tail-length trait-related candidate genes (HOXB13, LIN28A, PAX3, and VEGFA) in Chinese long-tailed breeds. Among these genes, HOXB13 is the main candidate gene for sheep tail length phenotype. LIN28A, PAX3, and VEGFA are related to embryonic development and angiogenesis, so these genes may be candidate genes for sheep tail type traits. This study will serve as a foundation for further genetic improvement of Chinese indigenous sheep and as a reference for studies related to growth and development of sheep.

16.
Animals (Basel) ; 14(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38200892

RESUMO

This study aims to analyze the whole genome sequencing of E. coli F17 in antagonistic and susceptible Hu sheep lambs. The objective is to investigate the critical mutation loci in sheep and understand the genetic mechanism of sheep resistance to E. coli F17 at the genome level. Antagonist and susceptible venous blood samples were collected from Hu sheep lambs for whole genome sequencing and whole genome association analysis. A total of 466 genes with significant SNPs (p < 1.0 × 10-3) were found. GO and KEGG enrichment analysis and protein interaction network analysis were performed on these genes, and preliminary investigations showed that SNPs on CTNNB1, CDH8, APOD, HCLS1, Tet2, MTSS1 and YAP1 genes may be associated with the antagonism and susceptibility of Hu sheep lambs to E. coli F17. There are still some shortcomings that have not been explored via in vivo and in vitro functional experiments of the candidate genes, which will be our next research work. This study provides genetic loci and candidate genes for resistance of Hu sheep lambs to E. coli F17 infection, and provides a genetic basis for breeding disease-resistant sheep.

17.
Evol Appl ; 17(6): e13697, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38911262

RESUMO

As an invaluable Chinese sheep germplasm resource, Hu sheep are renowned for their high fertility and beautiful wavy lambskins. Their distinctive characteristics have evolved over time through a combination of artificial and natural selection. Identifying selection signatures in Hu sheep can provide a straightforward insight into the mechanism of selection and further uncover the candidate genes associated with breed-specific traits subject to selection. Here, we conducted whole-genome resequencing on 206 Hu sheep individuals, each with an approximate 6-fold depth of coverage. And then we employed three complementary approaches, including composite likelihood ratio, integrated haplotype homozygosity score and the detection of runs of homozygosity, to detect selection signatures. In total, 10 candidate genomic regions displaying selection signatures were simultaneously identified by multiple methods, spanning 88.54 Mb. After annotating, these genomic regions harbored collectively 92 unique genes. Interestingly, 32 candidate genes associated with reproduction were distributed in nine genomic regions detected. Out of them, two stood out as star candidates: BMPR1B and GNRH2, both of which have documented associations with fertility, and a HOXA gene cluster (HOXA1-5, HOXA9, HOXA10, HOXA11 and HOXA13) had also been linked to fertility. Additionally, we identified other genes that are related to hair follicle development (LAMTOR3, EEF1A2), ear size (HOXA1, KCNQ2), fat tail formation (HOXA10, HOXA11), growth and development (FAF1, CCNDBP1, GJB2, GJA3), fat deposition (ACOXL, JAZF1, HOXA3, HOXA4, HOXA5, EBF4), immune (UBR1, FASTKD5) and feed intake (DAPP1, RNF17, NPBWR2). Our results offer novel insights into the genetic mechanisms underlying the selection of breed-specific traits in Hu sheep and provide a reference for sheep genetic improvement programs.

18.
Animals (Basel) ; 14(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338072

RESUMO

Previous studies have demonstrated that CUX1 could contribute to the proliferation of DPCs in vitro, but the upstream transcriptional regulatory mechanisms of CUX1 remain largely unknown. This study aimed to investigate the upstream transcriptional regulators of CUX1 to enhance our comprehension of the mechanism of action of the CUX1 gene in ovine DPCs. Initially, the JASPAR (2024) software was used to predict the upstream target transcription factors for the CUX1 gene. Subsequently, through RT-qPCR and a double luciferase reporter assay, the interaction between SP1, KROX20, and CUX1 was established, respectively. The results indicated that SP1 and KROX20 were two highly reliable upstream transcription regulators for the CUX1 gene. Additionally, we found that SP1 promoted the proliferation of DPCs by overexpressing SP1 in DPCs, and KROX20 inhibited the proliferation of DPCs by overexpressing KROX20 in DPCs. These findings are also consistent with the transcriptional regulation of CUX1 by SP1 and KROX20, respectively. This study suggests that the effect of DPC proliferation in vitro by CUX1 may regulated by the transcription factors SP1 and KROX20.

19.
Genes (Basel) ; 15(3)2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38540319

RESUMO

In order to investigate the effect of FecB on litter size and growth and development traits of Suhu meat sheep and the inheritance patterns of FecB between parents and offspring in the population. In this experiment, 2241 sheep from the Suhu meat sheep population were tested for FecB using capillary electrophoresis. We combined the lambing records of 473 ewes, the growth trait records of 881 sheep at both the birth and weaning (2-month-old) stages, and the complete genealogical records of 643 lambs to analysis the distribution of FecB in the Suhu meat sheep breeding population, its effect on litter size of ewes, growth and development of lambs, and the inheritance patterns of FecB. The results showed that there were three genotypes of FecB in the Suhu meat sheep population, namely the AA genotype, AG genotype, and GG genotype. FecB in this population has a moderate polymorphism (0.25 < PIC < 0.5), and deviates from Hardy-Weinberg disequilibrium (p < 0.05). The litter size of GG genotype ewes was significantly higher than that with the AG and AA genotypes (p < 0.01). A Chi-square test showed that the inheritance patterns of FecB follows Mendel's Laws of Inheritance (p > 0.05). An association analysis of different genotypes of FecB with body weight and body size of Suhu meat sheep at birth and weaning revealed that FecB adversely affects the early growth and development of Suhu meat sheep. In summary, FecB can improve the litter size of ewes but it has negative effects on the early growth and survival rate of lambs in sheep. Therefore, FecB test results and feeding management measures should be comprehensively applied to improve the reproductive performance of ewes, the survival rate and production performance of lambs in sheep production, and thus improve the economic benefits of sheep farms.


Assuntos
Polimorfismo Genético , Reprodução , Gravidez , Ovinos/genética , Animais , Feminino , Tamanho da Ninhada de Vivíparos/genética , Reprodução/genética , Padrões de Herança , Carne
20.
Animals (Basel) ; 13(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37760343

RESUMO

Wool fineness affects the quality of wool, and some studies have identified about forty candidate genes that affect sheep wool fineness, but these genes often reveal only a certain proportion of the variation in wool thickness. We further explore additional genes associated with the fineness of sheep wool. Whole-genome resequencing of eight sheep breeds was performed to reveal selection signals associated with wool fineness, including four coarse wool and four fine/semi-fine wool sheep breeds. Multiple methods to reveal selection signals (Fst and θπ Ratio and XP-EHH) were applied for sheep wool fineness traits. In total, 269 and 319 genes were annotated in the fine wool (F vs. C) group and the coarse wool (C vs. F) group, such as LGR4, PIK3CA, and SEMA3C and NFIB, OPHN1, and THADA. In F vs. C, 269 genes were enriched in 15 significant GO Terms (p < 0.05) and 38 significant KEGG Pathways (p < 0.05), such as protein localization to plasma membrane (GO: 0072659) and Inositol phosphate metabolism (oas 00562). In C vs. F, 319 genes were enriched in 21 GO Terms (p < 0.05) and 16 KEGG Pathways (p < 0.05), such as negative regulation of focal adhesion assembly (GO: 0051895) and Axon guidance (oas 04360). Our study has uncovered genomic information pertaining to significant traits in sheep and has identified valuable candidate genes. This will pave the way for subsequent investigations into related traits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA