RESUMO
Advanced bifunctional electrocatalysts are essential for propelling overall water splitting (OWS) progress. Herein, relying on the obvious difference in the work function of Ir (5.44 eV) and CoMoO4 (4.03 eV) and the constructed built-in electric field (BEF), an Ir/CoMoO4/NF heterogeneous catalyst, with ultrafine Ir nanoclusters (1.8 ± 0.2 nm) embedded in CoMoO4 nanosheet arrays on the surface of nickel foam skeleton, is reported. Impressively, the Ir/CoMoO4/NF shows remarkable electrocatalytic bifunctionality toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), especially at large current densities, requiring only 13 and 166 mV to deliver 10 and 1000 mA cm-2 for HER and 196 and 318 mV for OER. Furthermore, the Ir/CoMoO4/NF||Ir/CoMoO4/NF electrolyzer demands only 1.43 and 1.81 V to drive 10 and 1000 mA cm-2 for OWS. Systematical theoretical calculations and tests show that the formed BEF not only optimizes interfacial charge distribution and the Fermi level of both Ir and CoMoO4, but also reduces the Gibbs free energy (ΔGH*, from 0.25 to 0.03 eV) and activation energy (from 13.6 to 8.9 kJ mol-1) of HER, the energy barrier (from 3.47 to 1.56 eV) and activation energy (from 21.1 to 13.9 kJ mol-1) of OER, thereby contributing to the glorious electrocatalytic bifunctionality.
RESUMO
With the rapid development and increasing popularity of electric vehicles and wearables, battery safety has become a leading focus in the field of energy storage research. Specifically, aluminum-ion batteries are gaining increasing attention as low-cost energy-storage systems with high safety levels and theoretical energy density. However, the dense alumina passivation layer on the aluminum anode surface and slow kinetic performance of commonly used ionic liquid electrolytes still render poor performance. This report presents a new type of aluminum-derived lithium-ion battery (ALIB) that maintains a certain discharge performance under damaging conditions, including continuous bending, high- and low-temperature environments, and shearing. This new ALIB effectively meets the current demand for flexible and wearable batteries. The prepared ALIB achieves a stable cycle of 130 mAh g-1 specific capacity and ≈260 Wh kg-1 theoretical energy density at a wide voltage platform of 2 V and a test temperature of 25 °C without undergoing combustion. Additionally, the study analyzes the reaction mechanism of this ALIB based on density functional theory and conducts ex situ XRD and XPS analyses to elucidate the underlying storage mechanism.
RESUMO
Highly anticipated potassium metal batteries possess abundant potassium reserves and high theoretical capacity but currently suffer from poor cycling stability as a result of dendritic growth and volume expansion. Here, carbon cloths modified with different functional groups treated with ethylene glycol, ethanolamine, and ethylenediamine are designed as 3D hosts, exhibiting different wettability to molten potassium. Among them, the hydroxyl-decorated carbon cloth with a high affinity for potassium can achieve molten potassium perfusion (K@EG-CC) within 3 s. By efficiently inducing the uniform deposition of metal potassium, buffing its volume expansion, and lowering local current density, the developed K@EG-CC anode alleviates the dendrite growth issue. The K@EG-CC||K@EG-CC symmetric battery can be cycled stably for 2100 h and has only a small voltage hysteresis of ≈93â mV at 0.5â mA cm-2 . Moreover, the high-voltage plateau, high energy density, and long cycle life of K metal full batteries can be realized with a low-cost KFeSO4 F@carbon nanotube cathode. This study provides a simple strategy to promote the commercial applications of potassium metal batteries.
RESUMO
Rechargeable potassium-ion batteries (PIBs) are regarded as potential substitutes for industrial lithium-ion batteries in large scale energy storage systems due to the world's abundant potassium supplies. Althogh cobalt hexacyanocobaltate (CoHCC) exhibits broad potential as a PIB anode material, its performance is currently unsatisfactory. Herein, novel 5 nm scale ultrathin CoHCC nanosheet-assembled nanoboxes with interspersed carbon nanotubes (CNTs/CoHCC nanoboxes) are fabricated to realize a highly reactive PIB anode. The ultrathin CoHCC layers substantially accelerate electron conduction and provide numerous active sites, while the connected CNTs provide fast axial electron transport. Consequently, the optimized anode exhibits a remarkable discharge capacity of 580.9 mAh g-1 at 0.1 A g-1 and long-term stability with 71.3% retention over 1000 cycles. In situ and ex situ characterizations and density functional theory calculations are further employed to elucidate the K+ storage process and the reason for the enhanced performance of the CNTs/CoHCC nanoboxes.
RESUMO
Metal hexacyanoferrates (HCFs) are regarded as promising cathode materials for potassium-ion batteries (PIBs) on account of their low cost and high energy density. However, the difficult-to-remove [Fe(CN)6] vacancies and crystal water lead to structural instability and capacity deterioration as well as the stereotype of poor thermostability of conventional HCFs. Herein, we report (100) face-oriented potassium magnesium hexacyanoferrate (KMgHCF) nanoplates with low [Fe(CN)6] vacancies and high crystallinity, enabling thermostability up to 550 °C, high-temperature carbon coating and crystal water elimination. The as-obtained KMgHCF/C nanoplates exhibit superior potassium storage properties, including a large reversible capacity of 84.6â mAh g-1, a high voltage plateau of 3.87â V, excellent long-term cycling performance over 15000â cycles and high rate capability at 5â A g-1. The unprecedented cycling stability of KMgHCF/C is attributed to the synergistic effect of a highly reversible two-phase reaction, low [Fe(CN)6] vacancies and no crystal water, a specially exposed steady (100) surface, and a protective carbon coating. This work provides a new material selection and modification strategy for the practical application of HCFs in PIBs.
RESUMO
Renewable energy storage using electrochemical storage devices is extensively used in various field applications. High-power density supercapacitors and high-energy density rechargeable batteries are some of the most effective devices, while lithium-ion batteries (LIBs) are the most common. Due to the scarcity of Li resources and serious safety concerns during the construction of LIBs, development of safer and cheaper technologies with high performance is warranted. Magnesium is one of the most abundant and replaceable elements on earth, and it is safe as it does not generate dendrite following cycling. However, the lack of suitable electrode materials remains a critical issue in developing electrochemical energy storage devices. 2D MXenes can be used to construct composites with different dimensions, owing to their suitable physicochemical properties and unique magnesium-ion adsorption structure. In this study, the construction strategies of MXene in different dimensions, including its physicochemical properties as an electrode material in magnesium ion energy storage devices are reviewed. Research advancements of MXene and MXene-based composites in various kinds of magnesium-ion storage devices are also analyzed to understand its energy storage mechanisms. Finally, current opportunities, challenges, and future prospects are also briefly discussed to provide crucial information for future research.
RESUMO
The stability of aqueous Zn-ion batteries (AZIBs) is highly dependent on the reversibility of stripping/plating Zn anode. In this work, an organic ligand etching method is proposed to develop a series of in situ multifunctional protective layers on Zn anode. Particularly, the 0.02 m [Fe(CN) 6]3- etching solutions can spontaneously etch the Zn anode, creating an in situ protective layer with unique terraced structure, which blocks the direct contact between the electrode and electrolyte and increases the area for Zn2+ ions deposition. Interestingly, all elements in the organic ligands (i.e., C, N, Zn, and Fe) exhibit strong zincophilic, significantly promoting zinc deposition kinetics and enhancing 3D nucleation behavior to inhibit zinc dendrite growth. As a result, the etched Zn anode can provide as high a Coulombic efficiency of 99.6% over 1000 cycles and sustain over 400 h long-term stability at a high current density of 10 mA cm-2 . As general validation, the small amount of metal cations additives (e.g., Ni2+ , Mn2+ , and Cu2+ ) can accelerate the synthesis of artificial interface layers with 3D structures and also regulate zinc deposition behavior. This work provides a new idea from the perspective of etching solution selection for surface modification of Zn metal anode.
RESUMO
Magnesium-ion batteries (MIB) have gradually attracted attention owing to their high theoretical capacity, high safety, and low cost. A bimetallic metal-organic framework self-sacrificing template and a co-assembly strategy are used to prepare a high-performance, stable cycling NiSe2 -CoSe2 @TiVCTx (NCSe@TiVC) heterostructure MIB cathode that can be used as a flexible integrated unit to power future self-powered systems. Benefiting from the synergistic effect of TiVCTx MXene and NCSe, the NCSe@TiVC heterostructure electrode has a discharge-specific capacity of 136 mAh g-1 at 0.05 A g-1 and high cycling stability of over 500 cycles; the assembled pouch-cell device as flexible integrated unit exhibits good practicability. The magnesium ion storage mechanism is also validated using quantitative kinetic analysis, ex situ XRD, and XPS techniques. Density functional theory analysis indicates the most stable Mg-atom adsorption sites in the heterostructure. This study broadens the possibilities for applying the TiVCTx MXene heterostructure to energy storage materials and future self-powered flexible systems.
RESUMO
Sodium-ion batteries (SIBs) have great potential as electrochemical energy storage systems; however, their commercial viability is limited by the lack of anode materials with fast charge/discharge rates and long lifetimes. These challenges were addressed by developing a multi-interface design strategy using FCSe (FeSe2/CoSe2) nanoparticles on V4C3Tx MXene nanosheets as conductive substrates. The heterogeneous interface created between the two materials provided high-speed transport of sodium ions, suppressed the chalking-off of nanoparticles, and improved the cycling stability. Additionally, the Fe-Co bonds generated at the interface effectively relieved mechanical stress, further enhancing the electrode durability. The C@FCSe@V4C3 electrode exhibited high-speed charging and discharging characteristics, and maintained a high specific capacity of 260.5 mAh g-1 even after 15,000 cycles at 10 A g-1, with a capacity retention rate of 50.2% at an ultrahigh current density of 20 A g-1. Furthermore, the composite displayed a good cycling capability in the fast discharge and slow charge mode. This demonstrates its promising commercial potential. This multi-interface design strategy provides insights and guidance for solving the reversibility and cycling problems of transformed selenide anode materials.
RESUMO
Rechargeable aluminum-ion batteries (RAIBs) have emerged as a promising battery storage technology owing to their cost-effectiveness, operational safety, and high energy density. However, their actual capacity is substantially lower than their true capacity and their cycling stability is poor. Therefore, understanding the energy-storage mechanism may contribute to the successful design of a stable electrode material, on which the performance can be optimized. The aim of this study is to investigate AlCl4 - ions in transition metal cathode materials and mechanisms that enable for their high-energy-storage potential and low Coulombic efficiency. Results of theoretical analysis and experimental verification show that a multi-ion transport mechanism is responsible for the electrochemical behavior of the battery. The lattice distortion of CoSe2 caused by AlCl4 - ion intercalation, has a considerable effect on the initial stability of the battery. MXene as a support material reduces the size of CoSe2 growing on its surface, effectively inhibiting the lattice distortion caused by the interaction with the aluminum-anion complex, thus addressing the issues of poor reversibility, cycle instability, and low Coulombic efficiency of the battery. Hence, understanding the impact of MXene on the battery may aid in further improving the design of electrode materials.
RESUMO
Flexible pressure sensors may be used in electronic skin (e-skin), artificial intelligence devices, and disease diagnosis, which require a large response range and high sensitivity. An appropriate design of the structure of the active layer can help effectively solve this problem. Herein, we aim at developing a wearable pressure sensor using the MXene/ZIF-67/polyacrylonitrile (PAN) nanofiber film, fabricated by electrospinning technology. Owing to the rough structure and three-dimensional network architecture, the MXene/ZIF-67/PAN film-based device displays a broad working range (0-100 kPa), good sensitivity (62.8 kPa-1), robust mechanical stability (over 10,000 cycles), and fast response/recovery time (10/8 ms). Moreover, the fabricated pressure sensors can be used to detect and differentiate between different body motion information, including elbow bending, finger movements, and wrist pulses. Overall, this design of a rough three-dimensional conductive network structure shows potential in the field of wearable electronics and medical devices.
RESUMO
Sodium-ion batteries operating at room temperature have emerged as a generation of energy storage devices to replace lithium-ion batteries; however, they are limited by a lack of anode materials with both an adequate lifespan and excellent rate capability. To address this issue, we developed Nb2CTx MXene-framework MoS2 nanosheets coated with carbon (Nb2CTx@MoS2@C) and constructed a robust three-dimensional cross-linked structure. In such a design, highly conductive Nb2CTx MXene nanosheets prevent the restacking of MoS2 sheets and provide efficient channels for charge transfer and diffusion. Additionally, the hierarchical carbon coating has a certain level of volume elasticity and excellent electrical conductivity to guarantee the intercalation of sodium ions, facilitating both fast kinetics and long-term stability. As a result, the Nb2CTx@MoS2@C anode delivers an ultrahigh reversible capacity of 530 mA h g-1 at 0.1 A g-1 after 200 cycles and very long cycling stability with a capacity of 403 mA h g-1 and only 0.01% degradation per cycle for 2000 cycles at 1.0 A g-1. Moreover, this anode has an outstanding capacity retention rate of approximately 88.4% from 0.1 to 1 A g-1 in regard to rate performance. Most importantly, the Nb2CTx@MoS2@C anode can realize a quick charge and discharge at current densities of 20 or even 40 A g-1 with capacities of 340 and 260 mAh g-1, respectively, which will increase the number of practical applications for sodium-ion batteries.
RESUMO
MXenes with unique 2D open structure, large surface-area-to-volume ratios, high pseudo-capacitance, and conductivity are attractive for advanced supercapacitor electrodes. However, the restacking issue of MXenes hinders ion accessibility, resulting in the reduction of volume performance, mass load, and speed capability. To address these issues, a facile hydrothermal synthesis strategy is proposed to fabricate Co3O4 nanoparticles-MXene (Co-MXene) composite by the self-assembly process. Co3O4 nanoparticles, introduced in the MXene matrix, effectively prevent self-restacking and shorten ion/electron transport paths. Consequently, the obtained Co-MXene electrode delivers the high-performance of 1081F g-1 at a current density of 0.5 A g-1, surpassing the pristine MXene electrode (89F g-1 at 0.5 A g-1). Being assembled into asymmetric supercapacitors (ASC), a high energy density of 26.06 Wh kg-1 at 700 W kg-1 was realized. After 8000 cycles, the ASC device maintains 83% of initial specific capacitance at 2 A g-1. This work highlights a simple and efficient method for developing high-performance MXene-based electrodes for supercapacitors.
RESUMO
HIGHLIGHTS: Unique "Janus" interfacial assemble strategy of 2D MXene nanosheets was proposed firstly. Ternary heterostructure consisting of high capacity transitional metal chalcogenide, high conductive 2D MXene and N rich fungal carbonaceous matrix was achieved for larger radius Na/K ions storages. The highly accessible surfaces and interfaces of the strongly coupled 2D based ternary heterostructures provide superb surficial pseudocapacitive storages for both Na and K ions with low energy barriers was verified. Combining with the advantages of two-dimensional (2D) nanomaterials, MXenes have shown great potential in next generation rechargeable batteries. Similar with other 2D materials, MXenes generally suffer severe self-agglomeration, low capacity, and unsatisfied durability, particularly for larger sodium/potassium ions, compromising their practical values. In this work, a novel ternary heterostructure self-assembled from transition metal selenides (MSe, M = Cu, Ni, and Co), MXene nanosheets and N-rich carbonaceous nanoribbons (CNRibs) with ultrafast ion transport properties is designed for sluggish sodium-ion (SIB) and potassium-ion (PIB) batteries. Benefiting from the diverse chemical characteristics, the positively charged MSe anchored onto the electronegative hydroxy (-OH) functionalized MXene surfaces through electrostatic adsorption, while the fungal-derived CNRibs bonded with the other side of MXene through amino bridging and hydrogen bonds. This unique MXene-based heterostructure prevents the restacking of 2D materials, increases the intrinsic conductivity, and most importantly, provides ultrafast interfacial ion transport pathways and extra surficial and interfacial storage sites, and thus, boosts the high-rate storage performances in SIB and PIB applications. Both the quantitatively kinetic analysis and the density functional theory (DFT) calculations revealed that the interfacial ion transport is several orders higher than that of the pristine MXenes, which delivered much enhanced Na+ (536.3 mAh g-1@ 0.1 A g-1) and K+ (305.6 mAh g-1@ 1.0 A g-1 ) storage capabilities and excellent long-term cycling stability. Therefore, this work provides new insights into 2D materials engineering and low-cost, but kinetically sluggish post-Li batteries.
RESUMO
Accurate and continuous detection of physiological signals without the need for an external power supply is a key technology for realizing wearable electronics as next-generation biomedical devices. Herein, it is shown that a MXene/black phosphorus (BP)-based self-powered smart sensor system can be designed by integrating a flexible pressure sensor with direct-laser-writing micro-supercapacitors and solar cells. Using a layer-by-layer (LbL) self-assembly process to form a periodic interleaving MXene/BP lamellar structure results in a high energy-storage capacity in a direct-laser-writing micro-supercapacitor to drive the operation of sensors and compensate the intermittency of light illumination. Meanwhile, with MXene/BP as the sensitive layer in a flexible pressure sensor, the pressure sensitivity of the device can be improved to 77.61 kPa-1 at an optimized elastic modulus of 0.45 MPa. Furthermore, the smart sensor system with fast response time (10.9 ms) shows a real-time detection capability for the state of the human heart under physiological conditions. It is believed that the proposed study based on the design and integration of MXene materials will provide a general platform for next-generation self-powered electronics.
RESUMO
Owing to their cost-effectiveness and high energy density, sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) are becoming the leading candidates for the next-generation energy-storage devices replacing lithium-ion batteries. In this work, a novel Fex -1 Sex heterostructure is prepared on fungus-derived carbon matrix encapsulated by 2D Ti3 C2 Tx MXene highly conductive layers, which exhibits high specific sodium ion (Na+ ) and potassium ion (K+ ) storage capacities of 610.9 and 449.3 mAh g-1 at a current density of 0.1 A g-1 , respectively, and excellent capacity retention at high charge-discharge rates. MXene acts as conductive layers to prevent the restacking and aggregation of Fex -1 Sex sheets on fungus-derived carbonaceous nanoribbons, while the natural fungus functions as natural nitrogen/carbon source to provide bionic nanofiber network structural skeleton, providing additional accessible pathways for the high-rate ion transport and satisfying surface-driven contribution ratios at high sweep rates for both Na/K ions storages. In addition, in situ synchrotron diffraction and ex situ X-ray photoelectron spectroscopy measurements are performed to reveal the mechanisms of storage and de-/alloying conversion process of Na+ in the Fex -1 Sex /MXene/carbonaceous nanoribbon heterostructure. As a result, the assembled Na/K full cells containing MXene-supported Fex -1 Sex @carbonaceous anodes possess stable large-ion storage capabilities.
RESUMO
As a typical family of two-dimensional (2D) materials, MXenes present physiochemical properties and potential for use in energy storage applications. However, MXenes suffer some of the inherent disadvantages of 2D materials, such as severe restacking during processing and service and low capacity of energy storage. Herein, a MXene@N-doped carbonaceous nanofiber structure is designed as the anode for high-performance sodium- and potassium-ion batteries through an in situ bioadsorption strategy; that is, Ti3C2Tx nanosheets are assembled onto Aspergillus niger biofungal nanoribbons and converted into a 2D/1D heterostructure. This microorganism-derived 2D MXene-1D N-doped carbonaceous nanofiber structure with fully opened pores and transport channels delivers high reversible capacity and long-term stability to store both Na+ (349.2 mAh g-1 at 0.1A g-1 for 1000 cycles) and K+ (201.5 mAh g-1 at 1.0 A g-1 for 1000 cycles). Ion-diffusion kinetics analysis and density functional theory calculations reveal that this porous hybrid structure promotes the conduction and transport of Na and K ions and fully utilizes the inherent advantages of the 2D material. Therefore, this work expands the potential of MXene materials and provides a good strategy to address the challenges of 2D energy storage materials.