RESUMO
SARS-CoV Spike (S) protein shares considerable homology with SARS-CoV-2 S, especially in the conserved S2 subunit (S2). S protein mediates coronavirus receptor binding and membrane fusion, and the latter activity can greatly influence coronavirus infection. We observed that SARS-CoV S is less effective in inducing membrane fusion compared with SARS-CoV-2 S. We identify that S813T mutation is sufficient in S2 interfering with the cleavage of SARS-CoV-2 S by TMPRSS2, reducing spike fusogenicity and pseudoparticle entry. Conversely, the mutation of T813S in SARS-CoV S increased fusion ability and viral replication. Our data suggested that residue 813 in the S was critical for the proteolytic activation, and the change from threonine to serine at 813 position might be an evolutionary feature adopted by SARS-2-related viruses. This finding deepened the understanding of Spike fusogenicity and could provide a new perspective for exploring Sarbecovirus' evolution.
Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteólise , Replicação Viral , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismoRESUMO
BACKGROUND: Diminished ovarian reserve (DOR), a triggering factor for female infertility, affects 10% â¼ 35% of women of reproductive age. It is still unclear whether exposure to toxic metals (including metalloid) is associated with DOR risk, especially with respect to their relationships with the clinical phenotypes of DOR. METHODS: A case-control study including 439 patients was conducted, and Ba, Ni, As, Tl, Cd, Pb, Hg, Al and Cr levels in BL and FF were measured. Subsequent analyses were focused on Ba, Ni, As and Tl, which had the highest weights in the associations of the nine toxic metals (including metalloid) with DOR risk, by integrating weighted quantile sum (WQS) regression and bayesian kernel machine regression (BKMR) models. Conditional logistic regression models and BKMR models were used to assess the individual and combined effects of Ba, Ni, As and Tl exposures on DOR risk. Multiple linear regression models were used to investigate the relationships between toxic metal (including metalloid) levels in BL and FF and the clinical characteristics of DOR. RESULTS: The levels of Ba [second vs. lowest tertile: adjusted odds ratio (aOR) and 95â¯% confidence interval (CI) = 1.97 (1.13, 3.44); highest vs. lowest tertile: aOR (95â¯% CI) = 2.38 (1.32, 4.26)], Ni [highest vs. lowest tertile: aOR (95â¯% CI) = 2.59 (1.45, 4.65)] and As [highest vs. lowest tertile: aOR (95â¯% CI) = 1.96 (1.18, 3.25)] in BL, and Ba [highest vs. lowest tertile: aOR (95â¯% CI) = 4.60 (1.68, 12.61)] in FF were significantly associated with a higher risk of DOR, respectively. The significantly positive combined effect of the four toxic metals (including metalloid) on DOR risk was exhibited when their BL levels exceeded the 25th percentile compared with their median levels. Among these, As (0.9822) and Ba (0.9704) were the primary contributors to this relationship. Similarly, this finding was confirmed by the statistical results from FF samples, with a linear positive correlation between combined exposure and DOR risk, where Ba (0.9440) was the primary contributor. Finally, elevated levels of Ba, Ni, and As in BL and Ba in FF were significantly linked to the higher follicle-stimulating hormone (FSH) levels. The levels of Ba in BL and FF, as well as As in BL, were significantly associated with the lower luteinizing hormone (LH)/FSH ratio values. CONCLUSION: Overall, the results of this study indicate that elevated levels of Ba, Ni, As and Tl are associated with a higher risk of DOR, whether individually or in combination, and that Ba levels in BL and FF are stable contributors. In addition, exposure to Ba, Ni, As and Tl is linked to various clinical phenotype parameters of DOR. Further research is needed to confirm these associations and to identify potential mechanisms involved.
RESUMO
BACKGROUND: Endometriosis is a common gynecological disease that affects approximately 5 %â¼10 % of reproductive-aged women. Zinc (Zn), selenium (Se), copper (Cu), cobalt (Co) and molybdenum (Mo) are essential trace elements and are very important for human health. However, studies on the relationship between mixtures of essential trace elements and the risk of endometriosis are limited and inconsistent. In particular, studies confirming the association via different sample types are limited. OBJECTIVE: This study aimed to investigate the associations between Zn, Se, Cu, Co and Mo concentrations in blood and follicular fluid (FF) and endometriosis risk in a Chinese population. METHODS: A total of 609 subjects undergoing in vitro fertilization (IVF) were recruited; 836 samples were analyzed, including 451 blood samples (234 controls and 217 cases) and 385 FF samples (203 controls and 182 cases). In addition, 227 subjects provided both blood and FF samples. Zn, Se, Cu, Co and Mo concentrations in blood and FF were quantified via inductively coupled plasma-mass spectrometry (ICP-MS). The associations between the levels of Zn, Se, Cu, Co and Mo and the risk of endometriosis were assessed using single-element models (logistic regression models), and the combined effect of the trace elements on endometriosis risk was assessed using multielement models (Bayesian kernel machine regression (BKMR) and weighted quantile sum (WQS) regression). RESULTS: Based on the single-element models, significant associations of Zn concentrations in blood (high-level vs. low-level group: aOR = 14.17, 95 % CI: 7.31, 27.50) and FF (first tertile vs. second tertile group: aOR = 0.34, 95 % CI: 0.16, 0.71; third tertile vs. second tertile group: aOR = 2.32, 95 % CI: 1.38, 3.91, respectively) and Co concentrations in blood (first tertile vs. second tertile group, aOR = 0.24, 95 % CI: 0.12, 0.48) and FF (third tertile vs. second tertile group: aOR = 3.87, 95 % CI: 2.19, 6.84) with endometriosis risk were found after adjustment for all confounders. In FF, Cu and Mo levels were significantly greater among the cases than among the controls, with a positive association with endometriosis risk (Cu (first tertile vs. second tertile group: aOR = 0.39, 95 % CI: 0.19, 0.81; third tertile vs. second tertile group: aOR = 2.73, 95 % CI: 1.61, 4.66, respectively) and Mo (high-level vs. low-level group: aOR = 14.93, 95 % CI: 7.16, 31.12)). However, similar associations between blood Cu and Mo levels and endometriosis risk were not found. In addition, the levels of these five essential trace element mixtures in blood and in FF were significantly and positively associated with endometriosis risk according to the BKMR analyses; the levels of Zn and Cu in blood and the levels of Mo in FF were significantly related to the risk of endometriosis, and the posterior inclusion probabilities (PIPs) were 1.00, 0.99 and 1.00 for Zn and Cu levels in blood and Mo levels in FF, respectively. Furthermore, Zn and Mo were the highest weighted elements in blood and FF, respectively, according to WQS analyses. CONCLUSION: The risk of endometriosis was associated with elevated levels of several essential trace elements (Zn, Cu and Co). Elevated levels of these elements may be involved in the pathomechanism of endometriosis. However, further studies with larger sample sizes will be necessary to confirm these associations.
Assuntos
Endometriose , Selênio , Oligoelementos , Humanos , Feminino , Adulto , Oligoelementos/análise , Zinco , Cobalto , Endometriose/epidemiologia , Teorema de Bayes , MolibdênioRESUMO
PURPOSE: Polycystic ovary syndrome (PCOS) is one of the leading causes of infertility in women of childbearing age, and many patients with PCOS have obesity and insulin resistance (IR). Although obesity is related to an increased risk of IR, in clinical practice, PCOS patients exhibit different effects on improving insulin sensitivity after weight loss. Therefore, in the present study, we aimed to examine the moderating effect of polymorphisms of mtDNA in the D-loop region on the associations of body mass index (BMI) with the homeostasis model assessment of insulin resistance index (HOMA-IR) and pancreatic ß cell function index (HOMA-ß) among women with PCOS. METHODS: Based on a cross-sectional study, women with PCOS were recruited from the Reproductive Center of the First Affiliated Hospital of Anhui Medical University from 2015 to 2018. A total of 520 women who were diagnosed with PCOS based on the revised 2003 Rotterdam criteria were included in the study. Peripheral blood was collected from these patients, followed by DNA extraction, PCR amplification, and sequencing at baseline. HOMA-IR and HOMA-ß were calculated according to blood glucose-related indices. Moderating effect models were performed with BMI as an independent variable, polymorphisms of mtDNA in the D-loop region as moderators, and ln (HOMA-IR) and ln (HOMA-ß) as dependent variables. To verify the stability of moderating effect, sensitivity analysis was performed with the quantitative insulin sensitivity check index (QUICKI), fasting plasma glucose/fasting insulin (G/I), and fasting insulin as dependent variables. RESULTS: BMI was positively associated with ln (HOMA-IR) and ln (HOMA-ß) (ß = 0.090, p < 0.001; ß = 0.059, p < 0.001, respectively), and the relationship between BMI and ln (HOMA-IR) or ln (HOMA-ß) was moderated by the polymorphisms of mtDNA in the D-loop region. Compared with the respective wild-type, the variant -type of m.16217 T > C enhanced the association between BMI and HOMA-IR, while the variant-type of m.16316 A > G weakened the association. On the other hand, the variant-type of m.16316 A > G and m.16203 A > G weakened the association between BMI and HOMA-ß, respectively. The results of QUICKI and fasting insulin as dependent variables were generally consistent with HOMA-IR, and the results of G/I as dependent variables were generally consistent with HOMA-ß. CONCLUSION: Polymorphisms of mtDNA in the D-loop region moderate the associations of BMI with HOMA-IR and HOMA-ß among women with PCOS.
Assuntos
Resistência à Insulina , Síndrome do Ovário Policístico , Feminino , Humanos , Resistência à Insulina/genética , Índice de Massa Corporal , Estudos Transversais , DNA Mitocondrial/genética , Glicemia/genética , Insulina/genética , Obesidade/complicaçõesRESUMO
BACKGROUND: Cornelia de Lange syndrome (CdLS) is an uncommon congenital developmental disorder distinguished by intellectual disorder and distinctive facial characteristics, with a minority of cases attributed to RAD21 variants. METHODS: A patient was admitted to the endocrinology department at Peking Union Medical College Hospital, where 2 mL of peripheral venous blood was collected from the patient and his parents. DNA was extracted for whole-exome sequencing (WES) analysis, and the genetic variation of the parents was confirmed through Sanger sequencing. RESULTS: A 13.3-year-old male patient with a height of 136.5 cm (-3.5 SDS) and a weight of 28.4 kg (-3.1 SDS) was found to have typical craniofacial features. WES revealed a pathogenic variant c.1143G>A (p.Trp381*) in the RAD21 gene. He was diagnosed with CdLS type 4 (OMIM #614701). We reviewed 36 patients with CdLS related to RAD21 gene variants reported worldwide from May 2012 to March 2024. Patient's variant status, clinical characteristics, and rhGH treatment response were summarized. Frameshift variants constituted the predominant variant type, representing 36% (13/36) of cases. Clinical features included verbal developmental delay and intellectual disorder observed in 94% of patients. CONCLUSION: This study reported the third case of CdLS type 4 in China caused by a RAD21 gene variant, enriching the genetic mutational spectrum.
Assuntos
Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Síndrome de Cornélia de Lange , Humanos , Síndrome de Cornélia de Lange/genética , Síndrome de Cornélia de Lange/patologia , Masculino , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Adolescente , Fosfoproteínas/genética , Fenótipo , Mutação , Sequenciamento do ExomaRESUMO
IGFLR1 is a novel biomarker, and some evidences suggested that is involved in the immune microenvironment of CRC. Here, we explored the expression of IGFLR1 and its association with the prognosis as well as immune cell infiltration in CRC, with the aim to provide a basis for further studies on IGFLR1. Immunohistochemical staining for IGFLR1, TIM-3, FOXP3, CD4, CD8, and PD-1 was performed in eligible tissues to analyze the expression of IGFLR1 and its association with prognosis and immune cell infiltration. Then, we screened colon cancer samples from TCGA and grouped patients according to IGFLR1-related genes. We also evaluated the co-expression and immune-related pathways of IGFLR1 to identify the potential mechanism of it in CRC. When P < 0.05, the results were considered statistically significant. IGFLR1 and IGFLR1-related genes were associated with the prognosis and immune cell infiltration (P < 0.05). In stage II and III CRC tissue and normal tissue, we found (1) IGFLR1 was expressed in both the cell membrane and cytoplasm and which was differentially expressed between cancer tissue and normal tissue. IGFLR1 expression was associated with the expression of FOXP3, CD8, and gender but was not associated with microsatellite instability. (2) IGFLR1 was an independent prognostic factor and patients with high IGFLR1 had a better prognosis. (3) A model including IGFLR1, FOXP3, PD-1, and CD4 showed good prognostic stratification ability. (4) There was a significant interaction between IGFLR1 and GATA3, and IGFLR1 had a significant co-expression with related factors in the INFR pathway. IGFLR1 has emerged as a new molecule related to disease prognosis and immune cell infiltration in CRC patients and showed a good ability to predict the prognosis of patients.
RESUMO
Introduction: The frequent occurrence of mutations in the SARS-CoV-2 Spike (S) protein, with up to dozens of mutations, poses a severe threat to the current efficacy of authorized COVID-19 vaccines. Membrane (M) protein, which is the most abundant viral structural protein, exhibits a high level of amino acid sequence conservation. M protein ectodomain could be recognized by specific antibodies; however, the extent to which it is immunogenic and provides protection remains unclear. Methods: We designed and synthesized multiple peptides derived from coronavirus M protein ectodomains, and determined the secondary structure of specific peptides using circular dichroism (CD) spectroscopy. Enzyme-linked immunosorbent assay (ELISA) was utilized to detect IgG responses against the synthesized peptides in clinical samples. To evaluate the immunogenicity of peptide vaccines, BALB/c mice were intraperitoneally immunized with peptide-keyhole limpet hemocyanin (KLH) conjugates adjuvanted with incomplete Freund's adjuvant (IFA). The humoral and T-cell immune responses induced by peptide-KLH conjugates were assessed using ELISA and ELISpot assays, respectively. The efficacy of the S2M2-30-KLH vaccine against SARS-CoV-2 variants was evaluated in vivo using the K18-hACE2 transgenic mouse model. The inhibitory effect of mouse immune serum on SARS-CoV-2 virus replication in vitro was evaluated using microneutralization assays. The subcellular localization of the M protein was evaluated using an immunofluorescent staining method, and the Fc-mediated antibody-dependent cellular cytotoxicity (ADCC) activity of the S2M2-30-specific monoclonal antibody (mAb) was measured using an ADCC reporter assay. Results: Seroconversion rates for ectodomain-specific IgG were observed to be high in both SARS-CoV-2 convalescent patients and individuals immunized with inactivated vaccines. To assess the protective efficacy of the M protein ectodomain-based vaccine, we initially identified a highly immunogenic peptide derived from this ectodomain, named S2M2-30. The mouse serum specific to S2M2-30 showed inhibitory effects on the replication of SARS-CoV-2 variants in vitro. Immunizations of K18-hACE2-transgenic mice with the S2M2-30-keyhole limpet hemocyanin (KLH) vaccine significantly reduced the lung viral load caused by B.1.1.7/Alpha (UK) infection. Further mechanism investigations reveal that serum neutralizing activity, specific T-cell response and Fc-mediated antibody-dependent cellular cytotoxicity (ADCC) correlate with the specific immuno-protection conferred by S2M2-30. Discussion: The findings of this study suggest that the antibody responses against M protein ectodomain in the population most likely exert a beneficial effect on preventing various SARS-CoV-2 infections.
Assuntos
Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Proteínas da Matriz Viral , Replicação Viral , Animais , Feminino , Humanos , Camundongos , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Proteínas M de Coronavírus/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Camundongos Endogâmicos BALB C , SARS-CoV-2/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Proteínas da Matriz Viral/imunologiaRESUMO
Idiopathic oligoastenoteratozoospermia (iOAT) affects 30% of infertile men of reproductive age. However, the associations between Cr, Fe, Cu, Se or Co levels and iOAT risk have not been determined. This research aimed to assess the associations between Cr, Fe, Cu, Se and Co levels as well as their mixtures in seminal plasma and the risk of iOAT and severe iOAT. Therefore, a caseâcontrol study including 823 participants (416 iOAT patients and 407 controls) recruited from October 2021 to August 2022 at the reproductive medicine center of the First Affiliated Hospital of Anhui Medical University was conducted in Anhui, China. The concentrations of Cr, Fe, Cu, Se and Co in seminal plasma were detected via inductively coupled plasmaâmass spectrometry. Binary logistic regression models were used to assess the associations between the levels of Cr, Fe, Cu, Se and Co and the risk of iOAT and severe iOAT; additionally, Bayesian kernel machine regression (BKMR) and weighted quantile sum (WQS) regressions were performed to evaluate the joint effect of seminal plasma levels of Cr, Fe, Cu, Se and Co on the risk of iOAT and explore which elements contributed most to the relationship. We found significant associations between the concentrations of Fe, Cu and Se in seminal plasma and iOAT risk after adjusting for covariates (Fe, lowest tertile vs. second tertile: aOR = 1.86, 95% CI = 1.31, 2.64; Cu, lowest tertile vs. second tertile: aOR = 1.95, 95% CI = 1.37, 2.76; Se, lowest tertile vs. second tertile: aOR = 1.65, 95% CI = 1.17, 2.35). A lower Se concentration in seminal plasma (lowest tertile vs. second tertile: aOR = 1.84, 95% CI = 1.10, 3.10) was positively associated with the risk of severe iOAT. Additionally, we also observed an association between the concentration of Cr in seminal plasma and the risk of iOAT before adjusting for covariates (Cr, third tertile vs. lowest tertile: OR=1.44, 95% CI: 1.03, 2.02). According to the BKMR analyses, the risk of iOAT increased when the overall concentrations were less than the 25th percentile. The results from the WQS regression indicated that a negative WQS index was significantly associated with the iOAT risk, while a positive WQS index was not. Se and Fe had significant weights in the negative direction. In conclusion, lower Cu, Fe and Se levels in seminal plasma were positively associated with iOAT risk, while higher Cr levels in seminal plasma were positively associated with iOAT risk according to the single element model, and lower levels of Se were related to a greater risk of severe iOAT; when comprehensively considering all the results from BKMR and WQS regression, Fe, Se and Cr levels contributed most to this relationship.
Assuntos
Metais , Sêmen , Masculino , Humanos , Sêmen/química , Teorema de Bayes , Estudos de Casos e Controles , Metais/análise , Modelos LogísticosRESUMO
Polycystic ovary syndrome (PCOS) severely affects women's fertility and accompanies serious metabolic disturbances, affecting 5%-20% of women of reproductive age globally. We previously found that exposure to toxic metals in the blood raised the risk of PCOS, but the association between exposure to toxic metals and the risk of PCOS in the follicular fluid, the microenvironment for oocyte growth and development in females, and its effect on metabolism has not been reported. This study aimed to evaluate the associations between the concentrations of cadmium (Cd), mercury (Hg), barium (Ba) and arsenic (As) in FF and the risk of PCOS, and to explore the mediating effect of metabolic markers in FF on the above relationship. We conducted a case-control study, including 557 women with PCOS and 651 controls. Ba, Cd, Hg and As levels in FF were measured by ICP-MS, metabolites levels in FF was measured by LC-MS/MS among 168 participants randomly selected from all the participants. Logistic regression models were used to assess the association of a single metal level with the PCOS risk, and linear regression models were used to assess the relationships of a single metal level with clinical phenotype parameters and metabolites levels. Combined effect of metals mixture levels on the risk of PCOS were assessed via weighted quantile sum (WQS) regression and bayesian kernel machine regression (BKMR). Medication analysis was performed to explore the role of metabolic markers on the relationship of toxic metals levels with the risk of PCOS. The exposure levels of Cd, Hg, Ba and As in FF were all positively and significantly associated with the PCOS risk (with respect to the highest vs. lowest tertile group: OR = 1.57, 95% CI = 1.17 ~ 2.12 for Cd, OR = 1.69, 95% CI = 1.22 ~ 2.34 for Hg, OR = 1.76, 95% CI = 1.32 ~ 2.34 for Ba, OR = 1.42, 95% CI = 1.05 ~ 1.91 for As). In addition, levels of metal mixture also significantly correlated with the risk of PCOS, Cd level contributed most to it. Moreover, we observed significant positive relationships between Cd level and LH (ß = 0.048, 95% CI = 0.002 ~ 0.094), T (ß = 0.077, 95% CI = 0.029 ~ 0.125) and HOMA-IR value (ß = 0.060, 95% CI = 0.012 ~ 0.107), as well as Hg level with LH, FSH/LH ratio and TC. Furthermore, we revealed that estrone sulfate, LysoPE 22:6 and N-Undecanoylglycine were significantly and positively mediating the association between Cd level and the risk of PCOS (with mediated proportion of 0.39, 0.24 and 0.35, respectively), and between Hg level and the risk of PCOS (with mediated proportion of 0.29, 0.20 and 0.46, respectively). These highly expressed metabolites significantly enriched in the fatty acid oxidation, steroid hormone biosynthesis and glycerophospholipids metabolism, which may explain the reason why the levels of Cd and Hg in FF associated with the phenotype of PCOS. Ba and As in FF was not found the above phenomenon. Our results suggested that exposure to multiple toxic metals (Cd, Hg, Ba and As) in FF associated with the increased risk of PCOS, Cd was a major contributor. Levels of Cd and Hg in FF significantly associated with the phenotype of PCOS. The above association may result from that Cd and Hg in FF related with the disturbance of fatty acid oxidation, steroid hormone biosynthesis and the glycerophospholipids metabolism.
RESUMO
Developing broad-spectrum influenza vaccines is crucial for influenza control and potential pandemic preparedness. Here, we reported a novel vaccine design utilizing circular RNA (circRNA) as a delivery platform for multi-subtype neuraminidases (NA) (influenza A N1, N2, and influenza B Victoria lineage NA) immunogens. Individual NA circRNA lipid nanoparticles (LNP) elicited robust NA-specific antibody responses with neuraminidase inhibition activity (NAI), preventing the virus from egressing and infecting neighboring cells. Additionally, the administration of circRNA LNP induced cellular immunity in mice. To achieve a universal influenza vaccine, we combined all three subtypes of NA circRNA-LNPs to generate a trivalent circRNA vaccine. The trivalent vaccine elicited a balanced antibody response against all three NA subtypes and a Th1-biased immune response in mice. Moreover, it protected mice against the lethal challenge of matched and mismatched H1N1, H3N2, and influenza B viruses, encompassing circulating and ancestral influenza virus strains. This study highlights the potential of delivering multiple NA antigens through circRNA-LNPs as a promising strategy for effectively developing a universal influenza vaccine against diverse influenza viruses.
RESUMO
Background: The use of artificial intelligence (AI) in detecting colorectal neoplasia during colonoscopy holds the potential to enhance adenoma detection rates (ADRs) and reduce adenoma miss rates (AMRs). However, varied outcomes have been observed across studies. Thus, this study aimed to evaluate the potential advantages and disadvantages of employing AI-aided systems during colonoscopy. Methods: Using Medical Subject Headings (MeSH) terms and keywords, a comprehensive electronic literature search was performed of the Embase, Medline, and the Cochrane Library databases from the inception of each database until October 04, 2023, in order to identify randomized controlled trials (RCTs) comparing AI-assisted with standard colonoscopy for detecting colorectal neoplasia. Primary outcomes included AMR, ADR, and adenomas detected per colonoscopy (APC). Secondary outcomes comprised the poly missed detection rate (PMR), poly detection rate (PDR), and poly detected per colonoscopy (PPC). We utilized random-effects meta-analyses with Hartung-Knapp adjustment to consolidate results. The prediction interval (PI) and I2 statistics were utilized to quantify between-study heterogeneity. Moreover, meta-regression and subgroup analyses were performed to investigate the potential sources of heterogeneity. This systematic review and meta-analysis is registered with PROSPERO (CRD42023428658). Findings: This study encompassed 33 trials involving 27,404 patients. Those undergoing AI-aided colonoscopy experienced a significant decrease in PMR (RR, 0.475; 95% CI, 0.294-0.768; I2 = 87.49%) and AMR (RR, 0.495; 95% CI, 0.390-0.627; I2 = 48.76%). Additionally, a significant increase in PDR (RR, 1.238; 95% CI, 1.158-1.323; I2 = 81.67%) and ADR (RR, 1.242; 95% CI, 1.159-1.332; I2 = 78.87%), along with a significant increase in the rates of PPC (IRR, 1.388; 95% CI, 1.270-1.517; I2 = 91.99%) and APC (IRR, 1.390; 95% CI, 1.277-1.513; I2 = 86.24%), was observed. This resulted in 0.271 more PPCs (95% CI, 0.144-0.259; I2 = 65.61%) and 0.202 more APCs (95% CI, 0.144-0.259; I2 = 68.15%). Interpretation: AI-aided colonoscopy significantly enhanced the detection of colorectal neoplasia detection, likely by reducing the miss rate. However, future studies should focus on evaluating the cost-effectiveness and long-term benefits of AI-aided colonoscopy in reducing cancer incidence. Funding: This work was supported by the Heilongjiang Provincial Natural Science Foundation of China (LH2023H096), the Postdoctoral research project in Heilongjiang Province (LBH-Z22210), the National Natural Science Foundation of China's General Program (82072640) and the Outstanding Youth Project of Heilongjiang Natural Science Foundation (YQ2021H023).
RESUMO
Cilia are near ubiquitous small, cellular appendages critical for cell-to-cell communication. As such, they are involved in diverse developmental and homeostatic processes, including energy homeostasis. ARL13B is a regulatory GTPase highly enriched in cilia. Mice expressing an engineered ARL13B variant, ARL13BV358A which retains normal biochemical activity, display no detectable ciliary ARL13B. Surprisingly, these mice become obese. Here, we measured body weight, food intake, and blood glucose levels to reveal these mice display hyperphagia and metabolic defects. We showed that ARL13B normally localizes to cilia of neurons in specific brain regions and pancreatic cells but is excluded from these cilia in the Arl13bV358A/V358A model. In addition to its GTPase function, ARL13B acts as a guanine nucleotide exchange factor (GEF) for ARL3. To test whether ARL13B's GEF activity is required to regulate body weight, we analyzed the body weight of mice expressing ARL13BR79Q, a variant that lacks ARL13B GEF activity for ARL3. We found no difference in body weight. Taken together, our results show that ARL13B functions within cilia to control body weight and that this function does not depend on its role as a GEF for ARL3. Controlling the subcellular localization of ARL13B in the engineered mouse model, ARL13BV358A, enables us to define the cilia-specific role of ARL13B in regulating energy homeostasis.
RESUMO
Epidemiological studies on the associations between the levels of oxidative stress (OS) indicators (MDA, SOD, and GSH) in seminal plasma and the risk of idiopathic oligo-asthenotera-tozoospermia (OAT) are still inconsistent. Additionally, whether the associations can be altered by the status of essential trace elements is still unknown. To investigate the relationship between MDA, SOD, and GSH levels in seminal plasma and the risk of idiopathic OAT, and further to examine whether levels of iron (Fe), copper (Cu), and selenium (Se) in seminal plasma can alter the associations. A total of 148 subjects (75 idiopathic OAT cases and 73 controls) were included in this study. Seminal plasma samples from all the participants were measured for levels of MDA, SOD, GSH, Fe, Cu, and Se. Unconditional logistic regression models were used to examine the associations between three oxidative stress indicators and the risk of idiopathic OAT. Bayesian kernel machine regression was performed to determine the joint effects of levels of three OS indicators on the risk of idiopathic OAT. Subgroup analyses were performed to explore whether the above associations can be different when Fe, Cu, and Se were in different levels. The level of MDA in seminal plasma was positively associated with the risk of idiopathic OAT, with adjusted odds ratio (OR) and 95% confidence interval (CI) of 2.38 (1.17, 4.83), and SOD and GSH levels were not associated with the risk of idiopathic OAT. In BKMR analyses, we found a significant positive association between the mixture of MDA, SOD, and GSH levels and the risk of idiopathic OAT at concentrations below the 65th percentile, while a negative association at concentrations above it. In subgroup analysis, a positive association was observed between MDA levels in seminal plasma and the risk of idiopathic OAT in the high-Cu group (adjusted OR = 3.66, 95%CI = 1.16, 11.57), while no significant association was found in the low-Cu group (adjusted OR = 1.43, 95%CI = 0.44, 4.58). Additionally, a negative association was found between GSH levels in seminal plasma and the risk of idiopathic OAT in the high-Se group (adjusted OR = 0.34, 95%CI = 0.11, 0.99), while no significant association was observed in the low-Se group (adjusted OR = 1.96, 95%CI = 0.46, 8.27). The levels of MDA, SOD, and GSH in seminal plasma were associated with the risk of idiopathic OAT, and the levels of Cu and Se in seminal plasma may alter the associations.
RESUMO
The G protein-coupled receptor melanocortin-4 receptor (MC4R) and its associated protein melanocortin receptor-associated protein 2 (MRAP2) are essential for the regulation of food intake and body weight in humans. MC4R localizes and functions at the neuronal primary cilium, a microtubule-based organelle that senses and relays extracellular signals. Here, we demonstrate that MRAP2 is critical for the weight-regulating function of MC4R neurons and the ciliary localization of MC4R. More generally, our study also reveals that GPCR localization to primary cilia can require specific accessory proteins that may not be present in heterologous cell culture systems. Our findings further demonstrate that targeting of MC4R to neuronal primary cilia is essential for the control of long-term energy homeostasis and suggest that genetic disruption of MC4R ciliary localization may frequently underlie inherited forms of obesity.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Receptor Tipo 4 de Melanocortina , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 2 de Melanocortina/metabolismo , Cílios/metabolismo , HomeostaseRESUMO
To explore the association between serum-related indicators (levels of inflammatory cytokines and essential trace elements) and miscarriage risk among infertile women undergoing assisted reproductive techniques (ART) on the 14th day after embryo transfer, and to develop and establish a multivariable algorithm model that might predict pregnancy outcome. According to a nested case-control study design, a total of 100 miscarriage cases and 100 live birth controls were included in this study, and women in both groups were infertile and have underwent in vitro fertilization (IVF). Pregnancy tests were performed and serum levels of five essential trace elements (vanadium (V), copper (Cu), zinc (Zn), selenium (Se) and molybdenum (Mo)) and five inflammatory cytokines (interleukin-1ß (IL-1ß), IL-6, IL-8, IL-10 and tumor necrosis factor-α (TNF-α)) of the participants were measured on the 14th day after embryo transfer. The serum levels of five inflammatory cytokines were determined by multiple magnetic bead enzyme immunity analyzer; and the serum concentrations of five elements were determined simultaneously by inductively coupled plasmaâmass spectrometry (ICP â MS). The logistic regression was used to evaluate the relationship between these serum indices and miscarriage risk among women undergoing ART, and a predictive model of pregnancy outcome based on these indices was established. The levels of IL-10, IL-1ß and TNF-α of infertile women in the live birth group were significantly higher than those in the miscarriage group (p = 0.009, p < 0.001, p = 0.006), and the levels of V, Cu, Zn and Se of infertile women in the live birth group were also significantly higher than those in the miscarriage group (all p < 0.001). Through logistic regression analyses, we found that serum levels of IL-1ß, TNF-α, V, Cu, Zn and Se were significantly and negatively associated with miscarriage risk. Different combination prediction models were generated according to the results of logistic regression analyses, and the combination of IL-1ß, Cu and Zn had the best prediction performance. The area under the curve (AUC) was 0.776, the sensitivity of the model was 60% and the specificity was 84%. In conclusion, the serum-related indicators of women undergoing ART on the 14th day after embryo transfer, including the inflammatory cytokines such as IL-1ß and TNF-α and the essential trace metal elements such as V, Cu, Zn and Se, were negatively correlated with miscarriage risk. A multivariate algorithm model to predict pregnancy outcome among women undergoing ART was established, which showed that IL-1ß, Cu and Zn might synergistically predict pregnancy outcome.
Assuntos
Aborto Espontâneo , Infertilidade Feminina , Selênio , Oligoelementos , Feminino , Humanos , Gravidez , Aborto Espontâneo/diagnóstico , Aborto Espontâneo/metabolismo , Estudos de Casos e Controles , Fertilização in vitro , Infertilidade Feminina/terapia , Interleucina-10 , Interleucina-1beta/sangue , Interleucina-1beta/metabolismo , Fator de Necrose Tumoral alfa , Zinco/sangue , Cobre/sangueRESUMO
Influenza virus hemagglutinin (HA) stem is currently regarded as an extremely promising immunogen for designing universal influenza vaccines. The appropriate antigen-presenting vaccine vector would be conducive to increasing the immunogenicity of the HA stem antigen. In this study, we generated chimeric virus-like particles (cVLPs) co-displaying the truncated C-terminal of DnaK from Escherichia coli and H1 stem or full-length H1 antigen using the baculovirus expression system. Transmission electronic micrography revealed the expression and presentation of H1 stem antigens on the surface of VLPs. Vaccinations of mice with the H1 stem cVLPs induced H1-specific immune responses and provided heterologous immune protection in vivo, which was more effective than vaccinations with VLPs displaying H1 stem alone in protecting mice against weight loss as well as increasing survival rates after lethal influenza viral challenge. The results indicate that the incorporation of the truncated C-terminal of DnaK as an adjuvant protein into the cVLPs significantly enhances the H1-specific immunity and immune protection. We have explicitly identified the VLP platform as an effective way of expressing HA stem antigen and revealed that chimeric VLP is an vaccine vector for developing HA stem-based universal influenza vaccines.
Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Vacinas de Partículas Semelhantes a Vírus , Camundongos , Animais , Humanos , Vacinas contra Influenza/genética , Influenza Humana/prevenção & controle , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Hemaglutininas , Infecções por Orthomyxoviridae/prevenção & controle , Anticorpos Antivirais , Camundongos Endogâmicos BALB C , Vacinas de Partículas Semelhantes a Vírus/genéticaRESUMO
Dynamic changes of the paired heavy and light chain B cell receptor (BCR) repertoire provide an essential insight into understanding the humoral immune response post-SARS-CoV-2 infection and vaccination. However, differences between the endogenous paired BCR repertoire kinetics in SARS-CoV-2 infection and previously recovered/naïve subjects treated with the inactivated vaccine remain largely unknown. We performed single-cell V(D)J sequencing of B cells from six healthy donors with three shots of inactivated SARS-CoV-2 vaccine (BBIBP-CorV), five people who received the BBIBP-CorV vaccine after having recovered from COVID-19, five unvaccinated COVID-19 recovered patients and then integrated with public data of B cells from four SARS-CoV-2-infected subjects. We discovered that BCR variable (V) genes were more prominently used in the SARS-CoV-2 exposed groups (both in the group with active infection and in the group that had recovered) than in the vaccinated groups. The VH gene that expanded the most after SARS-CoV-2 infection was IGHV3-33, while IGHV3-23 in the vaccinated groups. SARS-CoV-2-infected group enhanced more BCR clonal expansion and somatic hypermutation than the vaccinated healthy group. A small proportion of public clonotypes were shared between the SARS-CoV-2 infected, vaccinated healthy, and recovered groups. Moreover, several public antibodies had been identified against SARS-CoV-2 spike protein. We comprehensively characterize the paired heavy and light chain BCR repertoire from SARS-CoV-2 infection to vaccination, providing further guidance for the development of the next-generation precision vaccine.
Assuntos
COVID-19 , Vacinas Virais , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Receptores de Antígenos de Linfócitos B/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , VacinaçãoRESUMO
The melanocortin 4 receptor (MC4R) plays a critical role in the long-term regulation of energy homeostasis, and mutations in the MC4R are the most common cause of monogenic obesity. However, the precise molecular and cellular mechanisms underlying the maintenance of energy balance within MC4R-expressing neurons are unknown. We recently reported that the MC4R localizes to the primary cilium, a cellular organelle that allows for partitioning of incoming cellular signals, raising the question of whether the MC4R functions in this organelle. Here, using mouse genetic approaches, we found that cilia were required specifically on MC4R-expressing neurons for the control of energy homeostasis. Moreover, these cilia were critical for pharmacological activators of the MC4R to exert an anorexigenic effect. The MC4R is expressed in multiple brain regions. Using targeted deletion of primary cilia, we found that cilia in the paraventricular nucleus of the hypothalamus (PVN) were essential to restrict food intake. MC4R activation increased adenylyl cyclase (AC) activity. As with the removal of cilia, inhibition of AC activity in the cilia of MC4R-expressing neurons of the PVN caused hyperphagia and obesity. Thus, the MC4R signaled via PVN neuron cilia to control food intake and body weight. We propose that defects in ciliary localization of the MC4R cause obesity in human inherited obesity syndromes and ciliopathies.
Assuntos
Peso Corporal , Encéfalo/metabolismo , Cílios/metabolismo , Ingestão de Alimentos , Neurônios/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais , Animais , Cílios/genética , Metabolismo Energético , Camundongos , Camundongos Transgênicos , Receptor Tipo 4 de Melanocortina/genéticaRESUMO
BACKGROUND: Fire-needle acupuncture, an important kind of acupuncture therapy, has been clinically used to treat upper limb spastic paralysis (ULSP) after stroke. Clinical experience has indicated that fire-needle acupuncture treatment takes less time, requires fewer visits, and has more rapid results and fewer side effects compared to chemical medicine alternatives. This study will evaluate the effects of fire-needle acupuncture for ULSP in the context of standardized clinical research and provide high-quality data to inform clinical procedures and future study design. METHODS/DESIGN: A randomized controlled trial will be carried out to evaluate the effects of fire-needle acupuncture therapy in patients with ULSP from stroke. ULSP patients (nâ¯=â¯120) will be recruited at Changhai Hospital in Shanghai, China. Patients will be randomly divided into three groups, including fire-needle acupuncture group (FAG), filiform-needle acupuncture group (FFAG) and rehabilitation treatment group (RTG). During the 3-week treatment, the FAG will be treated every two days, while FFAG and RTG will be treated 5â¯d in a row and then rest for 2â¯d. The Simplified Fugl-Meyer Motor Function Scale and Modified Ashworth Scale will be used as the primary outcome measures. Statistical analysis will be conducted by an independent statistician. DISCUSSION: Through this study, the utility of fire-needle acupuncture in treating ULSP after stroke will be tested, and some specific claims of fire-needle acupuncture therapy will be evaluated, such as relieving spasm and muscular tension, improving activities of daily living, rapidity of response and less frequency of treatment compared with other treatments. TRIAL REGISTRATION: Chinese Clinical Trial Registry (identifier: ChiCTR-IOR-17013875; registration date: 28 December 2016).