Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142195

RESUMO

Inflammation is the first line of defense against pathogens and cellular dangers [...].


Assuntos
Inflamassomos , Metiltransferases , Humanos , Inflamação
2.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809447

RESUMO

Inflammation is an innate immunity protecting the body from pathogens and cellular damages and comprises two steps; 1) priming (preparatory step) and triggering (activation step). The key feature of the triggering step is the activation of inflammasomes that are intracellular protein complexes consisting of pattern recognition receptors and inflammatory molecules. Inflammasomes are activated in response to various ligands, leading to the caspase-1-mediated maturation and secretion of pro-inflammatory cytokines, IL-1ß and IL-18 and the gasdermin D-mediated pyroptosis, an inflammatory form of cell death. Previous studies have demonstrated that inflammasome activation is a key determinant of inflammatory responses and many human diseases; therefore, inflammasomes have been attracted much attention as critical drug targets to prevent and treat various human diseases.


Assuntos
Doença , Inflamassomos/metabolismo , Animais , Biomarcadores/metabolismo , Flavonoides/farmacologia , Humanos , Inflamação/patologia , Camundongos
3.
BMC Complement Altern Med ; 19(1): 90, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036001

RESUMO

BACKGROUND: Papaver nudicaule belongs to the Papaveraceae family, which is planted as an annual herbaceous species generally for ornamental purpose. Papaver rhoeas in the same family has been reported to have various pharmacological activities such as antioxidant and analgesic effects. In contrast, little is known about the pharmacological activity of Papaver nudicaule. In this study, the anti-inflammatory activity of Papaver nudicaule extracts and the action mechanisms were investigated in RAW264.7 macrophage cells. METHODS: To investigate the anti-inflammatory activity of five cultivars of Papaver nudicaule with different flower color, samples were collected from their aerial parts at two growth stages (60 and 90 days) and their ethanol extracts were evaluated in the lipopolysaccharide (LPS)-treated RAW264.7 cells by measuring nitric oxide (NO) and prostaglandin E2 (PGE2) levels. Interleukin 1-beta (IL-1ß), Interleukin-6 (IL-6) and Tumor necrosis factor alpha (TNF-α) production were also analyzed by RT-PCR and multiplex assays. Nuclear Factor-kappa-light-chain-enhancer of activated B cells (NF-κB) and Signal transducer and activator of transcription 3 (STAT3) signaling pathways were examined using western blotting and luciferase reporter assays to reveal the action mechanism of Papaver nudicaule extracts in their anti-inflammatory activity. RESULTS: All of the Papaver nudicaule extracts were effective in reducing the LPS-induced NO, which is an important inflammatory mediator, and the extract of Papaver nudicaule with white flower collected at 90 days (NW90) was selected for further experiments because of the best effect on reducing the LPS-induced NO as well as no toxicity. NW90 lowered the LPS-induced PGE2 level and decreased the LPS-induced Nitric oxide synthase 2 (NOS2) and Cyclooxygenase 2 (COX2). In addition, NW90 reduced the LPS-induced inflammatory cytokines, IL-1ß and IL-6. Furthermore, NW90 inhibited the LPS-induced activation of NF-κB and STAT3. CONCLUSIONS: These results indicate that NW90 may restrain inflammation by inhibiting NF-κB and STAT3, suggesting the potential therapeutic properties of Papaver nudicaule against inflammatory disease.


Assuntos
Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismo , Papaver/química , Extratos Vegetais/farmacologia , Fator de Transcrição STAT3/metabolismo , Animais , Anti-Inflamatórios/química , Sobrevivência Celular/efeitos dos fármacos , Inflamação/induzido quimicamente , Lipopolissacarídeos/efeitos adversos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Extratos Vegetais/química , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
4.
Int J Mol Sci ; 20(18)2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31540059

RESUMO

Enterotoxigenic Bacteroides fragilis (ETBF) is human intestinal commensal bacterium and a potent initiator of colitis through secretion of the metalloprotease Bacteroides fragilis toxin (BFT). BFT induces cleavage of E-cadherin in colon cells, which subsequently leads to NF-κB activation. Zerumbone is a key component of the Zingiber zerumbet (L.) Smith plant and can exhibit anti-bacterial and anti-inflammatory effects. However, whether zerumbone has anti-inflammatory effects in ETBF-induced colitis remains unknown. The aim of this study was to determine the anti-inflammatory effect of orally administered zerumbone in a murine model of ETBF infection. Wild-type C57BL/6 mice were infected with ETBF and orally administered zerumbone (30 or 60 mg/kg) once a day for 7 days. Treatment of ETBF-infected mice with zerumbone prevented weight loss and splenomegaly and reduced colonic inflammation with decreased macrophage infiltration. Zerumbone treatment significantly decreased expression of IL-17A, TNF-α, KC, and inducible nitric oxide synthase (iNOS) in colonic tissues of ETBF-infected mice. In addition, serum levels of KC and nitrite was also diminished. Zerumbone-treated ETBF-infected mice also showed decreased NF-κB signaling in the colon. HT29/C1 colonic epithelial cells treated with zerumbone suppressed BFT-induced NF-κB signaling and IL-8 secretion. However, BFT-mediated E-cadherin cleavage was unaffected. Furthermore, zerumbone did not affect ETBF colonization in mice. In conclusion, zerumbone decreased ETBF-induced colitis through inhibition of NF-κB signaling.


Assuntos
Antibacterianos/uso terapêutico , Infecções por Bacteroides/tratamento farmacológico , Bacteroides fragilis , Colite/tratamento farmacológico , NF-kappa B/antagonistas & inibidores , Sesquiterpenos/uso terapêutico , Animais , Toxinas Bacterianas , Infecções por Bacteroides/imunologia , Bacteroides fragilis/metabolismo , Caderinas/metabolismo , Colite/imunologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/fisiopatologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/patologia , Células HT29 , Humanos , Interleucina-17/metabolismo , Interleucina-8/sangue , Metaloendopeptidases , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Int J Mol Sci ; 20(24)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847234

RESUMO

Endoplasmic reticulum (ER) stress is known to influence various cellular functions, including cell cycle progression. Although it is well known how ER stress inhibits cell cycle progression at the G1 phase, the molecular mechanism underlying how ER stress induces G2/M cell cycle arrest remains largely unknown. In this study, we found that ER stress and subsequent induction of the UPR led to cell cycle arrest at the G2/M phase by reducing the amount of cyclin B1. Pharmacological inhibition of the IRE1α or ATF6α signaling did not affect ER stress-induced cell cycle arrest at the G2/M phase. However, when the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α) phosphorylation was genetically abrogated, the cell cycle progressed without arresting at the G2/M phase after ER stress. GEO database analysis showed that growth arrest and DNA-damage-inducible protein α (Gadd45α) were induced in an eIF2a phosphorylation-dependent manner, which was confirmed in this study. Knockdown of GADD45α abrogated cell cycle arrest at the G2/M phase upon ER stress. Finally, the cell death caused by ER stress significantly reduced when GADD45α expression was knocked down. In conclusion, GADD45α is a key mediator of ER stress-induced growth arrest via regulation of the G2/M transition and cell death through the eIF2α signaling pathway.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular , Transdução de Sinais , Proteínas de Ciclo Celular/genética , Ciclina B1/genética , Ciclina B1/metabolismo , Bases de Dados Genéticas , Fator de Iniciação 2 em Eucariotos/genética , Humanos , Fosforilação
6.
Int J Mol Sci ; 19(6)2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921805

RESUMO

Autophagy is involved in the development and differentiation of many cell types. It is essential for the pre-adipocytes to respond to the differentiation stimuli and may contribute to reorganizing the intracellulum to adapt the morphological and metabolic demands. Although AMPK, an energy sensor, has been associated with autophagy in several cellular processes, how it connects to autophagy during the adipocyte differentiation remains to be investigated. Here, we studied the interaction between AMPK and autophagy gene products at the mRNA level during adipocyte differentiation using public-access datasets. We used the weighted-gene co-expression analysis to detect and validate multiple interconnected modules of co-expressed genes in a dataset of MDI-induced 3T3-L1 pre-adipocytes. These modules were found to be highly correlated with the differentiation course of the adipocytes. Several novel interactions between AMPK and autophagy gene products were identified. Together, it is possible that AMPK-autophagy interaction is temporally and locally modulated in response to the differentiation stimuli.


Assuntos
Adipócitos/metabolismo , Adipogenia , Proteínas Relacionadas à Autofagia/genética , Redes Reguladoras de Genes , Proteínas Quinases/genética , Células 3T3 , Quinases Proteína-Quinases Ativadas por AMP , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Proteínas Quinases/metabolismo , Transcriptoma
7.
EMBO J ; 31(17): 3564-74, 2012 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-22863776

RESUMO

The Rpd3S histone deacetylase complex represses cryptic transcription initiation within coding regions by maintaining the hypo-acetylated state of transcribed chromatin. Rpd3S recognizes methylation of histone H3 at lysine 36 (H3K36me), which is required for its deacetylation activity. Rpd3S is able to function over a wide range of H3K36me levels, making this a unique system to examine how chromatin regulators tolerate the reduction of their recognition signal. Here, we demonstrated that Rpd3S makes histone modification-independent contacts with nucleosomes, and that Rpd3S prefers di-nucleosome templates since two binding surfaces can be readily accessed simultaneously. Importantly, this multivalent mode of interaction across two linked nucleosomes allows Rpd3S to tolerate a two-fold intramolecular reduction of H3K36me. Our data suggest that chromatin regulators utilize an intrinsic di-nucleosome-recognition mechanism to prevent compromised function when their primary recognition modifications are diluted.


Assuntos
Histona Desacetilases/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Animais , Metilação , Xenopus
8.
J Nat Prod ; 79(2): 317-23, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26829656

RESUMO

Glioblastoma is one of the most malignant primary tumors, and the prognosis for glioblastoma patients remains poor. Tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL) is considered a promising anticancer agent due to its remarkable ability to selectively kill tumor cells. However, since many cancers are resistant to TRAIL, strategies to overcome resistance are required for the successful use of TRAIL in the clinic. In the present study, the potential of morusin as a TRAIL sensitizer in human glioblastoma cells was evaluated. Treatment with TRAIL or morusin alone showed weak cytotoxicity in human glioblastoma cells. However, combination treatment of TRAIL with morusin synergistically decreased cell viability and increased apoptosis compared with single treatment. Morusin induced expression of death receptor 5 (DR5), but not DR4 or decoy receptors (DcR1 and DcR2). Furthermore, morusin significantly decreased anti-apoptotic molecules survivin and XIAP. In addition, morusin reduced expression of EGFR and PDFGR as well as phosphorylation of STAT3, possibly mediating down-regulation of survivin and XIAP. Together these results suggest that morusin enhances TRAIL sensitivity in human glioblastoma cells through regulating expression of DR5 and EGFR. Therefore, the combination treatment of TRAIL and morusin may be a new therapeutic strategy for malignant glioma patients.


Assuntos
Receptores ErbB/metabolismo , Flavonoides/farmacologia , Glioblastoma/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Apoptose/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Flavonoides/química , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Masculino , Estrutura Molecular , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/efeitos dos fármacos , Fator de Transcrição STAT3/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
9.
Cell Physiol Biochem ; 35(5): 1821-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25833196

RESUMO

BACKGROUND/AIMS: Our group reported that cinnamaldehyde derivative, (E)-4-((2-(3-oxopop-1-enyl)phenoxy)methyl)pyridinium malonic acid (CB-PIC) induced apoptosis in hypoxic SW620 colorectal cancer cells via activation of AMP-activated protein kinase (AMPK) and extracellular signal regulated kinase (ERK). Herein, sensitizing effect of CB-PIC was investigated in resistant cancer cells such as paclitaxel (PT) resistant lung cancer cells (H460/PT), and Adriamycin (Adr) resistant breast cancer (MCF7/Adr) and colon cancer (HCT15/cos) cells. METHODS: Various drug resistant cell lines were treated with CB-PIC, and the signalling pathway and functional assay were explored by Western blot, Rhodamine assay, FACS, RT-PCR and MTT assay. RESULTS: We found that CB-PIC effectively exerted cytotoxicity, increased sub G1 population and the cleaved form of poly (ADP-ribose) polymerase (PARP) and caspase 9 in drug resistant cancer cells. Furthermore, CB-PIC sensitized resistant cancer cells to adriamycin via downregulation of survival proteins such as survivin, Bcl-xL and Bcl-2, along with MDR1 suppression leading to accumulation of drug in the intracellular region. Of note, CB-PIC transcriptionally decreased MDR1 expression via suppression of STAT3 and AKT signalling in three resistant cancer cells with highly expressed P-glycoprotein. Nonetheless, CB-PIC did not affect transport activity of P-glycoprotein in a short time efflux assay, while epigallocatechin gallate (EGCG) accumulated Rhodamine 123 into intracellular region of cell by direct inhibition of MDR1 transport activity. CONCLUSIONS: These data demonstrate that CB-PIC suppresses the P-glycoprotein expression through inhibition of STAT3 and AKT signalling to overcome drug resistance in chemo-resistant cancer cells as a potent chemotherapeutic sensitizer.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Acroleína/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/farmacologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Acroleína/química , Acroleína/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caspase 9/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Células MCF-7 , Fosforilação/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Piridinas/química , Survivina , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
10.
Biochem Biophys Res Commun ; 462(4): 294-300, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25979359

RESUMO

Upon shift to a hypoxic environment, cellular HIF-1α protein is stabilized, with a rapid decline in oxygen-sensitive hydroxylation. Several additional post-translational modifications of HIF-1α are critical in controlling protein stability during hypoxia. In the present study, we showed that SIRT1 stabilizes HIF-1α via direct binding and deacetylation during hypoxia. SIRT1 depletion or inactivation led to reduced hypoxic HIF-1α accumulation, accompanied by an increase in HIF-1α acetylation. Impaired HIF-1α accumulation was recovered upon inhibition of 26S proteasome activity, indicating that SIRT1 is essential for HIF-1α stabilization during hypoxia. Consistently, HIF-1α accumulation was enhanced upon overexpression of wild-type SIRT1, but not its dominant-negative form. SIRT1-mediated accumulation of HIF-1α protein led to increased expression of HIF-1α target genes, including VEGF, GLUT1 and MMP2, and ultimate promotion of cancer cell invasion. These findings collectively imply that hypoxic HIF-1α stabilization requires SIRT1 activation. Furthermore, SIRT1 protection of HIF-1α from acetylation may be a prerequisite for stabilization and consequent enhancement of cell invasion.


Assuntos
Hipóxia Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Sirtuína 1/metabolismo , Acetilação , Sequência de Bases , Linhagem Celular , Primers do DNA , Humanos , Ligação Proteica , Estabilidade Proteica , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirtuína 1/genética
11.
Cell Physiol Biochem ; 34(3): 865-72, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25199820

RESUMO

BACKGROUND/AIMS: The use of tyrosine kinase inhibitors (TKIs) to target active epidermal growth factor receptor (EGFR)-harbouring mutations has been effective in patients with advanced non-small-cell lung cancer (NSCLC). However, the use of TKIs in NSCLS patients with somatic EGFR mutations, particularly T790M, causes drug resistance. Thus, in the present study, we investigated overcoming resistance against the TKI gefitinib by combination treatment with melatonin in H1975 NSCLC cells harbouring the T790M somatic mutation. METHODS: H1975 and HCC827 cells were treated with melatonin in combination with gefitinib, and cell viability, cell cycle progression, apoptosis, and EGFR, AKT, p38, Bcl-2, Bcl-xL, caspase 3 and Bad protein levels were examined. RESULTS: Treatment with melatonin dose-dependently decreased the viability of H1975 cells harbouring the T790M somatic mutation compared to HCC827 cells with an EGFR active mutation. Melatonin-mediated cell death resulted in decreased phosphorylation of EGFR and Akt, leading to attenuated expression of survival proteins, such as Bcl-2, Bcl-xL and survivin, and activated caspase 3 in H1975 cells, but not in HCC827 cells. However, we did not observe a significant change in expression of cell cycle proteins, such as cyclin D, cyclin A, p21 and CDK4 in H1975 cells. Surprisingly, co-treatment of gefitinib with melatonin effectively decreased the viability of H1975 cells, but not HCC827 cells. Moreover, co-treatment of H1975 cells caused consistent down-regulation of EGFR phosphorylation and induced apoptosis compared to treatment with gefitinib or melatonin alone. CONCLUSIONS: Our findings demonstrate that melatonin acts as a potent chemotherapeutic agent by sensitising to gefitinib TKI-resistant H1975 cells that harbour a EGFR T790M mutation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , Neoplasias Pulmonares/patologia , Melatonina/farmacologia , Mutação , Quinazolinas/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Citometria de Fluxo , Gefitinibe , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Fosforilação
12.
J Nat Prod ; 77(1): 63-9, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24328151

RESUMO

The underlying antimetastatic mechanism of anethole (1) still remains unclear in association with the molecules of the epithelial to mesenchymal transition (EMT). Herein, the role of the EMT molecules was elucidated in terms of the antimetastatic activity of 1 using DU145 cells. Anethole significantly inhibited the adhesion of DU145 cells to vitronectin-coated plates, as well as migration in a wound-healing assay and invasion using a Boyden chamber. Also, anethole suppressed the expression of MMP-9 in DU145 cells by zymography, ELISA, and RT-PCR. Consistently, the silencing of MMP-9 enhanced the activity of 1 to upregulate the expression of E-cadherin and to attenuate the expression of Vimentin in DU145 cells. Compound 1 enhanced E-cadherin, which is an epithelial marker and attenuated the expression of Vimentin, Twist, and Snail as mesenchymal molecules at the mRNA level. Consistently, anethole upregulated E-cadherin and downregulated the expression of Vimentin, Twist and PI3K, and AKT at the protein level in DU145 cells. Conversely, the antimetastatic effects of 1 to inhibit invasion and the expression of MMP-9 and upregulate E-cadherin were reversed by the EMT inducer TGF-ß in DU145 cells. Overall, the present findings suggest that anethole exerts antimetastatic activity via regulation of crosstalk between EMT molecules and MMP-9 on the basis of the in vitro data obtained.


Assuntos
Anisóis/farmacologia , Antineoplásicos/farmacologia , Metaloproteinase 9 da Matriz/metabolismo , Derivados de Alilbenzenos , Anisóis/química , Biomarcadores , Caderinas/metabolismo , Transição Epitelial-Mesenquimal , Humanos , Masculino , Metaloproteinase 9 da Matriz/genética , Mesoderma/metabolismo , Estrutura Molecular , Neoplasias da Próstata/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta/farmacologia , Proteína 1 Relacionada a Twist/efeitos dos fármacos , Vimentina/efeitos dos fármacos
13.
Biochem Biophys Res Commun ; 441(4): 831-7, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24211209

RESUMO

ß-Transducin repeat-containing protein (ß-TrCP), an E3 ligase, promotes the degradation of substrate proteins in response to various stimuli. Even though several ß-TrCP substrates have been identified to date, limited information of its upstream regulators is available. Here, we showed that SIRT1 suppresses ß-TrCP protein synthesis via post-translational degradation. SIRT1 depletion led to a significant increase in the ß-TrCP accumulation without affecting the mRNA level. Consistently, ß-TrCP protein accumulation induced by resveratrol was further enhanced upon SIRT1 depletion. Rescue of SIRT1 reversed the effect of resveratrol, leading to reduced ß-TrCP protein levels. Proteasomal inhibition led to recovery of ß-TrCP in cells with SIRT1 overexpression. Notably, the recovered ß-TrCP colocalized mostly with SIRT1. Thus, SIRT1 acts as a negative regulator of ß-TrCP synthesis via promoting protein degradation.


Assuntos
Sirtuína 1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Glucose/deficiência , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Biossíntese de Proteínas , Proteólise , RNA Mensageiro/metabolismo , Resveratrol , Sirtuína 1/genética , Estilbenos/farmacologia , Transcrição Gênica
14.
Bioorg Med Chem Lett ; 23(9): 2692-5, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23523142

RESUMO

Ginkgetin is a natural biflavonoid isolated from leaves of Ginkgo biloba L. Though it was known to have anti-inflammatory, anti-influenza virus, anti-fungal activity, osteoblast differentiation stimulating activity and neuro-protective effects, the underlying antitumor mechanism of ginkgetin still remains unclear. Thus, in the present study, anti-cancer mechanism of ginkgetin was elucidated in human prostate cancer PC-3 cells. Ginkgetin suppressed the viability of PC-3 cells in a concentration-dependent manner and also significantly increased the sub-G1 DNA contents of cell cycle in PC-3 cells. Ginkgetin activated caspase-3 and attenuated the expression of survival genes such as Bcl-2, Bcl-xL, survivin and Cyclin D1 at protein and mRNA levels. Consistently, pan-caspase inhibitor Z-DEVD-fmk blocked sub G1 accumulation and cleavages of PRAP and caspase 3 induced by ginkgetin in PC-3 cells. Overall, these findings suggest that ginkgetin induces apoptosis in PC-3 cells via activation of caspase 3 and inhibition of survival genes as a potent chemotherapeutic agent for prostate cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Biflavonoides/farmacologia , Caspases/metabolismo , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Biflavonoides/química , Biflavonoides/isolamento & purificação , Caspases/química , Linhagem Celular Tumoral , Ciclina D1/genética , Ciclina D1/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Ginkgo biloba/química , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Masculino , Oligopeptídeos/farmacologia , Folhas de Planta/química , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Survivina , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
15.
Phytother Res ; 27(11): 1714-22, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23325562

RESUMO

Despite the antitumour effect of ursolic acid observed in several cancers, the underlying mechanism remains unclear. Thus, in the present study, the roles of AMP-activated protein kinase (AMPK) and glycogen synthase kinase 3 beta (GSK3ß) were examined in ursolic acid induced apoptosis in HepG2 hepatocellular carcinoma cells. Ursolic acid significantly exerted cytotoxicity, increased the sub-G1 population and the number of ethidium homodimer and terminal deoxynucleotidyl transferase(TdT) mediated dUTP nick end labeling positive cells in HepG2 cells. Also, ursolic acid enhanced the cleavages of poly-ADP-ribose polymerase (PARP) and caspase3, attenuated the expression of astrocyte elevated gene (AEG1) and survivin in HepG2 cells. Interestingly, ursolic acid increased the phosphorylation of AMPK and coenzyme A carboxylase and also enhanced phosphorylation of GSK3ß at inactive form serine 9, whereas ursolic acid attenuated the phosphorylation of AKT and mTOR in HepG2 cells. Conversely, AMPK inhibitor compound C or GSK3ß inhibitor SB216763 blocked the cleavages of PARP and caspase 3 induced by ursolic acid in HepG2 cells. Furthermore, proteosomal inhibitor MG132 suppressed AMPK activation, GSK3ß phosphorylation, cleaved PARP and deceased AEG-1 induced by ursolic acid in HepG2 cells. Overall, our findings suggest that ursolic acid induced apoptosis in HepG2 cells via AMPK activation and GSK3ß phosphorylation as a potent chemopreventive agent.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Triterpenos/farmacologia , Carcinoma Hepatocelular/patologia , Caspase 3/metabolismo , Moléculas de Adesão Celular/metabolismo , Glicogênio Sintase Quinase 3 beta , Células Hep G2 , Humanos , Indóis/farmacologia , Leupeptinas/farmacologia , Neoplasias Hepáticas/patologia , Maleimidas/farmacologia , Proteínas de Membrana , Fosforilação , Poli(ADP-Ribose) Polimerases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a RNA , Serina-Treonina Quinases TOR/metabolismo , Ubiquitinação , Ácido Ursólico
16.
Scientifica (Cairo) ; 2023: 5842652, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469438

RESUMO

Research on the effective attachment of aptamers to beads, which is essential for using aptamers, has made relatively little progress. Here, we demonstrate a new method based on flow cytometry to determine the optimal aptamer-to-bead ratio for aptamer immobilization. The fluorescence intensity increased with a gradual two-fold increase in the aptamer fluorescence concentration, peaked at an aptamer-to-bead ratio of 2.56 × 105, and tended to decrease at higher ratios. A similar pattern was observed in an additional analysis using fluorescence microscopy. However, measurement of the free aptamer concentration after the aptamer-bead conjugation reaction revealed a large aptamer loss compared to the 1.28 × 105 aptamer-bead ratio. In addition, the binding efficiency of the aptamer/bead to the target was highest at the aptamer-to-bead ratio of 1.28 × 105. Taken together, our data suggest that the proposed method is the best and easiest for determining the optimal aptamer-to-bead ratio.

17.
Cell Biosci ; 13(1): 182, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777750

RESUMO

BACKGROUND: Under conditions of hypoxia, cancer cells with hypoxia inducible factor-1α (HIF-1α) from heterogeneous tumor cells show greater aggression and progression in an effort to compensate for harsh environmental conditions. Extensive study on the stability of HIF-1α under conditions of acute hypoxia in cancer progression has been conducted, however, understanding of its involvement during the chronic phase is limited. METHODS: In this study, we investigated the effect of SIRT1 on HIF1 stability in a typical chronic hypoxic conditon that maintains cells for 24 h under hypoxia using Western blotting, co-IP, measurement of intracellular NAD + and NADH levels, semi-quantitative RT-PCR analysis, invasion assay, gene knockdown. RESULTS: Here we demonstrated that the high concentration of pyruvate in the medium, which can be easily overlooked, has an effect on the stability of HIF-1α. We also demonstrated that NADH functions as a signal for conveyance of HIF-1α degradation via the SIRT1 and VHL signaling pathway under conditions of chronic hypoxia, which in turn leads to attenuation of hypoxically strengthened invasion and angiogenic activities. A steep increase in the level of NADH occurs during chronic hypoxia, leading to upregulation of acetylation and degradation of HIF-1α via inactivation of SIRT1. Of particular interest, p300-mediated acetylation at lysine 709 of HIF-1α is recogonized by VHL, which leads to degradation of HIF-1α via ubiquitin/proteasome machinary under conditions of chronic hypoxia. In addition, we demonstrated that NADH-elevation-induced acetylation and subsequent degradation of HIF-1α was independent of proline hydroxylation. CONCLUSIONS: Our findings suggest a critical role of SIRT1 as a metabolic sensor in coordination of hypoxic status via regulation of HIF-1α stability. These results also demonstrate the involvement of VHL in degradation of HIF-1α through recognition of PHD-mediated hydroxylation in normoxia and p300-mediated HIF-1α acetylation in hypoxia.

18.
Cancer Genomics Proteomics ; 18(5): 675-684, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34479919

RESUMO

BACKGROUND: We propose a novel prognostic biomarker-based strategy for increasing the efficacy of radiotherapy (RT) in head and neck squamous cell carcinoma (HNSCC). MATERIALS AND METHODS: We identified genes associated with superoxide dismutase 2 (SOD2) and nuclear factor erythroid-2-related factor 2 (NRF2) from gene-expression data of The Cancer Genome Atlas (TCGA) by calculating Pearson correlation. Patients were divided into two groups using hierarchical clustering. Colony-formation assay was performed to determine radioresistance in HNSCC cell line CAL27. Pathway analysis was conducted using The Database for Annotation, Visualization and Integrated Discovery (DAVID). RESULTS: We developed a 49-gene signature with SOD2- and NRF2-associated genes. Using mRNA expression data for the 49-gene signature, we performed hierarchical clustering to stratify patients into two subtypes, subtype A and B. In the TCGA cohort, subgroup A demonstrated a better prognosis than subgroup B in patients who received RT. The signature robustness was evaluated in other independent cohorts. We showed through colony-formation assay that depletion of SOD2 or NRF2 leads to increased radiosensitivity. CONCLUSION: We identified and validated a robust gene signature of SOD2- and NRF2-associated genes in HNSCC and confirmed their link to radioresistance using in vitro assay, providing a novel biomarker for the evaluation of HNSCC prognosis.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Superóxido Dismutase/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
19.
Mol Cancer Res ; 7(3): 371-82, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19276188

RESUMO

Functional suppression of spindle checkpoint protein activity results in apoptotic cell death arising from mitotic failure, including defective spindle formation, chromosome missegregation, and premature mitotic exit. The recently identified p31(comet) protein acts as a spindle checkpoint silencer via communication with the transient Mad2 complex. In the present study, we found that p31(comet) overexpression led to two distinct phenotypic changes, cellular apoptosis and senescence. Because of a paucity of direct molecular link of spindle checkpoint to cellular senescence, however, the present report focuses on the relationship between abnormal spindle checkpoint formation and p31(comet)-induced senescence by using susceptible tumor cell lines. p31(comet)-induced senescence was accompanied by mitotic catastrophe with massive nuclear and chromosomal abnormalities. The progression of the senescence was completely inhibited by the depletion of p21(Waf1/Cip1) and partly inhibited by the depletion of the tumor suppressor protein p53. Notably, p21(Waf1/Cip1) depletion caused a dramatic phenotypic conversion of p31(comet)-induced senescence into cell death through mitotic catastrophe, indicating that p21(Waf1/Cip1) is a major mediator of p31(comet)-induced cellular senescence. In contrast to wild-type p31(comet), overexpression of a p31 mutant lacking the Mad2 binding region did not cause senescence. Moreover, depletion of Mad2 by small interfering RNA induced senescence. Here, we show that p31(comet) induces tumor cell senescence by mediating p21(Waf1/Cip1) accumulation and Mad2 disruption and that these effects are dependent on a direct interaction of p31(comet) with Mad2. Our results could be used to control tumor growth.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/metabolismo , Senescência Celular/fisiologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas Nucleares/biossíntese , Proteínas Repressoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Células Clonais , DNA/metabolismo , Humanos , Proteínas Mad2 , Mitose/fisiologia , Proteínas Nucleares/genética , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Transdução de Sinais , Fuso Acromático/genética , Fuso Acromático/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , beta-Galactosidase/biossíntese
20.
J Ginseng Res ; 44(3): 373-385, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32372859

RESUMO

Inflammation is an immune response that protects against pathogens and cellular stress. The hallmark of inflammatory responses is inflammasome activation in response to various stimuli. This subsequently activates downstream effectors, that is, inflammatory caspases such as caspase-1, 4, 5, 11, and 12. Extensive efforts have been made on developing effective and safe anti-inflammatory therapeutics, and ginseng has long been traditionally used as efficacious and safe herbal medicine in treating various inflammatory and inflammation-mediated diseases. Many studies have successfully shown that ginseng plays an anti-inflammatory role by inhibiting inflammasomes and inflammasome-activated inflammatory caspases. This review discusses the regulatory roles of ginseng on inflammatory caspases in inflammatory responses and also suggests new research areas on the anti-inflammatory function of ginseng, which provides a novel insight into the development of ginseng as an effective and safe anti-inflammatory herbal medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA