Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 12(9): e1005880, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27622505

RESUMO

For efficient replication, viruses have developed mechanisms to evade innate immune responses, including the antiviral type-I interferon (IFN-I) system. Nipah virus (NiV), a highly pathogenic member of the Paramyxoviridae family (genus Henipavirus), is known to encode for four P gene-derived viral proteins (P/C/W/V) with IFN-I antagonist functions. Here we report that NiV matrix protein (NiV-M), which is important for virus assembly and budding, can also inhibit IFN-I responses. IFN-I production requires activation of multiple signaling components including the IκB kinase epsilon (IKKε). We previously showed that the E3-ubiquitin ligase TRIM6 catalyzes the synthesis of unanchored K48-linked polyubiquitin chains, which are not covalently attached to any protein, and activate IKKε for induction of IFN-I mediated antiviral responses. Using co-immunoprecipitation assays and confocal microscopy we show here that the NiV-M protein interacts with TRIM6 and promotes TRIM6 degradation. Consequently, NiV-M expression results in reduced levels of unanchored K48-linked polyubiquitin chains associated with IKKε leading to impaired IKKε oligomerization, IKKε autophosphorylation and reduced IFN-mediated responses. This IFN antagonist function of NiV-M requires a conserved lysine residue (K258) in the bipartite nuclear localization signal that is found in divergent henipaviruses. Consistent with this, the matrix proteins of Ghana, Hendra and Cedar viruses were also able to inhibit IFNß induction. Live NiV infection, but not a recombinant NiV lacking the M protein, reduced the levels of endogenous TRIM6 protein expression. To our knowledge, matrix proteins of paramyxoviruses have never been reported to be involved in innate immune antagonism. We report here a novel mechanism of viral innate immune evasion by targeting TRIM6, IKKε and unanchored polyubiquitin chains. These findings expand the universe of viral IFN antagonism strategies and provide a new potential target for development of therapeutic interventions against NiV infections.


Assuntos
Infecções por Henipavirus/imunologia , Quinase I-kappa B/imunologia , Evasão da Resposta Imune , Interferon Tipo I/imunologia , Vírus Nipah/imunologia , Proteínas com Motivo Tripartido/imunologia , Ubiquitina-Proteína Ligases/imunologia , Proteínas Virais/imunologia , Células A549 , Animais , Chlorocebus aethiops , Células HeLa , Infecções por Henipavirus/genética , Humanos , Quinase I-kappa B/genética , Imunidade Inata , Interferon Tipo I/genética , Vírus Nipah/genética , Poliubiquitina/genética , Poliubiquitina/imunologia , Multimerização Proteica/genética , Multimerização Proteica/imunologia , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética , Ubiquitinação/imunologia , Células Vero , Proteínas Virais/genética
2.
PLoS Pathog ; 11(3): e1004739, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25782006

RESUMO

The paramyxovirus matrix (M) protein is a molecular scaffold required for viral morphogenesis and budding at the plasma membrane. Transient nuclear residence of some M proteins hints at non-structural roles. However, little is known regarding the mechanisms that regulate the nuclear sojourn. Previously, we found that the nuclear-cytoplasmic trafficking of Nipah virus M (NiV-M) is a prerequisite for budding, and is regulated by a bipartite nuclear localization signal (NLSbp), a leucine-rich nuclear export signal (NES), and monoubiquitination of the K258 residue within the NLSbp itself (NLSbp-lysine). To define whether the sequence determinants of nuclear trafficking identified in NiV-M are common among other Paramyxovirinae M proteins, we generated the homologous NES and NLSbp-lysine mutations in M proteins from the five major Paramyxovirinae genera. Using quantitative 3D confocal microscopy, we determined that the NES and NLSbp-lysine are required for the efficient nuclear export of the M proteins of Nipah virus, Hendra virus, Sendai virus, and Mumps virus. Pharmacological depletion of free ubiquitin or mutation of the conserved NLSbp-lysine to an arginine, which inhibits M ubiquitination, also results in nuclear and nucleolar retention of these M proteins. Recombinant Sendai virus (rSeV-eGFP) bearing the NES or NLSbp-lysine M mutants rescued at similar efficiencies to wild type. However, foci of cells expressing the M mutants displayed marked fusogenicity in contrast to wild type, and infection did not spread. Recombinant Mumps virus (rMuV-eGFP) bearing the homologous mutations showed similar defects in viral morphogenesis. Finally, shotgun proteomics experiments indicated that the interactomes of Paramyxovirinae M proteins are significantly enriched for components of the nuclear pore complex, nuclear transport receptors, and nucleolar proteins. We then synthesize our functional and proteomics data to propose a working model for the ubiquitin-regulated nuclear-cytoplasmic trafficking of cognate paramyxovirus M proteins that show a consistent nuclear trafficking phenotype.


Assuntos
Núcleo Celular/metabolismo , Paramyxovirinae/metabolismo , Transporte Proteico/fisiologia , Proteínas da Matriz Viral/metabolismo , Sequência de Aminoácidos , Animais , Chlorocebus aethiops , Células HeLa , Humanos , Imageamento Tridimensional , Immunoblotting , Imunoprecipitação , Microscopia Confocal , Sinais de Localização Nuclear/metabolismo , Transfecção , Ubiquitina , Células Vero
3.
PLoS Pathog ; 6(11): e1001186, 2010 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21085610

RESUMO

Paramyxoviruses are known to replicate in the cytoplasm and bud from the plasma membrane. Matrix is the major structural protein in paramyxoviruses that mediates viral assembly and budding. Curiously, the matrix proteins of a few paramyxoviruses have been found in the nucleus, although the biological function associated with this nuclear localization remains obscure. We report here that the nuclear-cytoplasmic trafficking of the Nipah virus matrix (NiV-M) protein and associated post-translational modification play a critical role in matrix-mediated virus budding. Nipah virus (NiV) is a highly pathogenic emerging paramyxovirus that causes fatal encephalitis in humans, and is classified as a Biosafety Level 4 (BSL4) pathogen. During live NiV infection, NiV-M was first detected in the nucleus at early stages of infection before subsequent localization to the cytoplasm and the plasma membrane. Mutations in the putative bipartite nuclear localization signal (NLS) and the leucine-rich nuclear export signal (NES) found in NiV-M impaired its nuclear-cytoplasmic trafficking and also abolished NiV-M budding. A highly conserved lysine residue in the NLS served dual functions: its positive charge was important for mediating nuclear import, and it was also a potential site for monoubiquitination which regulates nuclear export of the protein. Concordantly, overexpression of ubiquitin enhanced NiV-M budding whereas depletion of free ubiquitin in the cell (via proteasome inhibitors) resulted in nuclear retention of NiV-M and blocked viral budding. Live Nipah virus budding was exquisitely sensitive to proteasome inhibitors: bortezomib, an FDA-approved proteasome inhibitor for treating multiple myeloma, reduced viral titers with an IC(50) of 2.7 nM, which is 100-fold less than the peak plasma concentration that can be achieved in humans. This opens up the possibility of using an "off-the-shelf" therapeutic against acute NiV infection.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Infecções por Henipavirus/virologia , Vírus Nipah/patogenicidade , Ubiquitina/metabolismo , Proteínas da Matriz Viral/metabolismo , Montagem de Vírus/fisiologia , Sequência de Aminoácidos , Animais , Western Blotting , Ácidos Borônicos/farmacologia , Bortezomib , Núcleo Celular/efeitos dos fármacos , Chlorocebus aethiops , Citoplasma/efeitos dos fármacos , Imunofluorescência , Células HeLa , Infecções por Henipavirus/genética , Infecções por Henipavirus/metabolismo , Humanos , Imunoprecipitação , Rim/citologia , Rim/efeitos dos fármacos , Rim/metabolismo , Dados de Sequência Molecular , Mutação/genética , Sinais de Localização Nuclear , Inibidores de Proteases/farmacologia , Processamento de Proteína Pós-Traducional , Transporte Proteico , Pirazinas/farmacologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Células Vero , Proteínas da Matriz Viral/antagonistas & inibidores , Proteínas da Matriz Viral/genética , Montagem de Vírus/efeitos dos fármacos , Eliminação de Partículas Virais
4.
Nat Commun ; 5: 5342, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25405640

RESUMO

Zoonotic transmission of lethal henipaviruses (HNVs) from their natural fruit bat reservoirs to humans has only been reported in Australia and South/Southeast Asia. However, a recent study discovered numerous HNV clades in African bat samples. To determine the potential for HNV spillover events among humans in Africa, here we examine well-curated sets of bat (Eidolon helvum, n = 44) and human (n = 497) serum samples from Cameroon for Nipah virus (NiV) cross-neutralizing antibodies (NiV-X-Nabs). Using a vesicular stomatitis virus (VSV)-based pseudoparticle seroneutralization assay, we detect NiV-X-Nabs in 48% and 3-4% of the bat and human samples, respectively. Seropositive human samples are found almost exclusively in individuals who reported butchering bats for bushmeat. Seropositive human sera also neutralize Hendra virus and Gh-M74a (an African HNV) pseudoparticles, as well as live NiV. Butchering bat meat and living in areas undergoing deforestation are the most significant risk factors associated with seropositivity. Evidence for HNV spillover events warrants increased surveillance efforts.


Assuntos
Quirópteros/virologia , Infecções por Henipavirus/transmissão , Infecções por Henipavirus/virologia , Vírus Nipah/fisiologia , África , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Quirópteros/sangue , Quirópteros/imunologia , Infecções por Henipavirus/sangue , Infecções por Henipavirus/imunologia , Humanos , Testes de Neutralização , Vírus Nipah/imunologia , Zoonoses/sangue , Zoonoses/imunologia
5.
Vaccine ; 28(32): 5265-71, 2010 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-20538092

RESUMO

Two chimeric antibodies (ch) 13D6 and 10C2 against the glycoprotein E of tick-borne encephalitis virus (TBEV) were constructed by fusing variable regions of murine monoclonal antibodies (Mabs) 13D6 and 10C2 to human constant regions. Monovalent analogues of these antibodies in format of single-chain antibodies (scFv or sc) were developed, as well. The ch13D6, ch10C2, sc13D6 and sc10C2 exhibited binding characteristics similar to parental Mabs. Only the ch13D6 and sc13D6 were able to neutralize TBEV infectivity in vitro. The in vitro neutralization provided by ch13D6 suggests that this antibody can be further developed into a potent prophylaxis and therapy for tick-borne encephalitis (TBE) infection.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Anticorpos de Cadeia Única/imunologia , Proteínas do Envelope Viral/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/isolamento & purificação , Afinidade de Anticorpos , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Humanos , Camundongos , Dados de Sequência Molecular , Testes de Neutralização , Plasmídeos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA