Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nephrol Dial Transplant ; 39(2): 297-304, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37463050

RESUMO

BACKGROUND: The use of cyclosporin A (CsA) is hampered by the development of nephrotoxicity including hypertension, which is partially dependent on renal sodium retention. To address this issue, we have investigated in vivo sodium reabsorption in different nephron segments of CsA-treated rats through micropuncture study coupled to expression analyses of sodium transporters. To translate the findings in rats to human, kidney-transplanted patients having CsA treatment were enrolled in the study. METHODS: Adult male Sprague-Dawley rats were treated with CsA (15 mg/kg/day) for 21 days, followed by micropuncture study and expression analyses of sodium transporters. CsA-treated kidney-transplanted patients with resistant hypertension were challenged with 50 mg furosemide. RESULTS: CsA-treated rats developed hypertension associated with reduced glomerular filtration rate. In vivo microperfusion study demonstrated a significant decrease in rate of absolute fluid reabsorption in the proximal tubule but enhanced sodium reabsorption in the thick ascending limb of Henle's loop (TAL). Expression analyses of sodium transporters at the same nephron segments further revealed a reduction in Na+-H+ exchanger isoform 3 (NHE3) in the renal cortex, while TAL-specific, furosemide-sensitive Na+-K+-2Cl- cotransporter (NKCC2) and NHE3 were significantly upregulated in the inner stripe of outer medulla. CsA-treated patients had a larger excretion of urinary NKCC2 protein at basal condition, and higher diuretic response to furosemide, showing increased FeNa+, FeCl- and FeCa2+ compared with both healthy controls and FK506-treated transplanted patients. CONCLUSION: Altogether, these findings suggest that up-regulation of NKCC2 along the TAL facilitates sodium retention and contributes to the development of CsA-induced hypertension.


Assuntos
Ciclosporina , Hipertensão , Adulto , Humanos , Masculino , Ratos , Animais , Ciclosporina/efeitos adversos , Trocador 3 de Sódio-Hidrogênio/metabolismo , Regulação para Cima , Furosemida , Ratos Sprague-Dawley , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Sódio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo
2.
Nephrol Dial Transplant ; 38(3): 586-598, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35921220

RESUMO

BACKGROUND: The kidney is the main organ in the pathophysiology of essential hypertension. Although most bicarbonate reabsorption occurs in the proximal tubule, the medullary thick ascending limb (mTAL) of the nephron also maintains acid-base balance by contributing to 25% of bicarbonate reabsorption. A crucial element in this regulation is the sodium-hydrogen exchanger 1 (NHE1), a ubiquitous membrane protein controlling intracellular pH, where proton extrusion is driven by the inward sodium flux. MicroRNA (miRNA) expression of hypertensive patients significantly differs from that of normotensive subjects. The aim of this study was to determine the functional role of miRNA alterations at the mTAL level. METHODS: By miRNA microarray analysis, we identified miRNA expression profiles in isolated mTALs from high sodium intake-induced hypertensive rats (HSD) versus their normotensive counterparts (NSD). In vitro validation was carried out in rat mTAL cells. RESULTS: Five miRNAs involved in the onset of salt-sensitive hypertension were identified, including miR-23a, which was bioinformatically predicted to target NHE1 mRNA. Data demonstrated that miRNA-23a is downregulated in the mTAL of HSD rats while NHE1 is upregulated. Consistently, transfection of an miRNA-23a mimic in an mTAL cell line, using a viral vector, resulted in NHE1 downregulation. CONCLUSION: NHE1, a protein involved in sodium reabsorption at the mTAL level and blood pressure regulation, is upregulated in our model. This was due to a downregulation of miRNA-23a. Expression levels of this miRNA are influenced by high sodium intake in the mTALs of rats. The downregulation of miRNA-23a in humans affected by essential hypertension corroborate our data and point to the potential role of miRNA-23a in the regulation of mTAL function following high salt intake.


Assuntos
Hipertensão , MicroRNAs , Animais , Humanos , Ratos , Bicarbonatos , Hipertensão Essencial/metabolismo , Hipertensão/metabolismo , Medula Renal , MicroRNAs/metabolismo , Sódio/metabolismo , Cloreto de Sódio na Dieta , Trocador 1 de Sódio-Hidrogênio/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo
3.
Am J Med Genet C Semin Med Genet ; 190(1): 9-19, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35373910

RESUMO

Bardet-Biedl syndrome (BBS) is a rare pleiotropic disorder known as a ciliopathy. Despite significant genetic heterogeneity, BBS1 and BBS10 are responsible for major diagnosis in western countries. It is well established that eight BBS proteins, namely BBS1, 2, 4, 5, 7, 8, 9, and 18, form the BBSome, a multiprotein complex serving as a regulator of ciliary membrane protein composition. Less information is available for BBS6, BBS10, and BBS12, three proteins showing sequence homology with the CCT/TRiC family of group II chaperonins. Even though their chaperonin function is debated, scientific evidence demonstrated that they are required for initial BBSome assembly in vitro. Recent studies suggest that genotype may partially predict clinical outcomes. Indeed, patients carrying truncating mutations in any gene show the most severe phenotype; moreover, mutations in chaperonin-like BBS proteins correlated with severe kidney impairment. This study is a critical review of the literature on genetics, expression level, cellular localization and function of BBS proteins, focusing primarily on the chaperonin-like BBS proteins, and aiming to provide some clues to understand the pathomechanisms of disease in this setting.


Assuntos
Síndrome de Bardet-Biedl , Chaperoninas , Chaperoninas do Grupo II , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo , Chaperoninas/genética , Chaperoninas/metabolismo , Chaperoninas do Grupo II/genética , Chaperoninas do Grupo II/metabolismo , Humanos , Mutação
4.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012682

RESUMO

Bardet-Biedl syndrome (BBS) is a rare autosomal recessive ciliopathy resulting in multiple organ dysfunctions, including chronic kidney disease (CKD). Despite the recent progress in the 'ciliopathy' field, there is still little information on the mechanisms underlying renal disease. To elucidate these pathomechanisms, we conducted a translational study, including (i) the characterization of the urine metabolomic pattern of BBS patients and controls in a pilot and confirmation study and (ii) the proteomic analysis of the BBS10 interactome, one of the major mutated BBS genes in patients, in a renal-epithelial-derived cell culture model. The urine metabolomic fingerprinting of BBS patients differed from controls in both pilot and confirmation studies, demonstrating an increased urinary excretion of several monocarboxylates, including lactic acid (LA), at both early and late CKD stages. Increased urine LA was detected in the absence of both increased plasmatic LA levels and generalized proximal tubular dysfunction, suggesting a possible renal-specific defective handling. The inner medulla renal epithelial (IMCD3) cell line, where Bbs10 was stably invalidated, displayed an increased proliferative rate, increased ATP production, and an up-regulation of aerobic glycolysis. A mass spectrometry-based analysis detected several putative BBS10 interactors in vitro, indicating a potential role of BBS10 in several biological processes, including renal metabolism, RNA processing, and cell proliferation. The present study suggests that the urine metabolomic pattern of BBS patients may reflect intra-renal metabolic aberrations. The analysis of BBS10 interactors unveils possible novel functions, including cell metabolism.


Assuntos
Síndrome de Bardet-Biedl , Chaperoninas , Insuficiência Renal Crônica , Síndrome de Bardet-Biedl/genética , Chaperoninas/genética , Humanos , Mutação , Proteômica
5.
Nephrol Dial Transplant ; 37(Suppl 2): ii46-ii55, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34792176

RESUMO

Kidney function has two important elements: glomerular filtration and tubular function (secretion and reabsorption). A persistent decrease in glomerular filtration rate (GFR), with or without proteinuria, is diagnostic of chronic kidney disease (CKD). While glomerular injury or disease is a major cause of CKD and usually associated with proteinuria, predominant tubular injury, with or without tubulointerstitial disease, is typically non-proteinuric. CKD has been linked with cognitive impairment, but it is unclear how much this depends on a decreased GFR, altered tubular function or the presence of proteinuria. Since CKD is often accompanied by tubular and interstitial dysfunction, we explore here for the first time the potential role of the tubular and tubulointerstitial compartments in cognitive dysfunction. To help address this issue we selected a group of primary tubular diseases with preserved GFR in which to review the evidence for any association with brain dysfunction. Cognition, mood, neurosensory and motor disturbances are not well characterized in tubular diseases, possibly because they are subclinical and less prominent than other clinical manifestations. The available literature suggests that brain dysfunction in tubular and tubulointerstitial diseases is usually mild and is more often seen in disorders of water handling. Brain dysfunction may occur when severe electrolyte and water disorders in young children persist over a long period of time before the diagnosis is made. We have chosen Bartter and Gitelman syndromes and nephrogenic diabetes insipidus as examples to highlight this topic. We discuss current published findings, some unanswered questions and propose topics for future research.


Assuntos
Nefropatias , Nefrite Intersticial , Insuficiência Renal Crônica , Encéfalo , Criança , Pré-Escolar , Taxa de Filtração Glomerular , Humanos , Nefropatias/diagnóstico , Nefrite Intersticial/complicações , Proteinúria/etiologia , Insuficiência Renal Crônica/complicações
6.
Nephrol Dial Transplant ; 35(11): 1853-1861, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31219585

RESUMO

The primary cilium (PC) was considered as a vestigial organelle with no significant physiological importance, until the discovery that PC perturbation disturbs several signalling pathways and results in the dysfunction of a variety of organs. Genetic studies have demonstrated that mutations affecting PC proteins or its anchoring structure, the basal body, underlie a class of human disorders (known as ciliopathies) characterized by a constellation of clinical signs. Further investigations have demonstrated that the PC is involved in a broad range of biological processes, in both developing and mature tissues. Kidney disease is a common clinical feature of cilia disorders, supporting the hypothesis of a crucial role of the PC in kidney homoeostasis. Clinical proteomics and metabolomics are an expanding research area. Interestingly, the application of these methodologies to the analysis of urine, a biological sample that can be collected in a non-invasive fashion and possibly in large amounts, makes these studies feasible also in patients. The present article describes the most recent proteomic and metabolomic studies exploring kidney dysfunction in the setting of ciliopathies, showing the potential of these methodologies in the elucidation of disease pathophysiology and in the discovery of biomarkers.


Assuntos
Ciliopatias/complicações , Rim/fisiopatologia , Metaboloma , Rim Policístico Autossômico Dominante/complicações , Proteoma/análise , Animais , Humanos , Rim/metabolismo , Transdução de Sinais
7.
Artigo em Inglês | MEDLINE | ID: mdl-33367818

RESUMO

BACKGROUND: Primary nephrogenic diabetes insipidus (NDI) is a rare disorder and little is known about treatment practices and long-term outcome. METHODS: Paediatric and adult nephrologists contacted through European professional organizations entered data in an online form. RESULTS: Data were collected on 315 patients (22 countries, male 84%, adults 35%). Mutation testing had been performed in 270 (86%); pathogenic variants were identified in 258 (96%). The median (range) age at diagnosis was 0.6 (0.0-60) years and at last follow-up 14.0 (0.1-70) years. In adults, height was normal with a mean (standard deviation) score of -0.39 (±1.0), yet there was increased prevalence of obesity (body mass index >30 kg/m2; 41% versus 16% European average; P < 0.001). There was also increased prevalence of chronic kidney disease (CKD) Stage ≥2 in children (32%) and adults (48%). Evidence of flow uropathy was present in 38%. A higher proportion of children than adults (85% versus 54%; P < 0.001) received medications to reduce urine output. Patients ≥25 years were less likely to have a university degree than the European average (21% versus 35%; P = 0.003) but full-time employment was similar. Mental health problems, predominantly attention-deficit hyperactivity disorder (16%), were reported in 36% of patients. CONCLUSION: This large NDI cohort shows an overall favourable outcome with normal adult height and only mild to moderate CKD in most. Yet, while full-time employment was similar to the European average, educational achievement was lower, and more than half had urological and/or mental health problems.

8.
Kidney Blood Press Res ; 45(3): 455-466, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32434200

RESUMO

INTRODUCTION: Renal dysfunction is a frequent complication in patients suffering from ß-thalassemia major (ß-TM). The aim of this study was to analyze the renal function and urine metabolomic profile of ß-TM patients undergoing transfusions and deferasirox (DFX) therapy, in order to better characterize and shed light on the pathogenesis of renal disease in this setting. METHODS AND SUBJECTS: 40 patients affected by ß-TM treated with DFX and 35 age- and gender-matched healthy controls were enrolled in the study. Renal function was assessed. Glomerular filtration rate (GFR) was estimated with CKD-EPI and Schwartz formula for adults and children, respectively. Renal tubular function and maximal urine concentration ability were tested. Urine specimens were analyzed by nuclear magnetic resonance spectroscopy to identify the urinary metabolite profiles. RESULTS: The study of renal function in ß-TM patients revealed normal estimated (e)GFR mean values and the albumin-to-creatinine ratio was <30 mg/g. The analysis of tubular function showed normal basal plasma electrolyte levels; 60% of patients presented hypercalciuria and many subjects showed defective urine concentration. Several amino acids, N-methyl compounds, and organic acids were overexcreted in the urine of thalassemic patients compared with controls. DISCUSSION: The major finding of this work is that ß-TM patients and controls exhibit different concentrations of some metabolites in the urine. Early recognition of urinary abnormalities may be useful to detect and prevent kidney damage.


Assuntos
Deferasirox/uso terapêutico , Urinálise/métodos , Talassemia beta/tratamento farmacológico , Talassemia beta/urina , Adulto , Deferasirox/farmacologia , Feminino , Humanos , Masculino
9.
Kidney Blood Press Res ; 44(5): 915-927, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31437845

RESUMO

BACKGROUND: Diuretic resistance is among the most challenging problems that the cardio-nephrologist must address in daily clinical practice, with a considerable burden on hospital admissions and health care costs. Indeed, loop diuretics are the first-line therapy to overcome fluid overload in heart failure patients. The pathophysiological mechanisms of fluid and sodium retention are complex and depend on several neuro-hormonal signals mainly acting on sodium reabsorption along the renal tubule. Consequently, doses and administration modalities of diuretics must be carefully tailored to patients in order to overcome under- or overtreatment. The frequent and tricky development of diuretic resistance depends in part on post-diuretic sodium retention, reduced tubular secretion of the drug, and reduced sodium/chloride sensing. Sodium and chloride depletions have been recently shown to be major factors mediating these processes. Aquaretics and high-saline infusions have been recently suggested in cases of hyponatremic conditions. This review discusses the limitations and strengths of these approaches. SUMMARY: Long-term diuretic use may lead to diuretic resistance in cardio-renal syndromes. To overcome this complication intravenous administration of loop diuretics and a combination of different diuretic classes have been proposed. In the presence of hyponatremia, high-saline solutions in addition to loop diuretics might be beneficial, whereas aquaretics require caution to avoid overcorrection. Key Messages: Diuretic resistance is a central theme for cardio-renal syndromes. Hyponatremia and hypochloremia may be part of the mechanisms for diuretic resistance. Aquaretics and high-saline solutions have been proposed as possible new therapeutic solutions.


Assuntos
Síndrome Cardiorrenal/terapia , Diuréticos/uso terapêutico , Insuficiência Cardíaca/terapia , Rim/patologia , Nefrologia/métodos , Diuréticos/farmacologia , Humanos
10.
J Am Soc Nephrol ; 29(6): 1720-1730, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29678998

RESUMO

Background Urine citrate is reabsorbed exclusively along the renal proximal tubule via the apical Na+-dicarboxylate cotransporter NaDC-1. We previously showed that an acid load in vivo and media acidification in vitro increase NaDC-1 activity through endothelin-1 (ET-1)/endothelin B (ETB) signaling. Here, we further examined the signaling pathway mediating acid-induced NaDC-1 activity.Methods We transiently transfected cultured opossum kidney cells, a model of the proximal tubule, with NaDC-1 and ETB and measured [14C]-citrate uptake after media acidification under various experimental conditions, including inactivation of Pyk2 and c-Src, which were previously shown to be activated by media acidification. Wild-type (Pyk2+/+) and Pyk2-null (Pyk2-/-) mice were exposed to NH4Cl loading and euthanized after various end points, at which time we harvested the kidneys for immunoblotting and brush border membrane NaDC-1 activity studies.Results Inhibition of Pyk2 or c-Src prevented acid stimulation but not ET-1 stimulation of NaDC-1 in vitro Consistent with these results, NH4Cl loading stimulated NaDC-1 activity in kidneys of wild-type but not Pyk2-/- mice. In cultured cells and in mice, ERK1/2 was rapidly phosphorylated by acid loading, even after Pyk2 knockdown, and it was required for acid but not ET-1/ETB stimulation of NaDC-1 in vitro Media acidification also induced the phosphorylation of Raf1 and p90RSK, components of the ERK1/2 pathway, and inhibition of these proteins blocked acid stimulation of NaDC-1 activity.Conclusions Acid stimulation of NaDC-1 activity involves Pyk2/c-Src and Raf1-ERK1/2-p90RSK signaling pathways, but these pathways are not downstream of ET-1/ETB in this process.


Assuntos
Ácido Cítrico/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Quinase 2 de Adesão Focal/genética , Sistema de Sinalização das MAP Quinases , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Quinases da Família src/metabolismo , Ácidos/farmacologia , Cloreto de Amônio/farmacologia , Animais , Proteína Tirosina Quinase CSK , Células Cultivadas , Transportadores de Ácidos Dicarboxílicos/metabolismo , Endotelina-1/metabolismo , Células Epiteliais , Quinase 2 de Adesão Focal/antagonistas & inibidores , Quinase 2 de Adesão Focal/metabolismo , Túbulos Renais Proximais/citologia , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Gambás , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-raf/metabolismo , Receptor de Endotelina B/genética , Receptor de Endotelina B/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transfecção , Quinases da Família src/antagonistas & inibidores
11.
Int J Mol Sci ; 20(17)2019 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-31450703

RESUMO

Mitogen-activated protein kinases (MAPKs) are intracellular molecules regulating a wide range of cellular functions, including proliferation, differentiation, apoptosis, cytoskeleton remodeling and cytokine production. MAPK activity has been shown in normal kidney, and its over-activation has been demonstrated in several renal diseases. The extracellular signal-regulated protein kinases (ERK 1,2) signalling pathway is the first described MAPK signaling. Intensive investigations have demonstrated that it participates in the regulation of ureteric bud branching, a fundamental process in establishing final nephron number; in addition, it is also involved in the differentiation of the nephrogenic mesenchyme, indicating a key role in mammalian kidney embryonic development. In the present manuscript, we show that ERK1,2 signalling mediates several cellular functions also in mature kidney, describing its role along the nephron and demonstrating whether it contributes to the regulation of ion channels and transporters implicated in acid-base and electrolytes homeostasis.


Assuntos
Equilíbrio Ácido-Base , Eletrólitos/metabolismo , Sistema de Sinalização das MAP Quinases , Néfrons/metabolismo , Equilíbrio Hidroeletrolítico , Animais , Suscetibilidade a Doenças , Humanos , Túbulos Renais Coletores/metabolismo , Túbulos Renais Distais/metabolismo , Túbulos Renais Proximais/metabolismo , Alça do Néfron/metabolismo
12.
Int J Mol Sci ; 20(9)2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31071929

RESUMO

(1) The beneficial effects of hydrogen sulfide (H2S) on the cardiovascular and nervous system have recently been re-evaluated. It has been shown that lanthionine, a side product of H2S biosynthesis, previously used as a marker for H2S production, is dramatically increased in circulation in uremia, while H2S release is impaired. Thus, lanthionine could be classified as a novel uremic toxin. Our research was aimed at defining the mechanism(s) for lanthionine toxicity. (2) The effect of lanthionine on H2S release was tested by a novel lead acetate strip test (LAST) in EA.hy926 cell cultures. Effects of glutathione, as a redox agent, were assayed. Levels of sulfane sulfur were evaluated using the SSP4 probe and flow cytometry. Protein content and glutathionylation were analyzed by Western Blotting and immunoprecipitation, respectively. Gene expression and miRNA levels were assessed by qPCR. (3) We demonstrated that, in endothelial cells, lanthionine hampers H2S release; reduces protein content and glutathionylation of transsulfuration enzyme cystathionine-ß-synthase; modifies the expression of miR-200c and miR-423; lowers expression of vascular endothelial growth factor VEGF; increases Ca2+ levels. (4) Lanthionine-induced alterations in cell cultures, which involve both sulfur amino acid metabolism and calcium homeostasis, are consistent with uremic dysfunctional characteristics and further support the uremic toxin role of this amino acid.


Assuntos
Alanina/análogos & derivados , Cálcio/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Sulfetos/farmacologia , Uremia/tratamento farmacológico , Alanina/química , Alanina/farmacologia , Aminoácidos Sulfúricos/efeitos dos fármacos , Aminoácidos Sulfúricos/metabolismo , Linhagem Celular , Cistationina beta-Sintase/genética , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , MicroRNAs/genética , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Oxirredução , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Sulfetos/química , Uremia/genética , Uremia/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
13.
Kidney Blood Press Res ; 43(2): 389-405, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29539623

RESUMO

BACKGROUND: /Aims: Renal disease is a common cause of morbidity in patients with Bardet-Biedl syndrome (BBS), however the severity of kidney dysfunction is highly variable. To date, there is little information on the pathogenesis, the risk and predictor factors for poor renal outcome in this setting. The present study aims to analyze the spectrum of urinary proteins in BBS patients, in order to potentially identify 1) disease-specific proteomic profiles that may differentiate the patients from normal subjects; 2) urinary markers of renal dysfunction. METHODS: Fourteen individuals (7 males and 7 females) with a clinical diagnosis of BBS have been selected in this study. A pool of 10 aged-matched males and 10 aged-matched females have been used as controls for proteomic analysis. The glomerular filtration rate (eGFR) has been estimated using the CKD-EPI formula. Variability of eGFR has been retrospectively assessed calculating average annual eGFR decline (ΔeGFR) in a mean follow-up period of 4 years (3-7). RESULTS: 42 proteins were significantly over- or under-represented in BBS patients compared with controls; the majority of these proteins are involved in fibrosis, cell adhesion and extracellular matrix organization. Statistic studies revealed a significant correlation between urine fibronectin (u-FN) (r2=0.28; p<0.05), CD44 antigen (r2 =0.35; p<0.03) and lysosomal alfa glucosidase ( r20.27; p<0.05) abundance with the eGFR. In addition, u-FN (r2 =0.2389; p<0.05) was significantly correlated with ΔeGFR. CONCLUSION: The present study demonstrates that urine proteome of BBS patients differs from that of normal subjects; in addition, kidney dysfunction correlated with urine abundance of known markers of renal fibrosis.


Assuntos
Síndrome de Bardet-Biedl/urina , Fibronectinas/análise , Proteômica/métodos , Urina/química , Adulto , Síndrome de Bardet-Biedl/fisiopatologia , Biomarcadores/urina , Estudos de Casos e Controles , Feminino , Fibrose , Taxa de Filtração Glomerular , Humanos , Masculino , Pessoa de Meia-Idade , Proteoma/análise , Adulto Jovem
14.
Int J Mol Sci ; 19(5)2018 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-29710830

RESUMO

The non-proteinogenic amino acid lanthionine is a byproduct of hydrogen sulfide biosynthesis: the third endogenous vasodilator gas, after nitric oxide and carbon monoxide. While hydrogen sulfide is decreased in uremic patients on hemodialysis, lanthionine is increased and has been proposed as a new uremic toxin, since it is able to impair hydrogen sulfide production in hepatoma cells. To characterize lanthionine as a uremic toxin, we explored its effects during the early development of the zebrafish (Danio rerio), a widely used model to study the organ and tissue alterations induced by xenobiotics. Lanthionine was employed at concentrations reproducing those previously detected in uremia. Light-induced visual motor response was also studied by means of the DanioVision system. Treatment of zebrafish embryos with lanthionine determined acute phenotypical alterations, on heart organogenesis (disproportion in cardiac chambers), increased heart beating, and arrhythmia. Lanthionine also induced locomotor alterations in zebrafish embryos. Some of these effects could be counteracted by glutathione. Lanthionine exerted acute effects on transsulfuration enzymes and the expression of genes involved in inflammation and metabolic regulation, and modified microRNA expression in a way comparable with some alterations detected in uremia. Lanthionine meets the criteria for classification as a uremic toxin. Zebrafish can be successfully used to explore uremic toxin effects.


Assuntos
Alanina/análogos & derivados , Modelos Animais de Doenças , Sulfetos/toxicidade , Toxinas Biológicas/toxicidade , Uremia/etiologia , Peixe-Zebra/metabolismo , Alanina/toxicidade , Animais , Organogênese/efeitos dos fármacos , Uremia/metabolismo , Uremia/patologia , Xenobióticos/toxicidade , Peixe-Zebra/embriologia , Peixe-Zebra/fisiologia
15.
BMC Med Genet ; 18(1): 10, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28143435

RESUMO

BACKGROUND: Bardet-Biedl syndrome (BBS) is a rare genetic disorder that features retinal degeneration, obesity, polydactyly, learning disabilities and renal abnormalities. The diagnosis is often missed at birth, the median age at diagnosis being 9 years. In the attempt to shed light on BBS and improve its diagnosis and treatment, we evaluated the genotype-phenotype relationship in patients with a molecular diagnosis of BBS. METHODS: We analyzed three common BBS genes, BBS1, BBS10 and BBS2, in 25 Italian patients fulfilling the clinical criteria of BBS. In 12 patients, we identified gene-specific biallelic variants and thus correlated genotype to the ophthalmic, renal and audio-vestibular phenotypes. RESULTS: At least one sequence variant was found in 60% of patients. The most common mutated gene was BBS1 followed by BBS10. Of the 17 sequence variants we found, 11 have not previously been associated with BBS. In 12 patients, we identified biallelic pathogenic variants; they had retinitis pigmentosa with early onset of visual impairment. However, retinal dystrophy was less severe in patients with BBS1 than in those with BBS10 variants. Overall, we found a high prevalence of renal dysmorphism and dysfunction. Notably, patients with BBS10 variants had the most severe renal impairment, which resulted in a critical decline in renal function. All the patients who underwent audio-vestibular evaluation had dysfunction of the cochlear outer hair cells, thus confirming the presence of hearing defects. CONCLUSION: BBS1, BBS2 and BBS10 are major causative genes in Italian BBS patients. BBS10 was associated with the worse outcome in terms of the renal, ocular and audiovestibular phenotypes. Cochlear dysfunction should be included among the hallmarks of BBS.


Assuntos
Síndrome de Bardet-Biedl/genética , Olho/fisiopatologia , Rim/fisiopatologia , População Branca/genética , Adolescente , Adulto , Idoso , Limiar Auditivo , Síndrome de Bardet-Biedl/patologia , Chaperoninas , Criança , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Análise Mutacional de DNA , Olho/diagnóstico por imagem , Feminino , Estudos de Associação Genética , Genótipo , Chaperoninas do Grupo II/genética , Humanos , Itália , Masculino , Proteínas Associadas aos Microtúbulos/genética , Pessoa de Meia-Idade , Fenótipo , Polimorfismo Genético , Proteínas/genética , Tomografia de Coerência Óptica , Adulto Jovem
16.
Kidney Blood Press Res ; 42(5): 784-793, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29161709

RESUMO

Bardet Biedl syndrome (BBS) is a rare inherited syndromic condition characterized by renal and extra-renal disorders. Renal defect, at either structural or functional level, is one of the cardinal clinical features, and is a major cause of morbidity. However, the pathogenic mechanism underlying its dysfunction remains largely unknown, and to date only symptomatic treatment with no specific therapy is available for these patients. Elucidating aberrant cellular and/or systemic processes that impact kidney function is therefore a prerequisite to develop targeted innovative therapeutic strategies for the BBS patients. Given the proven role of BBS proteins in the function of the primary cilium (PC) and considering the clinical overlapping of BBS with other ciliopathies, BBS is considered the result of disruption of ciliary activities. The present review aims at giving an updated overview of the spectrum of renal abnormalities in BBS patients according to the existing scientific literature, and discusses the possible role of intrinsic PC dysfunction into the pathogenesis of renal defects based on the most recent findings demonstrating a possible role of systemic factors in favoring the progression of renal disease.


Assuntos
Síndrome de Bardet-Biedl/complicações , Insuficiência Renal/etiologia , Cílios/patologia , Humanos
17.
J Ren Nutr ; 27(6): 453-457, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29056164

RESUMO

The triad composed by α-Klotho, fibroblast growth factor-23, and its receptor are involved in the pathogenesis of chronic kidney disease-mineral and bone disorder. A disintegrin and metalloproteinase 17 (ADAM17) is a metalloproteinase causing the proteolytic shedding of α-Klotho from the cell membrane, and its role in chronic kidney disease-mineral and bone disorder is not yet known. We studied the circulating levels of the above-mentioned mediators in patients with secondary hyperparathyroidism due to uremia, compared to control subjects, as well as in patients with primary hyperparathyroidism. We also measured the immunofluorescence pattern of the relevant tissue proteins in specimens obtained from patients undergoing parathyroid surgery for secondary compared to primary hyperparathyroidism. Results showed that α-Klotho tissue levels are reduced, in the presence of increased ADAM17 tissue levels. In addition, we showed increased serum levels of the main product of ADAM17 proteolytic activity, tumor necrosis factor-α. Thus, we found a paradoxical situation, in secondary compared to primary hyperparathyroidism, that is, that in the face of increased tumor necrosis factor-α in circulation, both soluble and tissue α-Klotho are reduced significantly, despite increased tissue ADAM17. In conclusion, tissue and serum levels of α-Klotho seem to have become independent from the regulation induced by ADAM17, which constitutes therefore another tassel in the impaired α-Klotho-FGF23 receptor axis present in uremia.


Assuntos
Proteína ADAM17/sangue , Distúrbio Mineral e Ósseo na Doença Renal Crônica/diagnóstico , Distúrbio Mineral e Ósseo na Doença Renal Crônica/genética , Glucuronidase/sangue , Proteína ADAM17/genética , Proteína C-Reativa/metabolismo , Estudos de Casos e Controles , Distúrbio Mineral e Ósseo na Doença Renal Crônica/sangue , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Fatores de Crescimento de Fibroblastos/genética , Glucuronidase/genética , Humanos , Concentração de Íons de Hidrogênio , Hiperparatireoidismo Secundário/sangue , Hiperparatireoidismo Secundário/diagnóstico , Hiperparatireoidismo Secundário/genética , Proteínas Klotho , Hormônio Paratireóideo/sangue , Diálise Renal , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/genética , Uremia/sangue , Uremia/genética
18.
Am J Physiol Renal Physiol ; 311(5): F901-F906, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27582101

RESUMO

The distal nephron is a heterogeneous part of the nephron composed by six different cell types, forming the epithelium of the distal convoluted (DCT), connecting, and collecting duct. To dissect the function of these cells, knockout models specific for their unique cell marker have been created. However, since this part of the nephron develops at the border between the ureteric bud and the metanephric mesenchyme, the specificity of the single cell markers has been recently questioned. Here, by mapping the fate of the aquaporin 2 (AQP2) and Na+-Cl- cotransporter (NCC)-positive cells using transgenic mouse lines expressing the yellow fluorescent protein fluorescent marker, we showed that the origin of the distal nephron is extremely composite. Indeed, AQP2-expressing precursor results give rise not only to the principal cells, but also to some of the A- and B-type intercalated cells and even to cells of the DCT. On the other hand, some principal cells and B-type intercalated cells can develop from NCC-expressing precursors. In conclusion, these results demonstrate that the origin of different cell types in the distal nephron is not as clearly defined as originally thought. Importantly, they highlight the fact that knocking out a gene encoding for a selective functional marker in the adult does not guarantee cell specificity during the overall kidney development. Tools allowing not only cell-specific but also time-controlled recombination will be useful in this sense.


Assuntos
Túbulos Renais Coletores/metabolismo , Túbulos Renais Distais/metabolismo , Néfrons/metabolismo , Animais , Aquaporina 2/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Simportadores de Cloreto de Sódio/metabolismo
19.
Am J Physiol Renal Physiol ; 311(4): F686-F694, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27488999

RESUMO

The renal phenotype in Bardet-Biedl syndrome (BBS) is highly variable. The present study describes renal findings in 41 BBS patients and analyzes the pathogenesis of hyposthenuria, the most common renal dysfunction. Five of 41 patients (12%) showed an estimated glomerular filtration rate < 60 ml·min-1·1.73 m-2 Urine protein and urine albumin-to-creatinine ratio were over 200 and 30 mg/g in 9/24 and 7/23 patients, respectively. Four of 41 patients showed no renal anomalies on ultrasound. Twenty of 34 patients had hyposthenuria in the absence of renal insufficiency. In all 8 of the hyposthenuric patients studied, dDAVP failed to elevate urine osmolality (Uosm), suggesting a nephrogenic origin. Interestingly, water loading (WL) did not result in a significant reduction of Uosm, indicating combined concentrating and diluting defects. dDAVP infusion induced a significant increase of plasma Factor VIII and von Willebrand Factor levels, supporting normal function of the type 2 vasopressin receptor at least in endothelial cells. While urinary aquaporin 2 (u-AQP2) abundance was not different between patients and controls at baseline, the dDAVP-induced increased u-AQP2 and the WL-induced reduction of u-AQP2 were blunted in patients with a combined concentrating and diluting defect, suggesting a potential role of AQP2 in the defective regulation of water absorption. Urine Uromodulin excretion was reduced in all hyposthenuric patients, suggesting a thick ascending limb defect. Interestingly, renal Na, Cl, Ca, but not K handling was impaired after acute WL but not at basal. In summary, BBS patients show combined urinary concentration and dilution defects; a thick ascending limb and collecting duct tubulopathy may underlie impaired water handling.


Assuntos
Aquaporina 2/urina , Síndrome de Bardet-Biedl/fisiopatologia , Taxa de Filtração Glomerular/fisiologia , Rim/fisiopatologia , Uromodulina/urina , Adolescente , Adulto , Síndrome de Bardet-Biedl/urina , Criança , Pré-Escolar , Feminino , Humanos , Capacidade de Concentração Renal/fisiologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA