Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Trends Plant Sci ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955584

RESUMO

14-3-3 proteins, ubiquitously present in eukaryotic cells, are regulatory proteins involved in a plethora of cellular processes. In plants, they have been studied in the context of metabolism, development, and stress responses. Recent studies have highlighted the pivotal role of 14-3-3 proteins in regulating plant immunity. The ability of 14-3-3 proteins to modulate immune responses is primarily attributed to their function as interaction hubs, mediating protein-protein interactions and thereby regulating the activity and overall function of their binding partners. Here, we shed light on how 14-3-3 proteins contribute to plant defense mechanisms, the implications of their interactions with components of plant immunity cascades, and the potential for leveraging this knowledge for crop improvement strategies.

2.
Nat Commun ; 14(1): 2568, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142566

RESUMO

In both plants and animals, nucleotide-binding leucine-rich repeat (NLR) immune receptors play critical roles in pathogen recognition and activation of innate immunity. In plants, NLRs recognise pathogen-derived effector proteins and initiate effector-triggered immunity (ETI). However, the molecular mechanisms that link NLR-mediated effector recognition and downstream signalling are not fully understood. By exploiting the well-characterised tomato Prf/Pto NLR resistance complex, we identified the 14-3-3 proteins TFT1 and TFT3 as interacting partners of both the NLR complex and the protein kinase MAPKKKα. Moreover, we identified the helper NRC proteins (NLR-required for cell death) as integral components of the Prf /Pto NLR recognition complex. Notably our studies revealed that TFTs and NRCs interact with distinct modules of the NLR complex and, following effector recognition, dissociate facilitating downstream signalling. Thus, our data provide a mechanistic link between activation of immune receptors and initiation of downstream signalling cascades.


Assuntos
Solanum lycopersicum , Animais , Proteínas , Transdução de Sinais , Imunidade Inata , Plantas/metabolismo , Receptores Imunológicos , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Doenças das Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA