RESUMO
Extremely preterm infants are often exposed to long durations of mechanical ventilation to facilitate gas exchange, resulting in ventilation-induced lung injury (VILI). New lung protective strategies utilizing noninvasive ventilation or low tidal volumes are now common but have not reduced rates of bronchopulmonary dysplasia. We aimed to determine the effect of 24 h of low tidal volume ventilation on the immature lung by ventilating preterm fetal sheep in utero. Preterm fetal sheep at 110 ± 1(SD) days' gestation underwent sterile surgery for instrumentation with a tracheal loop to enable in utero mechanical ventilation (IUV). At 112 ± 1 days' gestation, fetuses received either in utero mechanical ventilation (IUV, n = 10) targeting 3-5 mL/kg for 24 h, or no ventilation (CONT, n = 9). At necropsy, fetal lungs were collected to assess molecular and histological markers of lung inflammation and injury. IUV significantly increased lung mRNA expression of interleukin (IL)-1ß, IL-6, IL-8, IL-10, and tumor necrosis factor (TNF) compared with CONT, and increased surfactant protein (SP)-A1, SP-B, and SP-C mRNA expression compared with CONT. IUV produced modest structural changes to the airways, including reduced parenchymal collagen and myofibroblast density. IUV increased pulmonary arteriole thickness compared with CONT but did not alter overall elastin or collagen content within the vasculature. In utero ventilation of an extremely preterm lung, even at low tidal volumes, induces lung inflammation and injury to the airways and vasculature. In utero ventilation may be an important model to isolate the confounding mechanisms of VILI to develop effective therapies for preterm infants requiring prolonged respiratory support.NEW & NOTEWORTHY Preterm infants often require prolonged respiratory support, but the relative contribution of ventilation to the development of lung injury is difficult to isolate. In utero mechanical ventilation allows for mechanistic investigations into ventilation-induced lung injury without confounding factors associated with sustaining extremely preterm lambs ex utero. Twenty-four hours of in utero ventilation, even at low tidal volumes, increased lung inflammation and surfactant protein expression and produced structural changes to the lung parenchyma and vasculature.
Assuntos
Pneumonia , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Recém-Nascido , Ovinos , Animais , Lactente Extremamente Prematuro , Pulmão/metabolismo , Feto/metabolismo , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Colágeno/metabolismo , Pneumonia/patologia , Tensoativos/metabolismo , RNA Mensageiro/metabolismoRESUMO
BACKGROUND: Umbilical cord blood (UCB) cells are a promising treatment for preterm brain injury. Access to allogeneic sources of UCB cells offer the potential for early administration to optimise their therapeutic capacities. As preterm infants often require ventilatory support, which can contribute to preterm brain injury, we investigated the efficacy of early UCB cell administration following ventilation to reduce white matter inflammation and injury. METHODS: Preterm fetal sheep (0.85 gestation) were randomly allocated to no ventilation (SHAM; n = 5) or 15 min ex utero high tidal volume ventilation. One hour following ventilation, fetuses were randomly allocated to i.v. administration of saline (VENT; n = 7) or allogeneic term-derived UCB cells (24.5 ± 5.0 million cells/kg; VENT + UCB; n = 7). Twenty-four hours after ventilation, lambs were delivered for magnetic resonance imaging and post-mortem brain tissue collected. Arterial plasma was collected throughout the experiment for cytokine analyses. To further investigate the results from the in vivo study, mononuclear cells (MNCs) isolated from human UCB were subjected to in vitro cytokine-spiked culture medium (TNFα and/or IFNγ; 10 ng/mL; n = 3/group) for 16 h then supernatant and cells collected for protein and mRNA assessments respectively. RESULTS: In VENT + UCB lambs, systemic IFNγ levels increased and by 24 h, there was white matter neuroglial activation, vascular damage, reduced oligodendrocytes, and increased average, radial and mean diffusivity compared to VENT and SHAM. No evidence of white matter inflammation or injury was present in VENT lambs, except for mRNA downregulation of OCLN and CLDN1 compared to SHAM. In vitro, MNCs subjected to TNFα and/or IFNγ displayed both pro- and anti-inflammatory characteristics indicated by changes in cytokine (IL-18 & IL-10) and growth factor (BDNF & VEGF) gene and protein expression compared to controls. CONCLUSIONS: UCB cells administered early after brief high tidal volume ventilation in preterm fetal sheep causes white matter injury, and the mechanisms underlying these changes are likely dysregulated responses of the UCB cells to the degree of injury/inflammation already present. If immunomodulatory therapies such as UCB cells are to become a therapeutic strategy for preterm brain injury, especially after ventilation, our study suggests that the inflammatory state of the preterm infant should be considered when timing UCB cells administration.
Assuntos
Volume de Ventilação Pulmonar , Animais , Ovinos , Feminino , Humanos , Volume de Ventilação Pulmonar/fisiologia , Sangue Fetal/citologia , Gravidez , Citocinas/metabolismo , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Respiração Artificial/métodos , Respiração Artificial/efeitos adversos , Animais Recém-NascidosRESUMO
BACKGROUND: Antenatal infection/inflammation is associated with disturbances in neuronal connectivity, impaired cortical growth and poor neurodevelopmental outcomes. The pathophysiological substrate that underpins these changes is poorly understood. We tested the hypothesis that progressive inflammation in late gestation fetal sheep would alter cortical neuronal microstructure and neural function assessed using electroencephalogram band power analysis. METHODS: Fetal sheep (0.85 of gestation) were surgically instrumented for continuous electroencephalogram (EEG) recording and randomly assigned to repeated saline (control; n = 9) or LPS (0 h = 300 ng, 24 h = 600 ng, 48 h = 1200 ng; n = 8) infusions to induce inflammation. Sheep were euthanised 4 days after the first LPS infusion for assessment of inflammatory gene expression, histopathology and neuronal dendritic morphology in the somatosensory cortex. RESULTS: LPS infusions increased delta power between 8 and 50 h, with reduced beta power from 18 to 96 h (P < 0.05 vs. control). Basal dendritic length, numbers of dendritic terminals, dendritic arborisation and numbers of dendritic spines were reduced in LPS-exposed fetuses (P < 0.05 vs. control) within the somatosensory cortex. Numbers of microglia and interleukin (IL)-1ß immunoreactivity were increased in LPS-exposed fetuses compared with controls (P < 0.05). There were no differences in total numbers of cortical NeuN + neurons or cortical area between the groups. CONCLUSIONS: Exposure to antenatal infection/inflammation was associated with impaired dendritic arborisation, spine number and loss of high-frequency EEG activity, despite normal numbers of neurons, that may contribute to disturbed cortical development and connectivity.
Assuntos
Córtex Cerebral , Eletroencefalografia , Inflamação , Animais , Feminino , Gravidez , Feto , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Microglia , Ovinos , Dendritos , Córtex Cerebral/crescimento & desenvolvimentoRESUMO
BACKGROUND: Increased systemic and tissue levels of interleukin (IL)-1ß are associated with greater risk of impaired neurodevelopment after birth. In this study, we tested the hypothesis that systemic IL-1 receptor antagonist (Ra) administration would attenuate brain inflammation and injury in near-term fetal sheep exposed to lipopolysaccharide (LPS). METHODS: Chronically instrumented near-term fetal sheep at 0.85 of gestation were randomly assigned to saline infusion (control, n = 9), repeated LPS infusions (0 h = 300 ng, 24 h = 600 ng, 48 h = 1200 ng, n = 8) or repeated LPS plus IL-1Ra infusions (13 mg/kg infused over 4 h) started 1 h after each LPS infusion (n = 9). Sheep were euthanized 4 days after starting infusions for histology. RESULTS: LPS infusions increased circulating cytokines and were associated with electroencephalogram (EEG) suppression with transiently reduced mean arterial blood pressure, and increased carotid artery perfusion and fetal heart rate (P < 0.05 vs. control for all). In the periventricular and intragyral white matter, LPS-exposure increased IL-1ß immunoreactivity, numbers of caspase 3+ cells and microglia, reduced astrocyte and olig-2+ oligodendrocyte survival but did not change numbers of mature CC1+ oligodendrocytes, myelin expression or numbers of neurons in the cortex and subcortical regions. IL-1Ra infusions reduced circulating cytokines and improved recovery of EEG activity and carotid artery perfusion. Histologically, IL-1Ra reduced microgliosis, IL-1ß expression and caspase-3+ cells, and improved olig-2+ oligodendrocyte survival. CONCLUSION: IL-1Ra improved EEG activity and markedly attenuated systemic inflammation, microgliosis and oligodendrocyte loss following LPS exposure in near-term fetal sheep. Further studies examining the long-term effects on brain maturation are now needed.
Assuntos
Encéfalo/efeitos dos fármacos , Encefalite/tratamento farmacológico , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Lipopolissacarídeos/farmacologia , Oligodendroglia/efeitos dos fármacos , Substância Branca/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encefalite/metabolismo , Encefalite/patologia , Feminino , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Gravidez , Ovinos , Substância Branca/metabolismo , Substância Branca/patologiaRESUMO
Progressive fetal infection/inflammation is strongly associated with neural injury after preterm birth. We aimed to test the hypotheses that progressively developing fetal inflammation leads to neuroinflammation and impaired white matter development and that the histopathological changes can be detected using high-field diffusion tensor magnetic resonance imaging (MRI). Chronically instrumented preterm fetal sheep at 0.7 of gestation were randomly assigned to receive intravenous saline (control; n = 6) or a progressive infusion of lipopolysaccharide (LPS, 200 ng intravenous over 24 h then doubled every 24 h for 5 days to induce fetal inflammation, n = 7). Sheep were killed 10 days after starting the infusions, for histology and high-field diffusion tensor MRI. Progressive LPS infusion was associated with increased circulating interleukin (IL)-6 concentrations and moderate increases in carotid artery perfusion and the frequency of electroencephalogram (EEG) activity (p < 0.05 vs. control). In the periventricular white matter, fractional anisotropy (FA) was increased, and orientation dispersion index (ODI) was reduced (p < 0.05 vs. control for both). Histologically, in the same brain region, LPS infusion increased microglial activation and astrocyte numbers and reduced the total number of oligodendrocytes with no change in myelination or numbers of immature/mature oligodendrocytes. Numbers of astrocytes in the periventricular white matter were correlated with increased FA and reduced ODI signal intensities. Astrocyte coherence was associated with increased FA. Moderate astrogliosis, but not loss of total oligodendrocytes, after progressive fetal inflammation can be detected with high-field diffusion tensor MRI.
Assuntos
Gliose/diagnóstico por imagem , Inflamação/diagnóstico por imagem , Leucoencefalopatias/diagnóstico por imagem , Imageamento por Ressonância Magnética , Animais , Gliose/fisiopatologia , Gliose/veterinária , Inflamação/fisiopatologia , Inflamação/veterinária , Leucoencefalopatias/fisiopatologia , Leucoencefalopatias/veterinária , Ovinos , Substância Branca/diagnóstico por imagem , Substância Branca/fisiopatologiaRESUMO
Erythropoietin (EPO) is being trialed in preterm neonates for neuroprotection. We have recently demonstrated that a single high bolus dose (5,000 IU/kg) of recombinant human EPO amplified preterm lung and brain ventilation-induced injury. We aimed to determine the optimal dose of EPO to reduce ventilation-induced cerebral white matter inflammation and injury in preterm lambs. Lambs (0.85 gestation) were ventilated with an injurious strategy for 15 min followed by conventional ventilation for 105 min. Lambs were randomized to no treatment (VENT; n = 8) or received a bolus dose of EPO (EPREX®): 300 IU/kg (EPO 300; n = 5), 1,000 IU/kg (EPO 1,000; n = 5), or 3,000 IU/kg (EPO 3,000; n = 5). Physiological parameters were measured throughout the study. After 2 h, brains were collected for analysis; real-time quantitative polymerase chain reaction and immunohistochemistry were used to assess inflammation, cell death, and vascular leakage in the periventricular and subcortical white matter (PVWM; SCWM). Molecular and histological inflammatory indices in the PVWM were not different between groups. EPO 300 lambs had higher IL-6 (p = 0.006) and caspase-3 (p = 0.025) mRNA expression in the SCWM than VENT lambs. Blood-brain barrier (BBB) occludin mRNA levels were higher in EPO 3,000 lambs in the PVWM and SCWM than VENT lambs. The number of blood vessels with protein extravasation in the SCWM was lower in EPO 1,000 (p = 0.010) and EPO 3,000 (p = 0.025) lambs compared to VENT controls but not different between groups in the PVWM. Early administration of EPO at lower doses neither reduced nor exacerbated cerebral white matter inflammation or injury. 3,000 IU/kg EPO may provide neuroprotection by improving BBB integrity.
Assuntos
Lesões Encefálicas/patologia , Eritropoetina/farmacologia , Fármacos Neuroprotetores/farmacologia , Respiração Artificial/efeitos adversos , Substância Branca/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Barreira Hematoencefálica/efeitos dos fármacos , Lesões Encefálicas/etiologia , Distribuição Aleatória , Proteínas Recombinantes/farmacologia , Ovinos , Carneiro Doméstico , Substância Branca/patologiaRESUMO
Ineffective aeration during the first inflations at birth creates regional aeration and ventilation defects, initiating injurious pathways. This study aimed to compare a sustained first inflation at birth or dynamic end-expiratory supported recruitment during tidal inflations against ventilation without intentional recruitment on gas exchange, lung mechanics, spatiotemporal regional aeration and tidal ventilation, and regional lung injury in preterm lambs. Lambs (127 ± 2 d gestation), instrumented at birth, were ventilated for 60 minutes from birth with either lung-protective positive pressure ventilation (control) or as per control after either an initial 30 seconds of 40 cm H2O sustained inflation (SI) or an initial stepwise end-expiratory pressure recruitment maneuver during tidal inflations (duration 180 s; open lung ventilation [OLV]). At study completion, molecular markers of lung injury were analyzed. The initial use of an OLV maneuver, but not SI, at birth resulted in improved lung compliance, oxygenation, end-expiratory lung volume, and reduced ventilatory needs compared with control, persisting throughout the study. These changes were due to more uniform inter- and intrasubject gravity-dependent spatiotemporal patterns of aeration (measured using electrical impedance tomography). Spatial distribution of tidal ventilation was more stable after either recruitment maneuver. All strategies caused regional lung injury patterns that mirrored associated regional volume states. Irrespective of strategy, spatiotemporal volume loss was consistently associated with up-regulation of early growth response-1 expression. Our results show that mechanical and molecular consequences of lung aeration at birth are not simply related to rapidity of fluid clearance; they are also related to spatiotemporal pressure-volume interactions within the lung during inflation and deflation.
Assuntos
Pulmão/fisiopatologia , Respiração com Pressão Positiva/efeitos adversos , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Modelos Animais de Doenças , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Regulação da Expressão Gênica , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Complacência Pulmonar , Medidas de Volume Pulmonar , Pressão , Troca Gasosa Pulmonar , Ventilação Pulmonar , RNA Mensageiro/metabolismo , Mecânica Respiratória , Fatores de Risco , Ovinos , Volume de Ventilação Pulmonar , Fatores de Tempo , Tomografia Computadorizada por Raios X , Lesão Pulmonar Induzida por Ventilação Mecânica/diagnóstico por imagem , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologiaRESUMO
Inadvertently injurious ventilation of preterm neonates in the delivery room can cause cerebral white matter (WM) inflammation and injury. We investigated the impact of an early high dose of recombinant human erythropoietin (EPO) on ventilation-induced WM changes in preterm lambs. Injurious ventilation, targeting a V(T) of 15 ml kg(-1) with no positive end-expiratory pressure, was initiated for 15 min in preterm lambs (0.85 gestation). Conventional ventilation was continued for a further 105 min. Lambs received either 5000 IU kg(-1) of EPO (EPREX®; Vent+EPO; n = 6) or vehicle (Vent; n = 8) via an umbilical vein at 4 ± 2 min. Markers of WM injury and inflammation were assessed using quantitative real-time PCR (qPCR) and immunohistochemistry and compared to a group of unventilated controls (UVC; n = 4). In Vent+EPO lambs compared to Vent lambs: (i) interleukin (IL)-1ß and IL-6 mRNA levels in the periventricular WM and IL-8 mRNA levels in the subcortical WM were higher (P < 0.05 for all); (ii) the density of microglia within the aggregations was not different in the periventricular WM and was lower in the subcortical WM (P = 0.001); (iii) the density of astrocytes was lower in the subcortical WM (P = 0.002); (iv) occludin and claudin-1 mRNA levels were higher in the periventricular WM (P < 0.02 for all) and (vi) the number of blood vessels with protein extravasation was lower (P < 0.05). Recombinant human EPO had variable regional effects within the WM when administered during injurious ventilation. The adverse short-term outcomes discourage the use of early high dose EPO administration in preterm ventilated babies.
Assuntos
Eritropoetina/uso terapêutico , Hipóxia Encefálica/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Respiração Artificial/efeitos adversos , Substância Branca/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Eritropoetina/administração & dosagem , Eritropoetina/farmacologia , Feminino , Hipóxia Encefálica/etiologia , Interleucinas/genética , Interleucinas/metabolismo , Masculino , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Gravidez , Ventilação Pulmonar , Ovinos , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Substância Branca/metabolismo , Substância Branca/patologiaRESUMO
Intrauterine growth restriction (IUGR) and preterm birth are frequent comorbidities and, combined, increase the risk of adverse respiratory outcomes compared with that in appropriately grown (AG) infants. Potential underlying reasons for this increased respiratory morbidity in IUGR infants compared with AG infants include altered fetal lung development, fetal lung inflammation, increased respiratory requirements, and/or increased ventilation-induced lung injury. IUGR was surgically induced in preterm fetal sheep (0.7 gestation) by ligation of a single umbilical artery. Four weeks later, preterm lambs were euthanized at delivery or delivered and ventilated for 2 h before euthanasia. Ventilator requirements, lung inflammation, early markers of lung injury, and morphological changes in lung parenchymal and vascular structure and surfactant composition were analyzed. IUGR preterm lambs weighed 30% less than AG preterm lambs, with increased brain-to-body weight ratio, indicating brain sparing. IUGR did not induce lung inflammation or injury or alter lung parenchymal and vascular structure compared with AG fetuses. IUGR and AG lambs had similar oxygenation and respiratory requirements after birth and had significant, but similar, increases in proinflammatory cytokine expression, lung injury markers, gene expression, and surfactant phosphatidylcholine species compared with unventilated controls. IUGR does not induce pulmonary structural changes in our model. Furthermore, IUGR and AG preterm lambs have similar ventilator requirements in the immediate postnatal period. This study suggests that increased morbidity and mortality in IUGR infants is not due to altered lung tissue or vascular structure, or to an altered response to early ventilation.
Assuntos
Retardo do Crescimento Fetal/metabolismo , Pulmão/metabolismo , Pneumonia/metabolismo , Surfactantes Pulmonares/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Idade Gestacional , Gravidez , Respiração Artificial/efeitos adversos , OvinosRESUMO
AIM: Pneumothorax is a common emergency affecting extremely preterm. In adult studies, lung ultrasound has performed better than chest x-ray in the diagnosis of pneumothorax. The purpose of this study was to determine the efficacy of lung ultrasound (LUS) examination to detect pneumothorax using a preterm animal model. METHODS: This was a prospective, observational study using newborn Border-Leicester lambs at gestational age = 126 days (equivalent to gestational age = 26 weeks in humans) receiving mechanical ventilation from birth to 2 h of life. At the conclusion of the experiment, LUS was performed, the lambs were then euthanised and a post-mortem exam was immediately performed. We used previously published ultrasound techniques to identify pneumothorax. Test characteristics of LUS to detect pneumothorax were calculated, using the post-mortem exam as the 'gold standard' test. RESULTS: Nine lambs (18 lungs) were examined. Four lambs had a unilateral pneumothorax, all of which were identified by LUS with no false positives. CONCLUSIONS: This was the first study to use post-mortem findings to test the efficacy of LUS to detect pneumothorax in a newborn animal model. Lung ultrasound accurately detected pneumothorax, verified by post-mortem exam, in premature, newborn lambs.
Assuntos
Pneumotórax/diagnóstico por imagem , Ovinos , Ultrassonografia , Animais , Autopsia , Humanos , Pulmão , Estudos ProspectivosRESUMO
BACKGROUND: Sustained inflation (SI) at birth facilitates establishment of functional residual capacity (FRC) in the preterm lung, but the ideal lung recruitment strategy is unclear. We have compared the effect of SI and a stepwise positive end-expiratory pressure (PEEP; SEP) strategy in a preterm model. METHODS: 127 d gestation lambs received either 20-s SI (n = 9) or 2 cmH2O stepwise PEEP increases to 20 cmH2O every 10 inflations, and then decreases to 6 cmH2O (n = 10). Ventilation continued for 70 min, with surfactant administered at 10 min. Alveolar-arterial oxygen gradient (AaDO2), compliance (C(dyn)), end-expiratory thoracic volume (EEVRIP; respiratory inductive plethysmography), and EEV and C(dyn) in the gravity-dependent and nondependent hemithoraces (electrical impedance tomography) were measured throughout. Early mRNA markers of lung injury were analyzed using quantitative real-time PCR. RESULTS: From 15 min of life, AaDO2 was lower in SEP group (P < 0.005; two-way ANOVA). SEP resulted in higher and more homogeneous C(dyn) (P < 0.0001). Mean (SD) EEVRIP at 5 min was 18 (9) ml/kg and 6 (5) ml/kg following SEP and SI, respectively (P = 0.021; Bonferroni posttest); this difference was due to a greater nondependent hemithorax EEV. There was no difference in markers of lung injury. CONCLUSION: An SEP at birth improved gas exchange, lung mechanics, and EEV, without increasing lung injury, compared to the SI strategy used.
Assuntos
Pulmão/fisiologia , Respiração com Pressão Positiva/métodos , Corticosteroides/química , Animais , Animais Recém-Nascidos , Feminino , Capacidade Residual Funcional , Pulmão/crescimento & desenvolvimento , Pulmão/patologia , Masculino , Oxigênio/química , Pletismografia , Pressão , Troca Gasosa Pulmonar , Surfactantes Pulmonares/análise , Reação em Cadeia da Polimerase em Tempo Real , Mecânica Respiratória , Ovinos , Fatores de TempoRESUMO
Background: Intrauterine inflammation and the requirement for mechanical ventilation independently increase the risk of perinatal brain injury and adverse neurodevelopmental outcomes. We aimed to investigate the effects of mechanical ventilation for 24 h, with and without prior exposure to intrauterine inflammation, on markers of brain inflammation and injury in the preterm sheep brain. Methods: Chronically instrumented fetal sheep at ~115 days of gestation were randomly allocated to receive a single intratracheal dose of 1 mg lipopolysaccharide (LPS) or isovolumetric saline, then further randomly allocated 1 h after to receive mechanical ventilation with room air or no mechanical ventilation (unventilated control + saline [UVC, n = 7]; in utero mechanical ventilation + saline [VENT, n = 8], unventilated control + intratracheal LPS [UVC + LPS, n = 7]; in utero ventilation + intratracheal LPS [VENT + LPS, n = 7]). Serial fetal blood and plasma samples were collected throughout the experimental protocol for assessment of blood biochemistry and plasma interleukin (IL)-6 levels. After 24 h of mechanical ventilation, fetal brains were collected for RT-qPCR and immunohistochemical analyses. Results: LPS exposure increased numbers of microglia and upregulated pro-inflammatory related genes within the cortical gray matter (GM) and subcortical white matter (SCWM) (pLPS < 0.05). Mechanical ventilation alone increased astrocytic cell density in the periventricular white matter (PVWM) (pVENT = 0.03) but had no effect on pro-inflammatory gene expression. The combination of ventilation and LPS increased plasma IL-6 levels (p < 0.02 vs. UVC and VENT groups), and exacerbated expression of pro-inflammatory-related genes (IL1ß, TLR4, PTGS2, CXCL10) and microglial density (p < 0.05 vs. VENT). Conclusion: This study demonstrates that 24 h of mechanical ventilation after exposure to intrauterine inflammation increased markers of systemic and brain inflammation and led to the upregulation of pro-inflammatory genes in the white matter. We conclude that 24 h of mechanical ventilation following intrauterine inflammation may precondition the preterm brain toward being more susceptible to inflammation-induced injury.
RESUMO
Introduction: Infants with congenital diaphragmatic hernia can suffer severe respiratory insufficiency and pulmonary hypertension after birth. Aerating the lungs before removing placental support (physiologically based cord clamping, PBCC) increases pulmonary blood flow (PBF) and reduces pulmonary vascular resistance (PVR) in lambs with a diaphragmatic hernia (DH). We hypothesized that these benefits of PBCC persist for at least 8â h after birth. Methods: At â¼138 days of gestation age (dGA), 21 lambs with a surgically induced left-sided DH (â¼86 dGA) were delivered via cesarean section. The umbilical cord was clamped either before ventilation onset (immediate cord clamping, ICC, n = 9) or after achieving a tidal volume of 4â ml/kg, with a maximum delay of 10â min (PBCC, n = 12). The lambs were ventilated for 8â h, initially with conventional mechanical ventilation, but were switched to high-frequency oscillatory ventilation after 30â min if required. Ventilatory parameters, cardiopulmonary physiology, and arterial blood gases were measured throughout the study. Results: PBF increased after ventilation onset in both groups and was higher in the PBCC DH lambs than the ICC DH lambs at 8â h (5.2 ± 1.2 vs. 1.9 ± 0.3â ml/min/g; p < 0.05). Measured over the entire 8-h ventilation period, PBF was significantly greater (p = 0.003) and PVR was significantly lower (p = 0.0002) in the PBCC DH lambs compared to the ICC DH lambs. A high incidence of pneumothoraces in both the PBCC (58%) and ICC (55%) lambs contributed to a reduced sample size at 8â h (ICC n = 4 and PBCC n = 4). Conclusion: Compared with ICC, PBCC increased PBF and reduced PVR in DH lambs and the effects were sustained for at least 8â h after ventilation onset.
RESUMO
Proliferation and migration of fibroblasts are vital for fetal lung development. However, the regulatory mechanisms are poorly understood. We have previously shown that TROP2 gene expression is closely associated with fetal lung cell proliferation in vivo and that TROP2 knockdown decreases proliferation of fetal lung fibroblasts in culture. We hypothesized that the Trop2 protein also regulates the morphology and motility of fetal lung fibroblasts. Fibroblasts isolated from fetal rat lungs (gestational age embryonic day 19) adopted a myofibroblast-like morphology in culture. Trop2 protein was localized to lamellipodia. TROP2 siRNA significantly decreased: TROP2 mRNA levels by 77%, the proportion of cells containing Trop2 protein by 70%, and cell proliferation by 50%. TROP2 siRNA also decreased the degree of motility as determined by the number of gridlines that cells moved across (2.2 ± 0.2 vs. 3.2 ± 0.2; P < 0.001). TROP2 knockdown altered cell morphology, causing a notable absence of lamellipodia and abnormal localization of components of the cell migration apparatus, and it reduced phosphorylated ERK1 and ERK2 levels. In contrast, TROP2 overexpression significantly increased: TROP2 mRNA levels by 40-fold, cell proliferation by 40%, the proportion of cells that were motile by 20%, and the number of gridlines that cells moved across (2.1 ± 0.2 vs. 1.6 ± 0.1; P < 0.001). Our data suggest that Trop2 regulates cell proliferation and motility and that it does so by regulating the ERK pathway and several critical components of the cell migration apparatus.
Assuntos
Antígenos de Neoplasias/metabolismo , Movimento Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Pulmão/embriologia , Proteínas Oncogênicas/metabolismo , Pseudópodes/fisiologia , Animais , Antígenos de Neoplasias/genética , Proliferação de Células , Células Cultivadas , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Expressão Gênica , Pulmão/citologia , Proteínas Oncogênicas/genética , Fosforilação , Gravidez , Pseudópodes/metabolismo , Interferência de RNA , RNA Mensageiro , RNA Interferente Pequeno , Ratos , Ratos Sprague-DawleyRESUMO
Background: Preterm infants have immature respiratory drive and often require prolonged periods of mechanical ventilation. Prolonged mechanical ventilation induces systemic inflammation resulting in ventilation-induced brain injury, however its effect on brainstem respiratory centers is unknown. We aimed to determine the effects of 24â h of mechanical ventilation on inflammation and injury in brainstem respiratory centres of preterm fetal sheep. Methods: Preterm fetal sheep at 110 ± 1 days (d) gestation were instrumented to provide mechanical ventilation in utero. At 112 ± 1â d gestation, fetuses received either mechanical ventilation (VENT; n = 7; 3â ml/kg) for 24â h, or no ventilation (CONT; n = 6). At post-mortem, fetal brainstems were collected for assessment of mRNA and histological markers of inflammation and injury. Results: In utero ventilation (IUV) did not alter any blood-gas parameters. IUV significantly increased systemic IL-6 and IL-8 concentrations over the 24â h period compared to CONT. The number of ameboid microglia within the nucleus tractus solitarius and the raphe nucleus increased in VENT fetuses (p < 0.05 for both vs. control). The % area fraction of GFAP + staining was not significantly higher within the preBötzinger complex (p = 0.067) and retrotrapezoid nucleus and parafacial respiratory group (p = 0.057) in VENT fetuses compared to CONT. Numbers of caspase-3 and TUNEL-positive cells were similar between groups. Gene expression (mRNA) levels of inflammation, injury, cell death and prostaglandin synthesis within the brainstem were similar between groups. Conclusion: Mechanical ventilation induces a systemic inflammatory response with only moderate inflammatory effects within the brainstem respiratory centres of preterm fetal sheep.
RESUMO
Initiation of respiratory support in the delivery room increases the risk and severity of brain injury in preterm neonates through two major pathways: an inflammatory pathway and a haemodynamic pathway. The relative contribution of each pathway on preterm brain injury is not known. We aimed to assess the role of the inflammatory and haemodynamic pathway on ventilation-induced brain injury (VIBI) in the preterm lamb. Fetal lambs (125 ± 1 day gestation) were exteriorised, instrumented and ventilated with a high tidal-volume (VT) injurious strategy for 15 min either with placental circulation intact to induce the inflammatory pathway only (INJINF; n = 7) or umbilical cord occluded to induce both the inflammatory and haemodynamic pathways (INJINF+HAE; n = 7). Sham controls were exteriorised but not ventilated (SHAM; n = 5) while unoperated controls (UNOP; n = 7) did not undergo fetal instrumentation. Fetuses were returned in utero following intervention and the ewe allowed to recover. Arterial blood gases and plasma were sampled periodically. Twenty-four hours following intervention, lambs were delivered and maintained on non-injurious ventilation for â¼40 min then brains were collected post-mortem for immunohistochemistry and RT-qPCR to assess inflammation, vascular pathology and cell death within white matter regions. Compared to INJINF lambs, INJINF+HAE lambs achieved a consistently higher VT during injurious ventilation and carotid blood flow was significantly lower than baseline by the end of ventilation. Throughout the 24 h recovery period, systemic arterial IL-6 levels of INJINF+HAE lambs were significantly higher than SHAM while there was no difference between INJINF and SHAM animals. At 24 h, mRNA expression levels of pro-inflammatory cytokines, tight junction proteins, markers of cell death, and histological injury indices of gliosis, blood vessel protein extravasation, oligodendrocyte injury and cell death were not different between groups. Injurious ventilation, irrespective of strategy, did not increase brain inflammation or injury 24 h later when compared to control animals. However, the haemodynamic pathway did influence carotid blood flow adaptations during injurious ventilation and increased systemic arterial IL-6 that may underlie long-term pathology. Future studies are required to further characterise the pathways and their long-term effects on VIBI.
RESUMO
Respiratory distress is relatively common in infants born at or near-term, particularly in infants delivered following elective cesarean section. The pathophysiology underlying respiratory distress at term has largely been explained by a failure to clear airway liquid, but recent physiological evidence has indicated that it results from elevated airway liquid at the onset of air-breathing. We have investigated the effect of elevated airway liquid volumes at birth on cardiorespiratory function in preterm and near-term lambs. Preterm (130 ± 0 days gestation, term â¼147 days gestation; n = 12) and near-term (139 ± 1 days gestation; n = 13) lambs were instrumented (to measure blood pressure, blood flow, and blood gas status) and, at delivery, airway liquid volumes were adjusted to mimic levels expected following vaginal delivery (Controls; â¼7 mL/kg) or elective cesarean section with no labor (elevated liquid (EL); 37 mL/kg). Lambs were delivered, mechanically ventilated, and monitored for blood gas status, oxygenation, ventilator requirements, blood flows (carotid artery and pulmonary artery), and blood pressure during the first few hours of life. Preterm and near-term EL lambs had poorer gas exchange and required greater ventilatory support to maintain adequate oxygenation. Pulmonary blood flow was reduced and carotid artery blood flow, mean arterial blood pressure, and heart rate were reduced in EL near-term but not preterm lambs. These data provide further evidence that greater airway liquid volumes at birth adversely affect newborn cardiorespiratory function, with the effects being greater in near-term newborns.NEW & NOTEWORTHY We provide evidence for adverse effects of elevated airway liquid volumes at birth on pulmonary blood flow and gas exchange in both preterm and near-term lambs, although the effects were greatest in near-term newborns. Our study is an important step toward understanding the fundamental physiology underlying the cardiorespiratory morbidity associated with near-term newborns with elevated airway liquid volumes leading to respiratory distress soon after birth.
Assuntos
Cesárea , Síndrome do Desconforto Respiratório , Animais , Animais Recém-Nascidos , Feminino , Humanos , Pulmão , Gravidez , Ovinos , Volume de Ventilação PulmonarRESUMO
Background: Preterm newborns commonly experience apnoeas after birth and require respiratory stimulants and support. Antenatal inflammation is a common antecedent of preterm birth and inflammatory mediators, particularly prostaglandin E2 (PGE2), are associated with inhibition of vital brainstem respiratory centers. In this study, we tested the hypothesis that exposure to antenatal inflammation inhibits fetal breathing movements (FBMs) and increases inflammation and PGE2 levels in brainstem respiratory centers, cerebrospinal fluid (CSF) and blood plasma. Methods: Chronically instrumented late preterm fetal sheep at 0.85 of gestation were randomly assigned to receive repeated intravenous saline (n = 8) or lipopolysaccharide (LPS) infusions (experimental day 1 = 300 ng, day 2 = 600 ng, day 3 = 1200 ng, n = 8). Fetal breathing movements were recorded throughout the experimental period. Sheep were euthanized 4 days after starting infusions for assessment of brainstem respiratory center histology. Results: LPS infusions increased circulating and cerebrospinal fluid PGE2 levels, decreased arterial oxygen saturation, increased the partial pressure of carbon dioxide and lactate concentration, and decreased pH (p < 0.05 for all) compared to controls. LPS infusions caused transient reductions in the % of time fetuses spent breathing and the proportion of vigorous fetal breathing movements (P < 0.05 vs. control). LPS-exposure increased PGE2 expression in the RTN/pFRG (P < 0.05 vs. control) but not the pBÖTC (P < 0.07 vs. control) of the brainstem. No significant changes in gene expression were observed for PGE2 enzymes or caspase 3. LPS-exposure reduced the numbers of GFAP-immunoreactive astrocytes in the RTN/pFRG, NTS and XII of the brainstem (P < 0.05 vs. control for all) and increased microglial activation in the RTN/pFRG, preBÖTC, NTS, and XII brainstem respiratory centers (P < 0.05 vs. control for all). Conclusion: Chronic LPS-exposure in late preterm fetal sheep increased PGE2 levels within the brainstem, CSF and plasma, and was associated with inhibition of FBMs, astrocyte loss and microglial activation within the brainstem respiratory centers. Further studies are needed to determine whether the inflammation-induced increase in PGE2 levels plays a key role in depressing respiratory drive in the perinatal period.
RESUMO
The factors regulating growth of the developing lung are poorly understood, although the degree of fetal lung expansion is critical. The oncogene Trop2 (trophoblast antigen 2) is upregulated during accelerated fetal lung growth, and we hypothesized that it may regulate normal fetal lung growth. We investigated Trop2 expression in the fetal and neonatal sheep lung during accelerated and delayed lung growth induced by alterations in fetal lung expansion, as well as in response to glucocorticoids. Trop2 expression was measured using real-time PCR and localized spatially using in situ hybridization and immunofluorescence. During normal lung development, Trop2 expression was higher at 90 days gestational age (GA; 4.0 ± 0.8) than at 128 days GA (1.0 ± 0.1), decreased to 0.5 ± 0.1 at 142 days GA (full term â¼147 days GA), and was positively correlated to lung cell proliferation rates (r = 0.953, P < 0.005). Trop2 expression was regulated by fetal lung expansion, but not by glucocorticoids. It was increased nearly threefold by 36 h of increased fetal lung expansion (P < 0.05) and was reduced to â¼55% of control levels by reduced fetal lung expansion (P < 0.05). Trop2 expression was associated with lung cell proliferation during normal and altered lung growth, and the TROP2 protein colocalized with Ki-67-positive cells in the fetal lung. TROP2 was predominantly localized to fibroblasts and type II alveolar epithelial cells. Trop2 small interfering RNA decreased Trop2 expression by â¼75% in cultured fetal rat lung fibroblasts and decreased their proliferation by â¼50%. Cell viability was not affected. This study demonstrates that TROP2 regulates lung cell proliferation during development.
Assuntos
Células Epiteliais Alveolares/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hidrocortisona/farmacologia , Pulmão , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Ovinos/genética , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/efeitos dos fármacos , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Feto , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Imunofluorescência , Inativação Gênica/efeitos dos fármacos , Hibridização in Situ Fluorescente , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/embriologia , Pulmão/metabolismo , Tamanho do Órgão , RNA Mensageiro/análise , RNA Mensageiro/biossíntese , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Ovinos/embriologia , Ovinos/metabolismoRESUMO
Objective: Continuous positive airway pressures (CPAP) used to assist preterm infants at birth are limited to 4-8 cmH2O due to concerns that high-CPAP may cause pulmonary overexpansion and adversely affect the cardiovascular system. We investigated the effects of high-CPAP on pulmonary (PBF) and cerebral (CBF) blood flows and jugular vein pressure (JVP) after birth in preterm lambs. Methods: Preterm lambs instrumented with flow probes and catheters were delivered at 133/146 days gestation. Lambs received low-CPAP (LCPAP: 5 cmH2O), high-CPAP (HCPAP: 15 cmH2O) or dynamic HCPAP (15 decreasing to 8 cmH2O at ~2 cmH2O/min) for up to 30 min after birth. Results: Mean PBF was lower in the LCPAP [median (Q1-Q3); 202 (48-277) mL/min, p = 0.002] compared to HCPAP [315 (221-365) mL/min] and dynamic HCPAP [327 (269-376) mL/min] lambs. CBF was similar in LCPAP [65 (37-78) mL/min], HCPAP [73 (41-106) mL/min], and dynamic HCPAP [66 (52-81) mL/min, p = 0.174] lambs. JVP was similar at CPAPs of 5 [8.0 (5.1-12.4) mmHg], 8 [9.4 (5.3-13.4) mmHg], and 15 cmH2O [8.6 (6.9-10.5) mmHg, p = 0.909]. Heart rate was lower in the LCPAP [134 (101-174) bpm; p = 0.028] compared to the HCPAP [173 (139-205)] and dynamic HCPAP [188 (161-207) bpm] groups. Ventilation or additional caffeine was required in 5/6 LCPAP, 1/6 HCPAP, and 5/7 dynamic HCPAP lambs (p = 0.082), whereas 3/6 LCPAP, but no HCPAP lambs required intubation (p = 0.041), and 1/6 LCPAP, but no HCPAP lambs developed a pneumothorax (p = 0.632). Conclusion: High-CPAP did not impede the increase in PBF at birth and supported preterm lambs without affecting CBF and JVP.