Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cereb Cortex ; 31(3): 1763-1775, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33188399

RESUMO

Genetic association studies have identified many factors associated with neurodevelopmental disorders such as autism spectrum disorder (ASD). However, the way these genes shape neuroanatomical structure and connectivity is poorly understood. Recent research has focused on proteins that act as points of convergence for multiple factors, as these may provide greater insight into understanding the biology of neurodevelopmental disorders. USP9X, a deubiquitylating enzyme that regulates the stability of many ASD-related proteins, is one such point of convergence. Loss of function variants in human USP9X lead to brain malformations, which manifest as a neurodevelopmental syndrome that frequently includes ASD, but the underlying structural and connectomic abnormalities giving rise to patient symptoms is unknown. Here, we analyzed forebrain-specific Usp9x knockout mice (Usp9x-/y) to address this knowledge gap. Usp9x-/y mice displayed abnormal communication and social interaction behaviors. Moreover, the absence of Usp9x culminated in reductions to the size of multiple brain regions. Diffusion tensor magnetic resonance imaging revealed deficits in all three major forebrain commissures, as well as long-range hypoconnectivity between cortical and subcortical regions. These data identify USP9X as a key regulator of brain formation and function, and provide insights into the neurodevelopmental syndrome arising as a consequence of USP9X mutations in patients.


Assuntos
Córtex Cerebral/fisiopatologia , Vias Neurais/fisiopatologia , Neurogênese/fisiologia , Ubiquitina Tiolesterase/metabolismo , Animais , Comportamento Animal , Masculino , Camundongos , Camundongos Knockout
2.
Bioessays ; 42(10): e2000065, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32767425

RESUMO

What is the function of new neurons entering the olfactory bulb? Many insights regarding the molecular control of adult neurogenesis have been uncovered, but the purpose of new neurons entering the olfactory bulb has been difficult to ascertain. Here, studies investigating the role of adult neurogenesis in olfactory discrimination in mice are reviewed. Studies in which adult neurogenesis is affected are highlighted, with a focus on the role of environment enrichment and what happens during ageing. There is evidence for a role of adult neurogenesis in fine discrimination tasks, as underscored by studies that enhance adult neurogenesis. This is also observed in ageing studies, where older mice with reduced levels of adult neurogenesis perform poorly in olfactory discrimination. Differences in methodology that could account for alternative conclusions, and the importance of specificity in methods being used to investigate the effect of adult neurogenesis in olfactory performance are emphasized.


Assuntos
Neurogênese , Bulbo Olfatório , Animais , Camundongos , Neurônios , Olfato
3.
Development ; 145(3)2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29437824

RESUMO

Our understanding of the transcriptional programme underpinning adult hippocampal neurogenesis is incomplete. In mice, under basal conditions, adult hippocampal neural stem cells (AH-NSCs) generate neurons and astrocytes, but not oligodendrocytes. The factors limiting oligodendrocyte production, however, remain unclear. Here, we reveal that the transcription factor NFIX plays a key role in this process. NFIX is expressed by AH-NSCs, and its expression is sharply upregulated in adult hippocampal neuroblasts. Conditional ablation of Nfix from AH-NSCs, coupled with lineage tracing, transcriptomic sequencing and behavioural studies collectively reveal that NFIX is cell-autonomously required for neuroblast maturation and survival. Moreover, a small number of AH-NSCs also develop into oligodendrocytes following Nfix deletion. Remarkably, when Nfix is deleted specifically from intermediate progenitor cells and neuroblasts using a Dcx-creERT2 driver, these cells also display elevated signatures of oligodendrocyte gene expression. Together, these results demonstrate the central role played by NFIX in neuroblasts within the adult hippocampal stem cell neurogenic niche in promoting the maturation and survival of these cells, while concomitantly repressing oligodendrocyte gene expression signatures.


Assuntos
Hipocampo/citologia , Hipocampo/metabolismo , Fatores de Transcrição NFI/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Sobrevivência Celular , Proteína Duplacortina , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/crescimento & desenvolvimento , Masculino , Transtornos da Memória/genética , Transtornos da Memória/patologia , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Knockout , Fatores de Transcrição NFI/deficiência , Fatores de Transcrição NFI/genética , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Nicho de Células-Tronco/genética , Nicho de Células-Tronco/fisiologia , Regulação para Cima
4.
Cerebellum ; 19(1): 89-101, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31838646

RESUMO

Transcriptional regulation plays a central role in controlling neural stem and progenitor cell proliferation and differentiation during neurogenesis. For instance, transcription factors from the nuclear factor I (NFI) family have been shown to co-ordinate neural stem and progenitor cell differentiation within multiple regions of the embryonic nervous system, including the neocortex, hippocampus, spinal cord and cerebellum. Knockout of individual Nfi genes culminates in similar phenotypes, suggestive of common target genes for these transcription factors. However, whether or not the NFI family regulates common suites of genes remains poorly defined. Here, we use granule neuron precursors (GNPs) of the postnatal murine cerebellum as a model system to analyse regulatory targets of three members of the NFI family: NFIA, NFIB and NFIX. By integrating transcriptomic profiling (RNA-seq) of Nfia- and Nfix-deficient GNPs with epigenomic profiling (ChIP-seq against NFIA, NFIB and NFIX, and DNase I hypersensitivity assays), we reveal that these transcription factors share a large set of potential transcriptional targets, suggestive of complementary roles for these NFI family members in promoting neural development.


Assuntos
Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Fatores de Transcrição NFI/metabolismo , Animais , Animais Recém-Nascidos , Cerebelo/citologia , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição NFI/genética , Neurogênese/fisiologia , Gravidez
5.
Cereb Cortex ; 29(8): 3590-3604, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-30272140

RESUMO

Understanding the migration of newborn neurons within the brain presents a major challenge in contemporary biology. Neuronal migration is widespread within the developing brain but is also important within the adult brain. For instance, stem cells within the ventricular-subventricular zone (V-SVZ) and the subgranular zone of dentate gyrus of the adult rodent brain produce neuroblasts that migrate to the olfactory bulb and granule cell layer of the dentate gyrus, respectively, where they regulate key brain functions including innate olfactory responses, learning, and memory. Critically, our understanding of the factors mediating neuroblast migration remains limited. The transcription factor nuclear factor I X (NFIX) has previously been implicated in embryonic cortical development. Here, we employed conditional ablation of Nfix from the adult mouse brain and demonstrated that the removal of this gene from either neural stem and progenitor cells, or neuroblasts, within the V-SVZ culminated in neuroblast migration defects. Mechanistically, we identified aberrant neuroblast branching, due in part to increased expression of the guanylyl cyclase natriuretic peptide receptor 2 (Npr2), as a factor contributing to abnormal migration in Nfix-deficient adult mice. Collectively, these data provide new insights into how neuroblast migration is regulated at a transcriptional level within the adult brain.


Assuntos
Movimento Celular/genética , Giro Denteado/citologia , Ventrículos Laterais/citologia , Fatores de Transcrição NFI/genética , Células-Tronco Neurais/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Camundongos , Células-Tronco Neurais/citologia , Neurogênese/genética , Receptores do Fator Natriurético Atrial/genética
6.
Development ; 143(24): 4620-4630, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27965439

RESUMO

During forebrain development, radial glia generate neurons through the production of intermediate progenitor cells (IPCs). The production of IPCs is a central tenet underlying the generation of the appropriate number of cortical neurons, but the transcriptional logic underpinning this process remains poorly defined. Here, we examined IPC production using mice lacking the transcription factor nuclear factor I/X (Nfix). We show that Nfix deficiency delays IPC production and prolongs the neurogenic window, resulting in an increased number of neurons in the postnatal forebrain. Loss of additional Nfi alleles (Nfib) resulted in a severe delay in IPC generation while, conversely, overexpression of NFIX led to precocious IPC generation. Mechanistically, analyses of microarray and ChIP-seq datasets, coupled with the investigation of spindle orientation during radial glial cell division, revealed that NFIX promotes the generation of IPCs via the transcriptional upregulation of inscuteable (Insc). These data thereby provide novel insights into the mechanisms controlling the timely transition of radial glia into IPCs during forebrain development.


Assuntos
Proteínas de Ciclo Celular/biossíntese , Hipocampo/embriologia , Fatores de Transcrição NFI/genética , Células-Tronco Neurais/citologia , Neurogênese/genética , Animais , Proteínas de Ciclo Celular/genética , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Neurogênese/fisiologia , Neurônios/citologia , Regiões Promotoras Genéticas/genética , Transcrição Gênica , Ativação Transcricional/genética
7.
Anesthesiology ; 131(3): 555-568, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31356232

RESUMO

BACKGROUND: Mutations in the presynaptic protein syntaxin1A modulate general anesthetic effects in vitro and in vivo. Coexpression of a truncated syntaxin1A protein confers resistance to volatile and intravenous anesthetics, suggesting a target mechanism distinct from postsynaptic inhibitory receptor processes. Hypothesizing that recovery from anesthesia may involve a presynaptic component, the authors tested whether syntaxin1A mutations facilitated recovery from isoflurane anesthesia in Drosophila melanogaster. METHODS: A truncated syntaxin1A construct was expressed in Drosophila neurons. The authors compared effects on isoflurane induction versus recovery in syntaxin1A mutant animals by probing behavioral responses to mechanical stimuli. The authors also measured synaptic responses from the larval neuromuscular junction using sharp intracellular recordings, and performed Western blots to determine whether the truncated syntaxin1A is associated with presynaptic core complexes. RESULTS: Drosophila expressing a truncated syntaxin1A (syx, n = 40) were resistant to isoflurane induction for a behavioral responsiveness endpoint (ED50 0.30 ± 0.01% isoflurane, P < 0.001) compared with control (0.240 ± 0.002% isoflurane, n = 40). Recovery from isoflurane anesthesia was also faster, with syx-expressing flies showing greater levels of responsiveness earlier in recovery (reaction proportion 0.66 ± 0.48, P < 0.001, n = 68) than controls (0.22 ± 0.42, n = 68 and 0.33 ± 0.48, n = 66). Measuring excitatory junction potentials of larvae coexpressing the truncated syntaxin1A protein showed a greater recovery of synaptic function, compared with controls (17.39 ± 3.19 mV and 10.29 ± 4.88 mV, P = 0.014, n = 8 for both). The resistance-promoting truncated syntaxin1A was not associated with presynaptic core complexes, in the presence or absence of isoflurane anesthesia. CONCLUSIONS: The same neomorphic syntaxin1A mutation that confers isoflurane resistance in cell culture and nematodes also produces isoflurane resistance in Drosophila. Resistance in Drosophila is, however, most evident at the level of recovery from anesthesia, suggesting that the syntaxin1A target affects anesthesia maintenance and recovery processes rather than induction. The absence of truncated syntaxin1A from the presynaptic complex suggests that the resistance-promoting effect of this molecule occurs before core complex formation.


Assuntos
Anestésicos Inalatórios/farmacologia , Proteínas de Drosophila/genética , Isoflurano/farmacologia , Mutação/genética , Junção Neuromuscular/efeitos dos fármacos , Proteínas Qa-SNARE/genética , Período de Recuperação da Anestesia , Animais , Drosophila melanogaster , Feminino
8.
Dev Dyn ; 247(1): 194-200, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28685906

RESUMO

BACKGROUND: Type 1 adult hippocampal neural stem cells (AH-NSCs) continue to generate neurons throughout life, albeit at a very low rate. The relative quiescence of this population of cells has led to many studies investigating factors that may increase their division. Current methods of identifying dividing AH-NSCs in vivo require the identification and tracing of radial processes back to nuclei within the subgranular zone. However, caveats to this approach include the time-intensive nature of identifying AH-NSCs with such a process, as well as the fact that this approach ignores the relatively more active population of horizontally oriented AH-NSCs that also reside in the subgranular zone. RESULTS: Here we describe, and then verify using Hes5::GFP mice, that labeling for the cell cycle marker Ki67 and selection against the intermediate progenitor cell marker TBR2 (Ki67+ve ; TBR2-ve nuclei) is sufficient to identify dividing horizontally and radially oriented AH-NSCs in the adult mouse hippocampus. CONCLUSIONS: These findings provide a simple and accurate way to quantify dividing AH-NSCs in vivo using a morphology-independent approach that will facilitate studies into neurogenesis within the hippocampal stem cell niche of the adult brain. Developmental Dynamics 247:194-200, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Células-Tronco Adultas/citologia , Hipocampo/citologia , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Animais , Proliferação de Células/fisiologia , Camundongos
10.
Conscious Cogn ; 44: 72-88, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27366985

RESUMO

All animals are rendered unresponsive by general anesthetics. In humans, this is observed as a succession of endpoints from memory loss to unconsciousness to immobility. Across animals, anesthesia endpoints such as loss of responsiveness or immobility appear to require significantly different drug concentrations. A closer examination in key model organisms such as the mouse, fly, or the worm, uncovers a trend: more complex behaviors, either requiring several sub-behaviors, or multiple neural circuits working together, are more sensitive to volatile general anesthetics. This trend is also evident when measuring neural correlates of general anesthesia. Here, we review this complexity hypothesis in humans and model organisms, and attempt to reconcile these findings with the more recent view that general anesthetics potentiate endogenous sleep pathways in most animals. Finally, we propose a presynaptic mechanism, and thus an explanation for how these drugs might compromise a succession of brain functions of increasing complexity.


Assuntos
Anestesia Geral , Anestesia por Inalação , Encéfalo/efeitos dos fármacos , Modelos Animais , Sono/efeitos dos fármacos , Animais , Drosophila , Humanos , Camundongos , Nematoides
11.
Anesthesiology ; 122(5): 1060-74, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25738637

RESUMO

BACKGROUND: Recent evidence suggests that general anesthetics activate endogenous sleep pathways, yet this mechanism cannot explain the entirety of general anesthesia. General anesthetics could disrupt synaptic release processes, as previous work in Caenorhabditis elegans and in vitro cell preparations suggested a role for the soluble NSF attachment protein receptor protein, syntaxin1A, in mediating resistance to several general anesthetics. The authors questioned whether the syntaxin1A-mediated effects found in these reductionist systems reflected a common anesthetic mechanism distinct from sleep-related processes. METHODS: Using the fruit fly model, Drosophila melanogaster, the authors investigated the relevance of syntaxin1A manipulations to general anesthesia. The authors used different behavioral and electrophysiological endpoints to test the effect of syntaxin1A mutations on sensitivity to isoflurane. RESULTS: The authors found two syntaxin1A mutations that confer opposite general anesthesia phenotypes: syxH3-C, a 14-amino acid deletion mutant, is resistant to isoflurane (n = 40 flies), and syxKARRAA, a strain with two amino acid substitutions, is hypersensitive to the drug (n = 40 flies). Crucially, these opposing effects are maintained across different behavioral endpoints and life stages. The authors determined the isoflurane sensitivity of syxH3-C at the larval neuromuscular junction to assess effects on synaptic release. The authors find that although isoflurane slightly attenuates synaptic release in wild-type animals (n = 8), syxH3-C preserves synaptic release in the presence of isoflurane (n = 8). CONCLUSION: The study results are evidence that volatile general anesthetics target synaptic release mechanisms; in addition to first activating sleep pathways, a major consequence of these drugs may be to decrease the efficacy of neurotransmission.


Assuntos
Anestésicos Inalatórios/farmacologia , Proteínas de Drosophila/fisiologia , Resistência a Medicamentos/genética , Hipersensibilidade/genética , Isoflurano/farmacologia , Proteínas Qa-SNARE/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Proteínas de Drosophila/genética , Drosophila melanogaster , Larva , Locomoção/efeitos dos fármacos , Mutação , Junção Neuromuscular/efeitos dos fármacos , Neurotransmissores/metabolismo , Proteínas Qa-SNARE/genética , Reflexo de Sobressalto , Sono/efeitos dos fármacos
12.
Cereb Cortex ; 24(5): 1138-51, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23302812

RESUMO

The left and right sides of the nervous system communicate via commissural axons that cross the midline during development using evolutionarily conserved molecules. These guidance cues have been particularly well studied in the mammalian spinal cord, but it remains unclear whether these guidance mechanisms for commissural axons are similar in the developing forebrain, in particular for the corpus callosum, the largest and most important commissure for cortical function. Here, we show that Netrin1 initially attracts callosal pioneering axons derived from the cingulate cortex, but surprisingly is not attractive for the neocortical callosal axons that make up the bulk of the projection. Instead, we show that Netrin-deleted in colorectal cancer signaling acts in a fundamentally different manner, to prevent the Slit2-mediated repulsion of precrossing axons thereby allowing them to approach and cross the midline. These results provide the first evidence for how callosal axons integrate multiple guidance cues to navigate the midline.


Assuntos
Axônios/fisiologia , Corpo Caloso/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Córtex Cerebral/citologia , Técnicas de Cocultura , Receptor DCC , Embrião de Mamíferos , Feminino , Lateralidade Funcional/genética , Lateralidade Funcional/fisiologia , Humanos , Técnicas In Vitro , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos , Fatores de Crescimento Neural/genética , Proteínas do Tecido Nervoso/genética , Netrina-1 , Gravidez , Ratos Wistar , Receptores de Superfície Celular/genética , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/genética , Proteínas Roundabout
13.
JBMR Plus ; 7(6): e10739, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37283649

RESUMO

The nuclear factor I/X (NFIX) gene encodes a ubiquitously expressed transcription factor whose mutations lead to two allelic disorders characterized by developmental, skeletal, and neural abnormalities, namely, Malan syndrome (MAL) and Marshall-Smith syndrome (MSS). NFIX mutations associated with MAL mainly cluster in exon 2 and are cleared by nonsense-mediated decay (NMD) leading to NFIX haploinsufficiency, whereas NFIX mutations associated with MSS are clustered in exons 6-10 and escape NMD and result in the production of dominant-negative mutant NFIX proteins. Thus, different NFIX mutations have distinct consequences on NFIX expression. To elucidate the in vivo effects of MSS-associated NFIX exon 7 mutations, we used CRISPR-Cas9 to generate mouse models with exon 7 deletions that comprised: a frameshift deletion of two nucleotides (Nfix Del2); in-frame deletion of 24 nucleotides (Nfix Del24); and deletion of 140 nucleotides (Nfix Del140). Nfix +/Del2, Nfix +/Del24, Nfix +/Del140, Nfix Del24/Del24, and Nfix Del140/Del140 mice were viable, normal, and fertile, with no skeletal abnormalities, but Nfix Del2/Del2 mice had significantly reduced viability (p < 0.002) and died at 2-3 weeks of age. Nfix Del2 was not cleared by NMD, and NfixDel2/Del2 mice, when compared to Nfix +/+ and Nfix +/Del2 mice, had: growth retardation; short stature with kyphosis; reduced skull length; marked porosity of the vertebrae with decreased vertebral and femoral bone mineral content; and reduced caudal vertebrae height and femur length. Plasma biochemistry analysis revealed Nfix Del2/Del2 mice to have increased total alkaline phosphatase activity but decreased C-terminal telopeptide and procollagen-type-1-N-terminal propeptide concentrations compared to Nfix +/+ and Nfix +/Del2 mice. Nfix Del2/Del2 mice were also found to have enlarged cerebral cortices and ventricular areas but smaller dentate gyrus compared to Nfix +/+ mice. Thus, Nfix Del2/Del2 mice provide a model for studying the in vivo effects of NFIX mutants that escape NMD and result in developmental abnormalities of the skeletal and neural tissues that are associated with MSS. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

14.
Front Syst Neurosci ; 16: 756224, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250497

RESUMO

Understanding the neural bases of subjective experience remains one of the great challenges of the natural sciences. Higher-order theories of consciousness are typically defended by assessments of neural activity in higher cortical regions during perception, often with disregard to the nature of the neural computations that these regions execute. We have sought to refocus the problem toward identification of those neural computations that are necessary for subjective experience with the goal of defining the sorts of neural architectures that can perform these operations. This approach removes reliance on behaviour and brain homologies for appraising whether non-human animals have the potential to subjectively experience sensory stimuli. Using two basic principles-first, subjective experience is dependent on complex processing executing specific neural functions and second, the structure-determines-function principle-we have reasoned that subjective experience requires a neural architecture consisting of stacked forward models that predict the output of neural processing from inputs. Given that forward models are dependent on appropriately connected processing modules that generate prediction, error detection and feedback control, we define a minimal neural architecture that is necessary (but not sufficient) for subjective experience. We refer to this framework as the hierarchical forward models algorithm. Accordingly, we postulate that any animal lacking this neural architecture will be incapable of subjective experience.

15.
Sci Rep ; 12(1): 40, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997023

RESUMO

The generation of new neurons within the mammalian forebrain continues throughout life within two main neurogenic niches, the subgranular zone (SGZ) of the hippocampal dentate gyrus, and the subependymal zone (SEZ) lining the lateral ventricles. Though the SEZ is the largest neurogenic niche in the adult human forebrain, our understanding of the mechanisms regulating neurogenesis from development through aging within this region remains limited. This is especially pertinent given that neurogenesis declines dramatically over the postnatal lifespan. Here, we performed transcriptomic profiling on the SEZ from human post-mortem tissue from eight different life-stages ranging from neonates (average age ~ 2 months old) to aged adults (average age ~ 86 years old). We identified transcripts with concomitant profiles across these decades of life and focused on three of the most distinct profiles, namely (1) genes whose expression declined sharply after birth, (2) genes whose expression increased steadily with age, and (3) genes whose expression increased sharply in old age in the SEZ. Critically, these profiles identified neuroinflammation as becoming more prevalent with advancing age within the SEZ and occurring with time courses, one gradual (starting in mid-life) and one sharper (starting in old age).


Assuntos
Envelhecimento/genética , Envelhecimento/metabolismo , Epêndima/metabolismo , Regulação da Expressão Gênica/fisiologia , Inflamação/genética , Inflamação/metabolismo , Neurogênese/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos de Coortes , Perfilação da Expressão Gênica , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Transcriptoma , Adulto Jovem
16.
Front Behav Neurosci ; 15: 658037, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025371

RESUMO

How subjective experience is realized in nervous systems remains one of the great challenges in the natural sciences. An answer to this question should resolve debate about which animals are capable of subjective experience. We contend that subjective experience of sensory stimuli is dependent on the brain's awareness of its internal neural processing of these stimuli. This premise is supported by empirical evidence demonstrating that disruption to either processing streams or awareness states perturb subjective experience. Given that the brain must predict the nature of sensory stimuli, we reason that conscious awareness is itself dependent on predictions generated by hierarchically organized forward models of the organism's internal sensory processing. The operation of these forward models requires a specialized neural architecture and hence any nervous system lacking this architecture is unable to subjectively experience sensory stimuli. This approach removes difficulties associated with extrapolations from behavioral and brain homologies typically employed in addressing whether an animal can feel. Using nociception as a model sensation, we show here that the Drosophila brain lacks the required internal neural connectivity to implement the computations required of hierarchical forward models. Consequently, we conclude that Drosophila, and those insects with similar neuroanatomy, do not subjectively experience noxious stimuli and therefore cannot feel pain.

17.
Cereb Cortex ; 19 Suppl 1: i11-21, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19357391

RESUMO

Pioneer axons from the cingulate cortex initiate corpus callosum (CC) development, yet nothing is known about the molecules that regulate their guidance. We demonstrate that neuropilin 1 (Npn1) plays an integral role in the development of the CC. Npn1 is localized to axons of cingulate neurons as they cross the midline, and multiple class 3 semaphorins (Semas) are expressed around the developing CC, implicating these guidance molecules in the regulation of Npn1-expressing axons emanating from the cingulate cortex. Furthermore, axons from the cingulate cortex display guidance errors in Npn1(Sema-) mice, a knockin mouse line in which Npn1 is unable to bind Semas. Analysis of mice deficient in the transcription factor Emx2 demonstrated that the cingulate cortex of these mice was significantly reduced in comparison to wild-type controls at E17 and that the CC was absent in rostral sections. Expression of Npn1 was absent in rostral sections of Emx2 mutants, suggesting that Npn1-expressing cingulate pioneers are required for CC formation. These data highlight a central role for Npn1 in the development of projections from the cingulate cortex and further illustrate the importance of these pioneer axons in the formation of the CC.


Assuntos
Axônios/fisiologia , Corpo Caloso/embriologia , Corpo Caloso/metabolismo , Giro do Cíngulo/fisiologia , Neuropilina-1/metabolismo , Transdução de Sinais/fisiologia , Animais , Corpo Caloso/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais
18.
eNeuro ; 7(1)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32019872

RESUMO

Propofol is the most common general anesthetic used for surgery in humans, yet its complete mechanism of action remains elusive. In addition to potentiating inhibitory synapses in the brain, propofol also impairs excitatory neurotransmission. We use electrophysiological recordings from individual glutamatergic boutons in male and female larval Drosophila melanogaster motor nerve terminals to characterize this effect. We recorded from two bouton types, which have distinct presynaptic physiology and different average numbers of release sites or active zones. We show that a clinically relevant dose of propofol (3 µm) impairs neurotransmitter release similarly at both bouton types by decreasing the number of active release sites by half, without affecting release probability. In contrast, an analog of propofol has no effect on glutamate release. Coexpressing a truncated syntaxin1A protein in presynaptic boutons completely blocked this effect of propofol. Overexpressing wild-type syntaxin1A in boutons also conferred a level of resistance by increasing the number of active release sites to a physiological ceiling set by the number of active zones or T-bars, and in this way counteracting the effect of propofol. These results point to the presynaptic release machinery as a target for the general anesthetic. Proportionally equivalent effects of propofol on the number of active release sites across the different bouton types suggests that glutamatergic circuits that involve smaller boutons with fewer release sites may be more vulnerable to the presynaptic effects of the drug.


Assuntos
Anestésicos Gerais , Propofol , Animais , Drosophila , Drosophila melanogaster , Feminino , Masculino , Junção Neuromuscular , Terminações Pré-Sinápticas , Propofol/farmacologia
19.
Genes Brain Behav ; 19(4): e12637, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31909872

RESUMO

Sotos syndrome is a developmental disorder characterized by a suite of clinical features. In children, the three cardinal features of Sotos syndrome are a characteristic facial appearance, learning disability and overgrowth (height and/or head circumference > 2 SDs above average). These features are also evident in adults with this syndrome. Over 90% of Sotos syndrome patients are haploinsufficient for the gene encoding nuclear receptor-binding Su(var)3-9, Enhancer-of-zesteand Trithorax domain-containing protein 1 (NSD1). NSD1 is a histone methyltransferase that catalyzes the methylation of lysine residue 36 on histone H3. However, although the symptomology of Sotos syndrome is well established, many aspects of NSD1 biology remain unknown. Here, we assessed the expression of Nsd1 within the mouse brain, and showed a predominantly neuronal pattern of expression for this histone-modifying factor. We also generated a mouse strain lacking one allele of Nsd1 and analyzed morphological and behavioral characteristics in these mice, showing behavioral characteristics reminiscent of some of the deficits seen in Sotos syndrome patients.


Assuntos
Córtex Cerebral/patologia , Histona-Lisina N-Metiltransferase/genética , Síndrome de Sotos/genética , Animais , Córtex Cerebral/metabolismo , Feminino , Heterozigoto , Histona-Lisina N-Metiltransferase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Síndrome de Sotos/patologia
20.
EBioMedicine ; 39: 388-400, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30503862

RESUMO

BACKGROUND: Nuclear Factor One X (NFIX) haploinsufficiency in humans results in Malan syndrome, a disorder characterized by overgrowth, macrocephaly and intellectual disability. Although clinical assessments have determined the underlying symptomology of Malan syndrome, the fundamental mechanisms contributing to the enlarged head circumference and intellectual disability in these patients remains undefined. METHODS: Here, we used Nfix heterozygous mice as a model to investigate these aspects of Malan syndrome. Volumetric magnetic resonance imaging (MRI) was used to calculate the volumes of 20 brain sub regions. Diffusion tensor MRI was used to perform tractography-based analyses of the corpus callosum, hippocampal commissure, and anterior commissure, as well as structural connectome mapping of the whole brain. Immunohistochemistry examined the neocortical cellular populations. Two behavioral assays were performed, including the active place avoidance task to assess spatial navigation and learning and memory function, and the 3-chambered sociability task to examine social behaviour. FINDINGS: Adult Nfix+/- mice exhibit significantly increased brain volume (megalencephaly) compared to wildtypes, with the cerebral cortex showing the highest increase. Moreover, all three forebrain commissures, in particular the anterior commissure, revealed significantly reduced fractional anisotropy, axial and radial diffusivity, and tract density intensity. Structural connectome analyses revealed aberrant connectivity between many crucial brain regions. Finally, Nfix+/- mice exhibit behavioral deficits that model intellectual disability. INTERPRETATION: Collectively, these data provide a significant conceptual advance in our understanding of Malan syndrome by suggesting that megalencephaly underlies the enlarged head size of these patients, and that disrupted cortical connectivity may contribute to the intellectual disability these patients exhibit. FUND: Australian Research Council (ARC) Discovery Project Grants, ARC Fellowship, NYSTEM and Australian Postgraduate Fellowships.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Haploinsuficiência , Deficiência Intelectual/genética , Megalencefalia/genética , Fatores de Transcrição NFI/genética , Animais , Conectoma , Modelos Animais de Doenças , Feminino , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/psicologia , Imageamento por Ressonância Magnética , Masculino , Megalencefalia/diagnóstico por imagem , Megalencefalia/psicologia , Camundongos , Tamanho do Órgão , Aprendizagem Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA