Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cells ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39049437

RESUMO

Vascular organoids (VOs), derived from induced pluripotent stem cells (iPSCs), hold promise as in vitro disease models and drug screening platforms. However, their ability to faithfully recapitulate human vascular disease and cellular composition remains unclear. In this study, we demonstrate that VOs derived from iPSCs of donors with diabetes (DB-VOs) exhibit impaired vascular function compared to non-diabetic VOs (ND-VOs). DB-VOs display elevated levels of reactive oxygen species (ROS), heightened mitochondrial content and activity, increased proinflammatory cytokines, and reduced blood perfusion recovery in vivo. Through comprehensive single-cell RNA sequencing, we uncover molecular and functional differences, as well as signaling networks, between vascular cell types and clusters within DB-VOs. Our analysis identifies major vascular cell types (endothelial cells [ECs], pericytes, and vascular smooth muscle cells) within VOs, highlighting the dichotomy between ECs and mural cells. We also demonstrate the potential need for additional inductions using organ-specific differentiation factors to promote organ-specific identity in VOs. Furthermore, we observe basal heterogeneity within VOs and significant differences between DB-VOs and ND-VOs. Notably, we identify a subpopulation of ECs specific to DB-VOs, showing overrepresentation in the ROS pathway and underrepresentation in the angiogenesis hallmark, indicating signs of aberrant angiogenesis in diabetes. Our findings underscore the potential of VOs for modeling diabetic vasculopathy, emphasize the importance of investigating cellular heterogeneity within VOs for disease modeling and drug discovery, and provide evidence of GAP43 (neuromodulin) expression in ECs, particularly in DB-VOs, with implications for vascular development and disease.

2.
Circ Res ; 125(3): 328-340, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31159652

RESUMO

RATIONALE: Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), circular RNAs (circRNAs), and long noncoding RNAs (lncRNAs), are proposed novel biomarkers of myocardial injury. Their release kinetics have not been explored without confounding by heparin nor has their relationship to myocardial protein biomarkers. OBJECTIVE: To compare ncRNA types in heparinase-treated samples with established and emerging protein biomarkers for myocardial injury. METHODS AND RESULTS: Screening of 158 circRNAs and 21 lncRNAs in human cardiac tissue identified 12 circRNAs and 11 lncRNAs as potential biomarkers with cardiac origin. Eleven miRNAs were included. At low spike-in concentrations of myocardial tissue, significantly higher regression coefficients were observed across ncRNA types compared with cardiac troponins and cMyBP-C (cardiac myosin-binding protein C). Heparinase treatment of serial plasma and serum samples of patients undergoing transcoronary ablation of septal hypertrophy removed spurious correlations between miRNAs in non-heparinase-treated samples. After transcoronary ablation of septal hypertrophy, muscle-enriched miRNAs (miR-1 and miR-133a) showed a steeper and earlier increase than cardiac-enriched miRNAs (miR-499 and miR-208b). Putative cardiac lncRNAs, including LIPCAR (long intergenic noncoding RNA predicting cardiac remodeling and survival), did not rise, refuting a predominant cardiac origin. Cardiac circRNAs remained largely undetectable. In a validation cohort of acute myocardial infarction, receiver operating characteristic curve analysis revealed noninferiority of cardiac-enriched miRNAs, but miRNAs failed to identify cases presenting with low troponin values. cMyBP-C was validated as a biomarker with highly sensitive properties, and the combination of muscle-enriched miRNAs with high-sensitive cardiac troponin T and cMyBP-C returned the highest area under the curve values. CONCLUSIONS: In a comparative assessment of ncRNAs and protein biomarkers for myocardial injury, cMyBP-C showed properties as the most sensitive cardiac biomarker while miRNAs emerged as promising candidates to integrate ncRNAs with protein biomarkers. Sensitivity of current miRNA detection is inferior to cardiac proteins but a multibiomarker combination of muscle-enriched miRNAs with cMyBP-C and cardiac troponins could open a new path of integrating complementary characteristics of different biomarker types.


Assuntos
Biomarcadores/sangue , Cardiomiopatias/sangue , Proteínas de Transporte/sangue , RNA não Traduzido/sangue , Troponina T/sangue , Artefatos , Heparina , Heparina Liase/farmacologia , Humanos , MicroRNAs/sangue , Miocárdio/química , Plasma/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real
3.
Stem Cells ; 37(2): 226-239, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30372556

RESUMO

The mortality rate for (cardio)-vascular disease is one of the highest in the world, so a healthy functional endothelium is of outmost importance against vascular disease. In this study, human induced pluripotent stem (iPS) cells were reprogrammed from 1 ml blood of healthy donors and subsequently differentiated into endothelial cells (iPS-ECs) with typical EC characteristics. This research combined iPS cell technologies and next-generation sequencing to acquire an insight into the transcriptional regulation of iPS-ECs. We identified endothelial cell-specific molecule 1 (ESM1) as one of the highest expressed genes during EC differentiation, playing a key role in EC enrichment and function by regulating connexin 40 (CX40) and eNOS. Importantly, ESM1 enhanced the iPS-ECs potential to improve angiogenesis and neovascularisation in in vivo models of angiogenesis and hind limb ischemia. These findings demonstrated for the first time that enriched functional ECs are derived through cell reprogramming and ESM1 signaling, opening the horizon for drug screening and cell-based therapies for vascular diseases. Therefore, this study showcases a new approach for enriching and enhancing the function of induced pluripotent stem (iPS) cell-derived ECs from a very small amount of blood through ESM1 signaling, which greatly enhances their functionality and increases their therapeutic potential. Stem Cells 2019;37:226-239.


Assuntos
Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteoglicanas/metabolismo , Diferenciação Celular/fisiologia , Reprogramação Celular/fisiologia , Células Endoteliais/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas de Neoplasias/genética , Proteoglicanas/genética , Transdução de Sinais
4.
RNA ; 22(5): 667-76, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26917558

RESUMO

MicroRNA regulation of developmental and cellular processes is a relatively new field of study, and the available research data have not been organized to enable its inclusion in pathway and network analysis tools. The association of gene products with terms from the Gene Ontology is an effective method to analyze functional data, but until recently there has been no substantial effort dedicated to applying Gene Ontology terms to microRNAs. Consequently, when performing functional analysis of microRNA data sets, researchers have had to rely instead on the functional annotations associated with the genes encoding microRNA targets. In consultation with experts in the field of microRNA research, we have created comprehensive recommendations for the Gene Ontology curation of microRNAs. This curation manual will enable provision of a high-quality, reliable set of functional annotations for the advancement of microRNA research. Here we describe the key aspects of the work, including development of the Gene Ontology to represent this data, standards for describing the data, and guidelines to support curators making these annotations. The full microRNA curation guidelines are available on the GO Consortium wiki (http://wiki.geneontology.org/index.php/MicroRNA_GO_annotation_manual).


Assuntos
Guias como Assunto , MicroRNAs/genética , Animais , Inativação Gênica , Humanos , Camundongos
5.
Circ Res ; 118(3): 420-432, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26646931

RESUMO

RATIONALE: Platelets shed microRNAs (miRNAs). Plasma miRNAs change on platelet inhibition. It is unclear whether plasma miRNA levels correlate with platelet function. OBJECTIVE: To link small RNAs to platelet reactivity. METHODS AND RESULTS: Next-generation sequencing of small RNAs in plasma revealed 2 peaks at 22 to 23 and 32 to 33 nucleotides corresponding to miRNAs and YRNAs, respectively. Among YRNAs, predominantly, fragments of RNY4 and RNY5 were detected. Plasma miRNAs and YRNAs were measured in 125 patients with a history of acute coronary syndrome who had undergone detailed assessment of platelet function 30 days after the acute event. Using quantitative real-time polymerase chain reactions, 92 miRNAs were assessed in patients with acute coronary syndrome on different antiplatelet therapies. Key platelet-related miRNAs and YRNAs were correlated with platelet function tests. MiR-223 (rp=0.28; n=121; P=0.002), miR-126 (rp=0.22; n=121; P=0.016), and other abundant platelet miRNAs and YRNAs showed significant positive correlations with the vasodilator-stimulated phosphoprotein phosphorylation assay. YRNAs, miR-126, and miR-223 were also among the small RNAs showing the greatest dependency on platelets and strongly correlated with plasma levels of P-selectin, platelet factor 4, and platelet basic protein in the population-based Bruneck study (n=669). A single-nucleotide polymorphism that facilitates processing of pri-miR-126 to mature miR-126 accounted for a rise in circulating platelet activation markers. Inhibition of miR-126 in mice reduced platelet aggregation. MiR-126 directly and indirectly affects ADAM9 and P2Y12 receptor expression. CONCLUSIONS: Levels of platelet-related plasma miRNAs and YRNAs correlate with platelet function tests in patients with acute coronary syndrome and platelet activation markers in the general population. Alterations in miR-126 affect platelet reactivity.


Assuntos
Síndrome Coronariana Aguda/sangue , Plaquetas/metabolismo , MicroRNAs/sangue , Ativação Plaquetária , Síndrome Coronariana Aguda/tratamento farmacológico , Síndrome Coronariana Aguda/genética , Animais , Plaquetas/efeitos dos fármacos , Linhagem Celular Tumoral , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Ativação Plaquetária/efeitos dos fármacos , Ativação Plaquetária/genética , Inibidores da Agregação Plaquetária/uso terapêutico , Testes de Função Plaquetária , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , Transfecção
6.
Europace ; 20(7): 1201-1208, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28582578

RESUMO

Aims: Post-operative atrial fibrillation (POAF) is a predictor of morbidity and mortality after cardiac surgery. Latent predisposing factors may reside in the epicardial adipose tissue (EAT) due to its anatomical position and high protein production rate. In order to explore a possible mechanistic link, we characterized proteins secreted by the EAT preceding the onset of POAF. Methods and results: Epicardial adipose tissue samples were collected from 76 consecutive patients with no history of AF undergoing coronary artery bypass surgery, 50 samples for proteomic analysis and 26 for gene expression studies, further divided according to development of POAF. Ten vs. 10 matched samples representing EAT secretome were analysed by two-dimensional difference in-gel electrophoresis (2D-DIGE) and high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to identify differentially expressed proteins (P < 0.05, expression change >1.2 fold). Findings were validated by Western blotting on EAT protein extracts and by gene expression studies via quantitative polymerase chain reaction (qPCR). Proteomics returned 35 differentially expressed proteins. Amongst those, gelsolin was down regulated in POAF. Western blot analysis confirmed a significant reduction in gelsolin in the AF group. Gene expression for gelsolin was significantly reduced in the AF group confirming the proteomics findings. Conclusion: For the first time we describe EAT secretome as a possible substrate for POAF. It contains various proteins differentially expressed in patients who later develop POAF. Amongst those gelsolin, involved in inflammation and ion channel regulation, was associated with maintenance of sinus rhythm. Understanding the role of EAT may offer novel insights into prevention and treatment of AF.


Assuntos
Tecido Adiposo/metabolismo , Fibrilação Atrial/etiologia , Ponte de Artéria Coronária/efeitos adversos , Pericárdio/metabolismo , Proteômica/métodos , Idoso , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Biomarcadores/metabolismo , Western Blotting , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel Bidimensional , Feminino , Gelsolina/genética , Gelsolina/metabolismo , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Risco , Via Secretória , Espectrometria de Massas em Tandem , Resultado do Tratamento
7.
Circulation ; 134(11): 817-32, 2016 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-27559042

RESUMO

BACKGROUND: Myocardial fibrosis is a feature of many cardiac diseases. We used proteomics to profile glycoproteins in the human cardiac extracellular matrix (ECM). METHODS: Atrial specimens were analyzed by mass spectrometry after extraction of ECM proteins and enrichment for glycoproteins or glycopeptides. RESULTS: ECM-related glycoproteins were identified in left and right atrial appendages from the same patients. Several known glycosylation sites were confirmed. In addition, putative and novel glycosylation sites were detected. On enrichment for glycoproteins, peptides of the small leucine-rich proteoglycan decorin were identified consistently in the flowthrough. Of all ECM proteins identified, decorin was found to be the most fragmented. Within its protein core, 18 different cleavage sites were identified. In contrast, less cleavage was observed for biglycan, the most closely related proteoglycan. Decorin processing differed between human ventricles and atria and was altered in disease. The C-terminus of decorin, important for the interaction with connective tissue growth factor, was detected predominantly in ventricles in comparison with atria. In contrast, atrial appendages from patients in persistent atrial fibrillation had greater levels of full-length decorin but also harbored a cleavage site that was not found in atrial appendages from patients in sinus rhythm. This cleavage site preceded the N-terminal domain of decorin that controls muscle growth by altering the binding capacity for myostatin. Myostatin expression was decreased in atrial appendages of patients with persistent atrial fibrillation and hearts of decorin null mice. A synthetic peptide corresponding to this decorin region dose-dependently inhibited the response to myostatin in cardiomyocytes and in perfused mouse hearts. CONCLUSIONS: This proteomics study is the first to analyze the human cardiac ECM. Novel processed forms of decorin protein core, uncovered in human atrial appendages, can regulate the local bioavailability of antihypertrophic and profibrotic growth factors.


Assuntos
Fibrilação Atrial/metabolismo , Decorina , Miostatina/antagonistas & inibidores , Peptídeos , Animais , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Decorina/química , Decorina/metabolismo , Decorina/farmacologia , Feminino , Células HEK293 , Átrios do Coração/metabolismo , Átrios do Coração/fisiopatologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Mutantes , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miostatina/metabolismo , Peptídeos/síntese química , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Proteômica
8.
J Mol Cell Cardiol ; 92: 105-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26827899

RESUMO

The adult human myocardium is incapable of regeneration; yet, the zebrafish (Danio rerio) can regenerate damaged myocardium. Similar to the zebrafish heart, hearts of neonatal, but not adult mice are capable of myocardial regeneration. We performed a proteomics analysis of adult zebrafish hearts and compared their protein expression profile to hearts from neonatal and adult mice. Using difference in-gel electrophoresis (DIGE), there was little overlap between the proteome from adult mouse (>8weeks old) and adult zebrafish (18months old) hearts. Similarly, there was a significant degree of mismatch between the protein expression in neonatal and adult mouse hearts. Enrichment analysis of the selected proteins revealed over-expression of DNA synthesis-related proteins in the cardiac proteome of the adult zebrafish heart similar to neonatal and 4days old mice, whereas in hearts of adult mice there was a mitochondria-related predominance in protein expression. Importantly, we noted pronounced differences in the myofilament composition: the adult zebrafish heart lacks many of the myofilament proteins of differentiated adult cardiomyocytes such as the ventricular isoforms of myosin light chains and nebulette. Instead, troponin I and myozenin 1 were expressed as skeletal isoforms rather than cardiac isoforms. The relative immaturity of the adult zebrafish heart was further supported by cardiac microRNA data. Our assessment of zebrafish and mammalian hearts challenges the assertions on the translational potential of cardiac regeneration in the zebrafish model. The immature myofilament composition of the fish heart may explain why adult mouse and human cardiomyocytes lack this endogenous repair mechanism.


Assuntos
Coração/crescimento & desenvolvimento , Proteoma/biossíntese , Proteômica , Regeneração/genética , Peixe-Zebra/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Ventrículos do Coração/crescimento & desenvolvimento , Ventrículos do Coração/metabolismo , Humanos , Camundongos , MicroRNAs/biossíntese , Proteínas dos Microfilamentos/biossíntese , Proteínas Musculares/biossíntese , Miócitos Cardíacos/metabolismo , Proteoma/genética , Transcriptoma , Troponina I/biossíntese , Peixe-Zebra/crescimento & desenvolvimento
9.
Circ Res ; 115(10): 857-66, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25201911

RESUMO

RATIONALE: Abdominal aortic aneurysms constitute a degenerative process in the aortic wall. Both the miR-29 and miR-15 families have been implicated in regulating the vascular extracellular matrix. OBJECTIVE: Our aim was to assess the effect of the miR-15 family on aortic aneurysm development. METHODS AND RESULTS: Among the miR-15 family members, miR-195 was differentially expressed in aortas of apolipoprotein E-deficient mice on angiotensin II infusion. Proteomics analysis of the secretome of murine aortic smooth muscle cells, after miR-195 manipulation, revealed that miR-195 targets a cadre of extracellular matrix proteins, including collagens, proteoglycans, elastin, and proteins associated with elastic microfibrils, albeit miR-29b showed a stronger effect, particularly in regulating collagens. Systemic and local administration of cholesterol-conjugated antagomiRs revealed better inhibition of miR-195 compared with miR-29b in the uninjured aorta. However, in apolipoprotein E-deficient mice receiving angiotensin II, silencing of miR-29b, but not miR-195, led to an attenuation of aortic dilation. Higher aortic elastin expression was accompanied by an increase of matrix metalloproteinases 2 and 9 in mice treated with antagomiR-195. In human plasma, an inverse correlation of miR-195 was observed with the presence of abdominal aortic aneurysms and aortic diameter. CONCLUSIONS: We provide the first evidence that miR-195 may contribute to the pathogenesis of aortic aneurysmal disease. Although inhibition of miR-29b proved more effective in preventing aneurysm formation in a preclinical model, miR-195 represents a potent regulator of the aortic extracellular matrix. Notably, plasma levels of miR-195 were reduced in patients with abdominal aortic aneurysms suggesting that microRNAs might serve as a noninvasive biomarker of abdominal aortic aneurysms.


Assuntos
Aneurisma da Aorta Abdominal/sangue , MicroRNAs/fisiologia , Idoso , Animais , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Biomarcadores/sangue , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/sangue , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia
10.
Arterioscler Thromb Vasc Biol ; 35(10): 2134-44, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26315405

RESUMO

OBJECTIVE: Smooth muscle cell (SMC) migration and proliferation play an essential role in neointimal formation after vascular injury. In this study, we intended to investigate whether the X-box-binding protein 1 (XBP1) was involved in these processes. APPROACH AND RESULTS: In vivo studies on femoral artery injury models revealed that vascular injury triggered an immediate upregulation of XBP1 expression and splicing in vascular SMCs and that XBP1 deficiency in SMCs significantly abrogated neointimal formation in the injured vessels. In vitro studies indicated that platelet-derived growth factor-BB triggered XBP1 splicing in SMCs via the interaction between platelet-derived growth factor receptor ß and the inositol-requiring enzyme 1α. The spliced XBP1 (XBP1s) increased SMC migration via PI3K/Akt activation and proliferation via downregulating calponin h1 (CNN1). XBP1s directed the transcription of mir-1274B that targeted CNN1 mRNA degradation. Proteomic analysis of culture media revealed that XBP1s decreased transforming growth factor (TGF)-ß family proteins secretion via transcriptional suppression. TGF-ß3 but not TGF-ß1 or TGF-ß2 attenuated XBP1s-induced CNN1 decrease and SMC proliferation. CONCLUSIONS: This study demonstrates for the first time that XBP1 is crucial for SMC proliferation via modulating the platelet-derived growth factor/TGF-ß pathways, leading to neointimal formation.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Neointima/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fatores de Transcrição/genética , Remodelação Vascular/genética , Lesões do Sistema Vascular/genética , Animais , Movimento Celular/genética , Proliferação de Células/genética , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Artéria Femoral/lesões , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/citologia , RNA Mensageiro/metabolismo , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real/métodos , Receptor Cross-Talk , Fatores de Transcrição de Fator Regulador X , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/metabolismo , Remodelação Vascular/fisiologia , Lesões do Sistema Vascular/fisiopatologia , Proteína 1 de Ligação a X-Box
11.
J Biol Chem ; 289(6): 3383-93, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24356956

RESUMO

Finding a suitable cell source for endothelial cells (ECs) for cardiovascular regeneration is a challenging issue for regenerative medicine. In this paper, we describe a novel mechanism regulating induced pluripotent stem cells (iPSC) differentiation into ECs, with a particular focus on miRNAs and their targets. We first established a protocol using collagen IV and VEGF to drive the functional differentiation of iPSCs into ECs and compared the miRNA signature of differentiated and undifferentiated cells. Among the miRNAs overrepresented in differentiated cells, we focused on microRNA-21 (miR-21) and studied its role in iPSC differentiation. Overexpression of miR-21 in predifferentiated iPSCs induced EC marker up-regulation and in vitro and in vivo capillary formation; accordingly, inhibition of miR-21 produced the opposite effects. Importantly, miR-21 overexpression increased TGF-ß2 mRNA and secreted protein level, consistent with the strong up-regulation of TGF-ß2 during iPSC differentiation. Indeed, treatment of iPSCs with TGFß-2 induced EC marker expression and in vitro tube formation. Inhibition of SMAD3, a downstream effector of TGFß-2, strongly decreased VE-cadherin expression. Furthermore, TGFß-2 neutralization and knockdown inhibited miR-21-induced EC marker expression. Finally, we confirmed the PTEN/Akt pathway as a direct target of miR-21, and we showed that PTEN knockdown is required for miR-21-mediated endothelial differentiation. In conclusion, we elucidated a novel signaling pathway that promotes the differentiation of iPSC into functional ECs suitable for regenerative medicine applications.


Assuntos
Diferenciação Celular/fisiologia , Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta2/biossíntese , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular , Células Endoteliais/citologia , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta2/genética , Regulação para Cima/fisiologia
12.
J Biol Chem ; 289(44): 30625-30634, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25190803

RESUMO

It is well known that atherosclerosis occurs geographically at branch points where disturbed flow predisposes to the development of plaque via triggering of oxidative stress and inflammatory reactions. In this study, we found that disturbed flow activated anti-oxidative reactions via up-regulating heme oxygenase 1 (HO-1) in an X-box-binding protein 1 (XBP1) and histone deacetylase 3 (HDAC3)-dependent manner. Disturbed flow concomitantly up-regulated the unspliced XBP1 (XBP1u) and HDAC3 in a VEGF receptor and PI3K/Akt-dependent manner. The presence of XBP1 was essential for the up-regulation of HDAC3 protein. Overexpression of XBP1u and/or HDAC3 activated Akt1 phosphorylation, Nrf2 protein stabilization and nuclear translocation, and HO-1 expression. Knockdown of XBP1u decreased the basal level and disturbed flow-induced Akt1 phosphorylation, Nrf2 stabilization, and HO-1 expression. Knockdown of HDAC3 ablated XBP1u-mediated effects. The mammalian target of rapamycin complex 2 (mTORC2) inhibitor, AZD2014, ablated XBP1u or HDAC3 or disturbed flow-mediated Akt1 phosphorylation, Nrf2 nuclear translocation, and HO-1 expression. Neither actinomycin D nor cycloheximide affected disturbed flow-induced up-regulation of Nrf2 protein. Knockdown of Nrf2 abolished XBP1u or HDAC3 or disturbed flow-induced HO-1 up-regulation. Co-immunoprecipitation assays demonstrated that XBP1u physically bound to HDAC3 and Akt1. The region of amino acids 201 to 323 of the HDAC3 protein was responsible for the binding to XBP1u. Double immunofluorescence staining revealed that the interactions between Akt1 and mTORC2, Akt1 and HDAC3, Akt1 and XBP1u, HDAC3, and XBP1u occurred in the cytosol. Thus, we demonstrate that XBP1u and HDAC3 exert a protective effect on disturbed flow-induced oxidative stress via up-regulation of mTORC2-dependent Akt1 phosphorylation and Nrf2-mediated HO-1 expression.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Histona Desacetilases/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Estresse Oxidativo , Fatores de Transcrição/fisiologia , Processamento Alternativo , Animais , Artérias/patologia , Aterosclerose/metabolismo , Sobrevivência Celular , Células Cultivadas , Endotélio Vascular/patologia , Ativação Enzimática , Heme Oxigenase-1/metabolismo , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos Knockout , Complexos Multiproteicos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fosforilação , Ligação Proteica , Isoformas de Proteínas/fisiologia , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fluxo Sanguíneo Regional/fisiologia , Fatores de Transcrição de Fator Regulador X , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima , Proteína 1 de Ligação a X-Box
13.
Ann Rheum Dis ; 74(3): e18, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24515954

RESUMO

BACKGROUND: Osteoarthritis is the most common form of arthritis and a major socioeconomic burden. Our study is the first to explore the association between serum microRNA levels and the development of severe osteoarthritis of the knee and hip joint in the general population. METHODS: We followed 816 Caucasian individuals from 1995 to 2010 and assessed joint arthroplasty as a definitive outcome of severe osteoarthritis of the knee and hip. After a microarray screen, we validated 12 microRNAs by real-time PCR in the entire cohort at baseline. RESULTS: In Cox regression analysis, three microRNAs were associated with severe knee and hip osteoarthritis. let-7e was a negative predictor for total joint arthroplasty with an adjusted HR of 0.75 (95% CI 0.58 to 0.96; p=0.021) when normalised to U6, and 0.76 (95% CI 0.6 to 0.97; p=0.026) after normalisation to the Ct average. miRNA-454 was inversely correlated with severe knee or hip osteoarthritis with an adjusted HR of 0.77 (95% CI 0.61 to 0.97; p=0.028) when normalised to U6. This correlation was lost when data were normalised to Ct average (p=0.118). Finally, miRNA-885-5p showed a trend towards a positive relationship with arthroplasty when normalised to U6 (HR 1.24; 95% CI 0.95 to 1.62; p=0.107) or to Ct average (HR 1.30; 95% CI 0.99 to 1.70; p=0.056). CONCLUSIONS: Our study is the first to identify differentially expressed circulating microRNAs in osteoarthritis patients necessitating arthroplasty in a large, population-based cohort. Among these microRNAs, let-7e emerged as potential predictor for severe knee or hip osteoarthritis.


Assuntos
MicroRNAs/sangue , Osteoartrite do Quadril/genética , Osteoartrite do Joelho/genética , Idoso , Artroplastia de Quadril , Artroplastia do Joelho , Estudos de Coortes , Feminino , Humanos , Estudos Longitudinais , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Osteoartrite do Quadril/sangue , Osteoartrite do Quadril/cirurgia , Osteoartrite do Joelho/sangue , Osteoartrite do Joelho/cirurgia , Modelos de Riscos Proporcionais , Estudos Prospectivos , Reação em Cadeia da Polimerase em Tempo Real , Índice de Gravidade de Doença
14.
Curr Atheroscler Rep ; 17(12): 70, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26490079

RESUMO

MicroRNA (miRNA, miR) measurements in patients with coronary heart disease are hampered by the confounding effects of medication commonly used in cardiovascular patients such as statins, antiplatelet drugs, and heparin administration. Statins reduce the circulating levels of liver-derived miR-122. Antiplatelet medication attenuates the release of platelet-derived miRNAs. Heparin inhibits the polymerase chain reactions, in particular the amplification of the exogenous Caenorhabditis elegans spike-in control, thereby resulting in an artefactual rise of endogenous miRNAs. As these limitations have not been previously recognised, a reevaluation of the current miRNA literature, in particular of case-control studies in patients with cardiovascular disease or coronary interventions, is required.


Assuntos
Doença da Artéria Coronariana/genética , MicroRNAs/genética , Animais , Biomarcadores/análise , Doença da Artéria Coronariana/tratamento farmacológico , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Infarto do Miocárdio/genética , Inibidores da Agregação Plaquetária/uso terapêutico
15.
Circ Res ; 112(4): 595-600, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23283721

RESUMO

RATIONALE: MicroRNA (miRNA) biomarkers are attracting considerable interest. Effects of medication, however, have not been investigated thus far. OBJECTIVE: To analyze changes in plasma miRNAs in response to antiplatelet therapy. METHODS AND RESULTS: Profiling for 377 miRNAs was performed in platelets, platelet microparticles, platelet-rich plasma, platelet-poor plasma, and serum. Platelet-rich plasma showed markedly higher levels of miRNAs than serum and platelet-poor plasma. Few abundant platelet miRNAs, such as miR-24, miR-197, miR-191, and miR-223, were also increased in serum compared with platelet-poor plasma. In contrast, antiplatelet therapy significantly reduced miRNA levels. Using custom-made quantitative real-time polymerase chain reaction plates, 92 miRNAs were assessed in a dose-escalation study in healthy volunteers at 4 different time points: at baseline without therapy, at 1 week with 10 mg prasugrel, at 2 weeks with 10 mg prasugrel plus 75 mg aspirin, and at 3 weeks with 10 mg prasugrel plus 300 mg aspirin. Findings in healthy volunteers were confirmed by individual TaqMan quantitative real-time polymerase chain reaction assays (n=9). Validation was performed in an independent cohort of patients with symptomatic atherosclerosis (n=33), who received low-dose aspirin at baseline. Plasma levels of platelet miRNAs, such as miR-223, miR-191, and others, that is, miR-126 and miR-150, decreased on further platelet inhibition. CONCLUSIONS: Our study demonstrated a substantial platelet contribution to the circulating miRNA pool and identified miRNAs responsive to antiplatelet therapy. It also highlights that antiplatelet therapy and preparation of blood samples could be confounding factors in case-control studies relating plasma miRNAs to cardiovascular disease.


Assuntos
Plaquetas/metabolismo , MicroRNAs/sangue , Plasma/metabolismo , Ativação Plaquetária , Plasma Rico em Plaquetas/metabolismo , Soro/metabolismo , Adulto , Aspirina/administração & dosagem , Aspirina/farmacologia , Aspirina/uso terapêutico , Biomarcadores , Plaquetas/efeitos dos fármacos , Coleta de Amostras Sanguíneas/métodos , Doenças das Artérias Carótidas/tratamento farmacológico , Estudos de Casos e Controles , Ensaios Clínicos como Assunto , Fatores de Confusão Epidemiológicos , Diabetes Mellitus Tipo 2/sangue , Relação Dose-Resposta a Droga , Monitoramento de Medicamentos , Sinergismo Farmacológico , Quimioterapia Combinada , Perfilação da Expressão Gênica , Humanos , Masculino , MicroRNAs/biossíntese , MicroRNAs/genética , Piperazinas/administração & dosagem , Piperazinas/farmacologia , Ativação Plaquetária/genética , Inibidores da Agregação Plaquetária/administração & dosagem , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/uso terapêutico , Cloridrato de Prasugrel , Reação em Cadeia da Polimerase em Tempo Real , Tiofenos/administração & dosagem , Tiofenos/farmacologia , Adulto Jovem
16.
Circ Res ; 113(10): 1138-47, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24006456

RESUMO

RATIONALE: MicroRNAs (miRNAs), in particular miR-29b and miR-30c, have been implicated as important regulators of cardiac fibrosis. OBJECTIVE: To perform a proteomics comparison of miRNA effects on extracellular matrix secretion by cardiac fibroblasts. METHODS AND RESULTS: Mouse cardiac fibroblasts were transfected with pre-/anti-miR of miR-29b and miR-30c, and their conditioned medium was analyzed by mass spectrometry. miR-29b targeted a cadre of proteins involved in fibrosis, including multiple collagens, matrix metalloproteinases, and leukemia inhibitory factor, insulin-like growth factor 1, and pentraxin 3, 3 predicted targets of miR-29b. miR-29b also attenuated the cardiac fibroblast response to transforming growth factor-ß. In contrast, miR-30c had little effect on extracellular matrix production but opposite effects regarding leukemia inhibitory factor and insulin-like growth factor 1. Both miRNAs indirectly affected cardiac myocytes. On transfection with pre-miR-29b, the conditioned medium of cardiac fibroblasts lost its ability to support adhesion of rat ventricular myocytes and led to a significant reduction of cardiac myocyte proteins (α-actinin, cardiac myosin-binding protein C, and cardiac troponin I). Similarly, cardiomyocytes derived from mouse embryonic stem cells atrophied under pre-miR-29 conditioned medium, whereas pre-miR-30c conditioned medium had a prohypertrophic effect. Levels of miR-29a, miR-29c, and miR-30c, but not miR-29b, were significantly reduced in a mouse model of pathological but not physiological hypertrophy. Treatment with antagomiRs to miR-29b induced excess fibrosis after aortic constriction without overt deterioration in cardiac function. CONCLUSIONS: Our proteomic analysis revealed novel molecular targets of miRNAs that are linked to a fibrogenic cardiac phenotype. Such comprehensive screening methods are essential to define the concerted actions of miRNAs in cardiovascular disease.


Assuntos
Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , MicroRNAs/fisiologia , Miocárdio/metabolismo , Proteômica , Animais , Proteína C-Reativa/metabolismo , Células Cultivadas , Colágeno/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibrose , Fator de Crescimento Insulin-Like I/metabolismo , Fator Inibidor de Leucemia/metabolismo , Masculino , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Miocárdio/patologia , Componente Amiloide P Sérico/metabolismo , Fator de Crescimento Transformador beta/farmacologia
17.
Proc Natl Acad Sci U S A ; 109(34): 13793-8, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22869753

RESUMO

The generation of induced pluripotent stem (iPS) cells is an important tool for regenerative medicine. However, the main restriction is the risk of tumor development. In this study we found that during the early stages of somatic cell reprogramming toward a pluripotent state, specific gene expression patterns are altered. Therefore, we developed a method to generate partial-iPS (PiPS) cells by transferring four reprogramming factors (OCT4, SOX2, KLF4, and c-MYC) to human fibroblasts for 4 d. PiPS cells did not form tumors in vivo and clearly displayed the potential to differentiate into endothelial cells (ECs) in response to defined media and culture conditions. To clarify the mechanism of PiPS cell differentiation into ECs, SET translocation (myeloid leukemia-associated) (SET) similar protein (SETSIP) was indentified to be induced during somatic cell reprogramming. Importantly, when PiPS cells were treated with VEGF, SETSIP was translocated to the cell nucleus, directly bound to the VE-cadherin promoter, increasing vascular endothelial-cadherin (VE-cadherin) expression levels and EC differentiation. Functionally, PiPS-ECs improved neovascularization and blood flow recovery in a hindlimb ischemic model. Furthermore, PiPS-ECs displayed good attachment, stabilization, patency, and typical vascular structure when seeded on decellularized vessel scaffolds. These findings indicate that reprogramming of fibroblasts into ECs via SETSIP and VEGF has a potential clinical application.


Assuntos
Reprogramação Celular , Células Endoteliais/citologia , Fibroblastos/metabolismo , Neovascularização Patológica , Engenharia Tecidual/métodos , Animais , Antígenos CD/genética , Aorta/patologia , Caderinas/genética , Diferenciação Celular , Células Cultivadas , Fibroblastos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos SCID , Modelos Genéticos , Regiões Promotoras Genéticas , Células-Tronco/citologia , Estresse Mecânico
18.
J Biol Chem ; 288(2): 859-72, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23184933

RESUMO

Sustained activation of X-box-binding protein 1 (XBP1) results in endothelial cell (EC) apoptosis and atherosclerosis development. The present study provides evidence that XBP1 mRNA splicing triggered an autophagic response in ECs by inducing autophagic vesicle formation and markers of autophagy BECLIN-1 and microtubule-associated protein 1 light chain 3ß (LC3-ßII). Endostatin activated autophagic gene expression through XBP1 mRNA splicing in an inositol-requiring enzyme 1α (IRE1α)-dependent manner. Knockdown of XBP1 or IRE1α by shRNA in ECs ablated endostatin-induced autophagosome formation. Importantly, data from arterial vessels from XBP1 EC conditional knock-out (XBP1eko) mice demonstrated that XBP1 deficiency in ECs reduced the basal level of LC3ß expression and ablated response to endostatin. Chromatin immunoprecipitation assays further revealed that the spliced XBP1 isoform bound directly to the BECLIN-1 promoter at the region from nt -537 to -755. BECLIN-1 deficiency in ECs abolished the XBP1-induced autophagy response, whereas spliced XBP1 did not induce transcriptional activation of a truncated BECLIN-1 promoter. These results suggest that XBP1 mRNA splicing triggers an autophagic signal pathway through transcriptional regulation of BECLIN-1.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Autofagia/genética , Proteínas de Ligação a DNA/genética , Endotélio Vascular/metabolismo , Proteínas de Membrana/genética , Splicing de RNA , RNA Mensageiro/genética , Fatores de Transcrição/genética , Ativação Transcricional/genética , Animais , Sequência de Bases , Proteína Beclina-1 , Células Cultivadas , Imunoprecipitação da Cromatina , Primers do DNA , Endotélio Vascular/citologia , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição de Fator Regulador X , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína 1 de Ligação a X-Box
19.
Circ Res ; 110(3): 508-22, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22302757

RESUMO

Recent findings demonstrated the importance of microRNAs (miRNAs) in the vasculature and the orchestration of lipid metabolism and glucose homeostasis. MiRNA networks represent an additional layer of regulation for gene expression that absorbs perturbations and ensures the robustness of biological systems. This function is very elegantly demonstrated in cholesterol metabolism where miRNAs reducing cellular cholesterol export are embedded in the very same genes that increase cholesterol synthesis. Often their alteration does not affect normal development but changes under stress conditions and in disease. A detailed understanding of the molecular and cellular mechanisms of miRNA-mediated effects on metabolism and vascular pathophysiology could pave the way for the development of novel diagnostic markers and therapeutic approaches. In the first part of this review, we summarize the role of miRNAs in vascular and metabolic diseases and explore potential confounding effects by platelet miRNAs in preclinical models of cardiovascular disease. In the second part, we discuss experimental strategies for miRNA target identification and the challenges in attributing miRNA effects to specific cell types and single targets.


Assuntos
Doenças Metabólicas/fisiopatologia , MicroRNAs/fisiologia , Doenças Vasculares/fisiopatologia , Animais , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos/fisiologia , Modelos Animais , Neovascularização Fisiológica/fisiologia
20.
Arterioscler Thromb Vasc Biol ; 33(2): 206-14, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23325478

RESUMO

The postgenomic shift in paradigm from reductionism to systems-wide network inference has increased recognition that cardiovascular diseases are not simply determined by the genome but arise from an interaction and dynamic dysregulation of gene regulatory networks, proteins, and metabolic alterations. The advent of postgenomic technologies promises to interrogate these complex pathophysiological perturbations by applying concepts of systemic relationships to biomarker discovery. A multibiomarker panel consisting of biomarkers capturing different levels of information (eg, microRNAs to assess endothelial and platelet activation, molecular lipid species to profile metabolic status, and proteolytic degradation products to assess vascular integrity) could outperform inflammatory biomarkers without vascular specificity in their ability of predicting cardiovascular risk. As atherosclerosis develops over decades, different biomarkers may be required for different stages of disease. Thus far, there is no simple blood test to directly assess the health of blood vessels or identify vulnerable patients. We discuss strategies for biomarker discovery using post genomics technologies, with a particular focus on circulating microRNAs. The aim is to reveal distinctive cardiovascular phenotypes and identify biomarker signatures that complement the Framingham risk scores in clinical decision-making and in a stratified medicine approach for early preventive treatment of disease.


Assuntos
Doenças Cardiovasculares/genética , Testes Genéticos , Genômica , MicroRNAs/metabolismo , Biologia de Sistemas , Animais , Proteínas Sanguíneas/análise , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/terapia , Regulação da Expressão Gênica , Marcadores Genéticos , Predisposição Genética para Doença , Testes Genéticos/métodos , Genômica/métodos , Humanos , Lipídeos/sangue , MicroRNAs/sangue , Fenótipo , Valor Preditivo dos Testes , Proteômica , Reprodutibilidade dos Testes , Medição de Risco , Fatores de Risco , Biologia de Sistemas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA