Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Analyst ; 146(4): 1361-1368, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33393564

RESUMO

Measurement of neuron behavior is crucial for studying neural development and evaluating the impact of potential therapies on neural regeneration. Conventional approaches to imaging neuronal behavior require labeling and do not separately quantify the growth processes that underlie neural regeneration. In this paper we demonstrate the use of quantitative phase imaging (QPI) as a label-free, quantitative measurement of neuron behavior in vitro. By combining QPI with image processing, our method separately measures the mass accumulation rates of soma and neurites. Additionally, the data provided by QPI can be used to separately measure the processes of maturation and formation of neurites. Overall, our approach has the potential to greatly simplify conventional neurite outgrowth measurements, while providing key data on the resources used to produce neurites during neural development.


Assuntos
Neuritos , Neurônios , Células Cultivadas , Diagnóstico por Imagem , Processamento de Imagem Assistida por Computador
2.
Proc Natl Acad Sci U S A ; 115(12): E2888-E2897, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29514960

RESUMO

Rapid antibody production in response to invading pathogens requires the dramatic expansion of pathogen-derived antigen-specific B lymphocyte populations. Whether B cell population dynamics are based on stochastic competition between competing cell fates, as in the development of competence by the bacterium Bacillus subtilis, or on deterministic cell fate decisions that execute a predictable program, as during the development of the worm Caenorhabditis elegans, remains unclear. Here, we developed long-term live-cell microscopy of B cell population expansion and multiscale mechanistic computational modeling to characterize the role of molecular noise in determining phenotype heterogeneity. We show that the cell lineage trees underlying B cell population dynamics are mediated by a largely predictable decision-making process where the heterogeneity of cell proliferation and death decisions at any given timepoint largely derives from nongenetic heterogeneity in the founder cells. This means that contrary to previous models, only a minority of genetically identical founder cells contribute the majority to the population response. We computationally predict and experimentally confirm nongenetic molecular determinants that are predictive of founder cells' proliferative capacity. While founder cell heterogeneity may arise from different exposure histories, we show that it may also be due to the gradual accumulation of small amounts of intrinsic noise during the lineage differentiation process of hematopoietic stem cells to mature B cells. Our finding of the largely deterministic nature of B lymphocyte responses may provide opportunities for diagnostic and therapeutic development.


Assuntos
Linfócitos B/citologia , Modelos Biológicos , Animais , Apoptose , Linfócitos B/efeitos dos fármacos , Linfócitos B/fisiologia , Linhagem da Célula , Proliferação de Células/efeitos dos fármacos , Feminino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oligopeptídeos/farmacologia , Proteínas Proto-Oncogênicas c-bcr/genética , Análise de Célula Única/métodos , Processos Estocásticos , Imagem com Lapso de Tempo , Fluxo de Trabalho
3.
Analyst ; 145(1): 97-106, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31746831

RESUMO

Cell cycle deregulation is a cancer hallmark that has stimulated the development of mitotic inhibitors with differing mechanisms of action. Quantitative phase imaging (QPI) is an emerging approach for determining cancer cell sensitivities to chemotherapies in vitro. Cancer cell fates in response to mitotic inhibitors are agent- and dose-dependent. Fates that lead to chromosomal instabilities may result in a survival advantage and drug resistance. Conventional techniques for quantifying cell fates are incompatible with growth inhibition assays that produce binary live/dead results. Therefore, we used QPI to quantify post-mitotic fates of G0/G1 synchronized HeLa cervical adenocarcinoma and M202 melanoma cells during 24 h of escalating-dose exposures to mitotic inhibitors, including microtubule inhibitors paclitaxel and colchicine, and an Aurora kinase A inhibitor, VX-680. QPI determined cell fates by measuring changes in cell biomass, morphology, and mean phase-shift. Cell fates fell into three groups: (1) bipolar division from drug failure; (2) cell death or sustained mitotic arrest; and (3) aberrant endocycling or multipolar division. In this proof-of-concept study, colchicine was most effective in producing desirable outcomes of sustained mitotic arrest or death throughout its dosing range, whereas both paclitaxel and VX-680 yielded dose-dependent multipolar divisions or endocycling, respectively. Furthermore, rapid completion of mitosis associated with bipolar divisions whereas prolonged mitosis associated with multipolar divisions or cell death. Overall, QPI measurement of drug-induced cancer cell fates provides a tool to inform the development of candidate agents by quantifying the dosing ranges over which suboptimal inhibitor choices lead to undesirable, aberrant cancer cell fates.


Assuntos
Antineoplásicos/farmacologia , Colchicina/farmacologia , Mitose/efeitos dos fármacos , Paclitaxel/farmacologia , Piperazinas/farmacologia , Aurora Quinase A/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Estudo de Prova de Conceito , Inibidores de Proteínas Quinases/farmacologia , Moduladores de Tubulina/farmacologia
4.
Anal Chem ; 90(5): 3299-3306, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29381859

RESUMO

We report the development of high-speed live-cell interferometry (HSLCI), a new multisample, multidrug testing platform for directly measuring tumor therapy response via real-time optical cell biomass measurements. As a proof of concept, we show that HSLCI rapidly profiles changes in biomass in BRAF inhibitor (BRAFi)-sensitive parental melanoma cell lines and in their isogenic BRAFi-resistant sublines. We show reproducible results from two different HSLCI platforms at two institutions that generate biomass kinetic signatures capable of discriminating between BRAFi-sensitive and -resistant melanoma cells within 24 h. Like other quantitative phase imaging (QPI) modalities, HSLCI is well-suited to noninvasive measurements of single cells and cell clusters, requiring no fluorescence or dye labeling. HSLCI is substantially faster and more sensitive than field-standard growth inhibition assays, and in terms of the number of cells measured simultaneously, the number of drugs tested in parallel, and temporal measurement range, it exceeds the state of the art by more than 10-fold. The accuracy and speed of HSLCI in profiling tumor cell heterogeneity and therapy resistance are promising features of potential tools to guide patient therapeutic selections.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Interferometria/métodos , Melanoma/classificação , Inibidores de Proteínas Quinases/farmacologia , Biomassa , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Cinética , Melanoma/genética , Proteínas Proto-Oncogênicas B-raf/genética
5.
Nat Methods ; 11(12): 1221-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25423019

RESUMO

Cell mass, volume and growth rate are tightly controlled biophysical parameters in cellular development and homeostasis, and pathological cell growth defines cancer in metazoans. The first measurements of cell mass were made in the 1950s, but only recently have advances in computer science and microfabrication spurred the rapid development of precision mass-quantifying approaches. Here we discuss available techniques for quantifying the mass of single live cells with an emphasis on relative features, capabilities and drawbacks for different applications.


Assuntos
Biofísica/métodos , Proliferação de Células , Tamanho Celular , Interferometria/métodos , Diferenciação Celular , Humanos
6.
Sci Rep ; 14(1): 8544, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609444

RESUMO

The continuous balance of growth and degradation inside cells maintains homeostasis. Disturbance of this balance by internal or external factors cause state of disease, while effective disease treatments seek to restore this balance. Here, we present a method based on quantitative phase imaging (QPI) based measurements of cell mass and the velocity of mass transport to quantify the balance of growth and degradation within intracellular control volumes. The result, which we call Lagrangian velocimetry for intracellular net growth (LVING), provides high resolution maps of intracellular biomass production and degradation. We use LVING to quantify the growth in different regions of the cell during phases of the cell cycle. LVING can also be used to quantitatively compare the effect of range of chemotherapy drug doses on subcellular growth processes. Finally, we applied LVING to characterize the effect of autophagy on the growth machinery inside cells. Overall, LVING reveals both the structure and distribution of basal growth within cells, as well as the disruptions to this structure that occur during alterations in cell state.


Assuntos
Autofagia , Receptores Proteína Tirosina Quinases , Proliferação de Células , Ciclo Celular , Divisão Celular
7.
bioRxiv ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38948879

RESUMO

Acral melanoma (AM) is an aggressive melanoma variant that arises from palmar, plantar, and nail unit melanocytes. Compared to non-acral cutaneous melanoma (CM), AM is biologically distinct, has an equal incidence across genetic ancestries, typically presents in advanced stage disease, is less responsive to therapy, and has an overall worse prognosis. Independent analysis of published genomic and transcriptomic sequencing identified that receptor tyrosine kinase (RTK) ligands and adapter proteins are frequently amplified, translocated, and/or overexpressed in AM. To target these unique genetic changes, a zebrafish acral melanoma model was exposed to a panel of narrow and broad spectrum multi-RTK inhibitors, revealing that dual FGFR/VEGFR inhibitors decrease acral-analogous melanocyte proliferation and migration. The potent pan-FGFR/VEGFR inhibitor, Lenvatinib, uniformly induces tumor regression in AM patient-derived xenograft (PDX) tumors but only slows tumor growth in CM models. Unlike other multi-RTK inhibitors, Lenvatinib is not directly cytotoxic to dissociated AM PDX tumor cells and instead disrupts tumor architecture and vascular networks. Considering the great difficulty in establishing AM cell culture lines, these findings suggest that AM may be more sensitive to microenvironment perturbations than CM. In conclusion, dual FGFR/VEGFR inhibition may be a viable therapeutic strategy that targets the unique biology of AM.

8.
Biophys J ; 105(3): 593-601, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23931307

RESUMO

Somatic cell reprogramming to pluripotency requires an immediate increase in cell proliferation and reduction in cell size. It is unknown whether proliferation and biomass controls are similarly coordinated with early events during the differentiation of pluripotent stem cells (PSCs). This impasse exists because PSCs grow in tight clusters or colonies, precluding most quantifying approaches. Here, we investigate live cell interferometry as an approach to quantify the biomass and growth of HSF1 human PSC colonies before and during retinoic acid-induced differentiation. We also provide an approach for measuring the rate and coordination of intracolony mass redistribution in HSF1 clusters using live cell interferometry images. We show that HSF1 cells grow at a consistent, exponential rate regardless of colony size and display coordinated intracolony movement that ceases with the onset of differentiation. By contrast, growth and proliferation rates show a decrease of only ∼15% decrease during early differentiation despite global changes in gene expression and previously reported changes in energy metabolism. Overall, these results suggest that cell biomass and proliferation are regulated independent of pluripotency during early differentiation, which is distinct from what occurs with successful reprogramming.


Assuntos
Biomassa , Movimento Celular , Corpos Embrioides/fisiologia , Células-Tronco Embrionárias/fisiologia , Interferometria , Células-Tronco Pluripotentes/fisiologia , Diferenciação Celular , Proliferação de Células , Corpos Embrioides/citologia , Células-Tronco Embrionárias/citologia , Humanos , Células-Tronco Pluripotentes/citologia
9.
bioRxiv ; 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36993671

RESUMO

Epithelial cells work collectively to provide a protective barrier, yet also turn over rapidly by cell death and division. If the number of dying cells does not match those dividing, the barrier would vanish, or tumors can form. Mechanical forces and the stretch-activated ion channel (SAC) Piezo1 link both processes; stretch promotes cell division and crowding triggers cell death by initiating live cell extrusion1,2. However, it was not clear how particular cells within a crowded region are selected for extrusion. Here, we show that individual cells transiently shrink via water loss before they extrude. Artificially inducing cell shrinkage by increasing extracellular osmolarity is sufficient to induce cell extrusion. Pre-extrusion cell shrinkage requires the voltage-gated potassium channels Kv1.1 and Kv1.2 and the chloride channel SWELL1, upstream of Piezo1. Activation of these voltage-gated channels requires the mechano-sensitive Epithelial Sodium Channel, ENaC, acting as the earliest crowd-sensing step. Imaging with a voltage dye indicated that epithelial cells lose membrane potential as they become crowded and smaller, yet those selected for extrusion are markedly more depolarized than their neighbours. Loss of any of these channels in crowded conditions causes epithelial buckling, highlighting an important role for voltage and water regulation in controlling epithelial shape as well as extrusion. Thus, ENaC causes cells with similar membrane potentials to slowly shrink with compression but those with reduced membrane potentials to be eliminated by extrusion, suggesting a chief driver of cell death stems from insufficient energy to maintain cell membrane potential.

10.
HardwareX ; 13: e00399, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36756350

RESUMO

The combination of multiple imaging modalities in a single microscopy system can enable new insights into biological processes. In this work, we describe the construction and rigorous characterization of a custom microscope with multimodal imaging in a single, cost-effective system. Our design utilizes advances in LED technology, robotics, and open-source software, along with existing optical components and precision optomechanical parts to offer a modular and versatile design. This microscope is operated using software written in Arduino and Python and has the ability to run multi-day automated imaging experiments when placed inside of a cell culture incubator. Additionally, we provide and demonstrate methods to validate images taken in brightfield and darkfield, along with validation and optimization for differential phase contrast (DPC) quantitative phase imaging.

11.
Elife ; 122023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36876914

RESUMO

Recent studies reveal that lateral mitochondrial transfer, the movement of mitochondria from one cell to another, can affect cellular and tissue homeostasis. Most of what we know about mitochondrial transfer stems from bulk cell studies and have led to the paradigm that functional transferred mitochondria restore bioenergetics and revitalize cellular functions to recipient cells with damaged or non-functional mitochondrial networks. However, we show that mitochondrial transfer also occurs between cells with functioning endogenous mitochondrial networks, but the mechanisms underlying how transferred mitochondria can promote such sustained behavioral reprogramming remain unclear. We report that unexpectedly, transferred macrophage mitochondria are dysfunctional and accumulate reactive oxygen species in recipient cancer cells. We further discovered that reactive oxygen species accumulation activates ERK signaling, promoting cancer cell proliferation. Pro-tumorigenic macrophages exhibit fragmented mitochondrial networks, leading to higher rates of mitochondrial transfer to cancer cells. Finally, we observe that macrophage mitochondrial transfer promotes tumor cell proliferation in vivo. Collectively these results indicate that transferred macrophage mitochondria activate downstream signaling pathways in a ROS-dependent manner in cancer cells, and provide a model of how sustained behavioral reprogramming can be mediated by a relatively small amount of transferred mitochondria in vitro and in vivo.


Assuntos
Mitocôndrias , Neoplasias , Humanos , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Neoplasias/patologia , Transdução de Sinais , Proliferação de Células
12.
Analyst ; 137(23): 5495-8, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23057068

RESUMO

Live cell mass profiling is a promising new approach for rapidly quantifying responses to therapeutic agents through picogram-scale changes in cell mass over time. A significant barrier in mass profiling is the inability of existing methods to handle pleomorphic cellular clusters and clumps, which are more commonly present in patient-derived samples or tissue cultures than are isolated single cells. Here we demonstrate automated Live Cell Interferometry (LCI) as a rapid and accurate quantifier of the sensitivity of single cell and colony-forming human breast cancer cell lines to the HER2-directed monoclonal antibody, trastuzumab (Herceptin). The relative sensitivities of small samples (<500 cells) of four breast cancer cell lines were determined tens-to-hundreds of times faster than is possible with traditional proliferation assays. These LCI advances in clustered sample assessment and speed open up the possibility for therapeutic response testing of patient-derived solid tumor samples, which are viable only for short periods ex vivo and likely to be in the form of cell aggregates and clusters.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Interferometria/métodos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Receptor ErbB-2/biossíntese , Trastuzumab
13.
Sci Rep ; 12(1): 6074, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35414087

RESUMO

Transport of mass within cells helps maintain homeostasis and is disrupted by disease and stress. Here, we develop quantitative phase velocimetry (QPV) as a label-free approach to make the invisible flow of mass within cells visible and quantifiable. We benchmark our approach against alternative image registration methods, a theoretical error model, and synthetic data. Our method tracks not just individual labeled particles or molecules, but the entire flow of bulk material through the cell. This enables us to measure diffusivity within distinct cell compartments using a single approach, which we use here for direct comparison of nuclear and cytoplasmic diffusivity. As a label-free method, QPV can be used for long-term tracking to capture dynamics through the cell cycle.


Assuntos
Reologia , Ciclo Celular , Reologia/métodos
14.
ACS Nano ; 16(8): 11516-11544, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35916417

RESUMO

Quantitative phase imaging (QPI) is a label-free, wide-field microscopy approach with significant opportunities for biomedical applications. QPI uses the natural phase shift of light as it passes through a transparent object, such as a mammalian cell, to quantify biomass distribution and spatial and temporal changes in biomass. Reported in cell studies more than 60 years ago, ongoing advances in QPI hardware and software are leading to numerous applications in biology, with a dramatic expansion in utility over the past two decades. Today, investigations of cell size, morphology, behavior, cellular viscoelasticity, drug efficacy, biomass accumulation and turnover, and transport mechanics are supporting studies of development, physiology, neural activity, cancer, and additional physiological processes and diseases. Here, we review the field of QPI in biology starting with underlying principles, followed by a discussion of technical approaches currently available or being developed, and end with an examination of the breadth of applications in use or under development. We comment on strengths and shortcomings for the deployment of QPI in key biomedical contexts and conclude with emerging challenges and opportunities based on combining QPI with other methodologies that expand the scope and utility of QPI even further.


Assuntos
Microscopia , Neoplasias , Animais , Humanos , Microscopia/métodos , Software , Tamanho Celular , Mamíferos
15.
Commun Biol ; 5(1): 794, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941353

RESUMO

Quantitative phase imaging (QPI) measures the growth rate of individual cells by quantifying changes in mass versus time. Here, we use the breast cancer cell lines MCF-7, BT-474, and MDA-MB-231 to validate QPI as a multiparametric approach for determining response to single-agent therapies. Our method allows for rapid determination of drug sensitivity, cytotoxicity, heterogeneity, and time of response for up to 100,000 individual cells or small clusters in a single experiment. We find that QPI EC50 values are concordant with CellTiter-Glo (CTG), a gold standard metabolic endpoint assay. In addition, we apply multiparametric QPI to characterize cytostatic/cytotoxic and rapid/slow responses and track the emergence of resistant subpopulations. Thus, QPI reveals dynamic changes in response heterogeneity in addition to average population responses, a key advantage over endpoint viability or metabolic assays. Overall, multiparametric QPI reveals a rich picture of cell growth by capturing the dynamics of single-cell responses to candidate therapies.


Assuntos
Antineoplásicos , Neoplasias da Mama , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proliferação de Células , Avaliação Pré-Clínica de Medicamentos , Detecção Precoce de Câncer , Feminino , Humanos
16.
Biophys J ; 101(5): 1025-31, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21889438

RESUMO

A central question in cancer therapy is how individual cells within a population of tumor cells respond to drugs designed to arrest their growth. However, the absolute growth of cells, their change in physical mass, whether cancerous or physiologic, is difficult to measure directly with traditional techniques. Here, we develop live cell interferometry for rapid, real-time quantification of cell mass in cells exposed to a changing environment. We used tunicamycin induction of the unfolded protein stress response in multiple myeloma cells to generate a mass response that was temporally profiled for hundreds of cells simultaneously. Within 2 h, the treated cells were growth suppressed compared to controls, with a few cells in both populations showing a robust increase (+15%) or little change (<5%) in mass accumulation. Overall, live cell interferometry provides a conceptual advance for assessing cell populations to identify, monitor, and measure single cell responses, such as to therapeutic drugs.


Assuntos
Interferometria/métodos , Análise de Célula Única/métodos , Tunicamicina/farmacologia , Adesão Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Fatores de Tempo , Resposta a Proteínas não Dobradas/efeitos dos fármacos
17.
Sens Actuators A Phys ; 165(2): 310-315, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21516230

RESUMO

Current methods of optimizing electroosmotic (EO) pump performance include reducing pore diameter and reducing ionic strength of the pumped electrolyte. However, these approaches each increase the fraction of total ionic current carried by diffuse electric double layer (EDL) counterions. When this fraction becomes significant, concentration polarization (CP) effects become important, and traditional EO pump models are no longer valid. We here report on the first simultaneous concentration field measurements, pH visualizations, flow rate, and voltage measurements on such systems. Together, these measurements elucidate key parameters affecting EO pump performance in the CP dominated regime. Concentration field visualizations show propagating CP enrichment and depletion fronts sourced by our pump substrate and traveling at order mm/min velocities through millimeter-scale channels connected serially to our pump. The observed propagation in millimeter-scale channels is not explained by current propagating CP models. Additionally, visualizations show that CP fronts are sourced by and propagate from the electrodes of our system, and then interact with the EO pump-generated CP zones. With pH visualizations, we directly detect that electrolyte properties vary sharply across the anode enrichment front interface. Our observations lead us to hypothesize possible mechanisms for the propagation of both pump- and electrode-sourced CP zones. Lastly, our experiments show the dynamics associated with the interaction of electrode and membrane CP fronts, and we describe the effect of these phenomena on EO pump flow rates and applied voltages under galvanostatic conditions.

18.
Chem Soc Rev ; 39(3): 1014-35, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20179822

RESUMO

In this tutorial review aimed at researchers using nanofluidic devices, we summarize the current state of theoretical and experimental approaches to describing concentration polarization (CP) in hybrid microfluidic-nanofluidic systems. We also analyze experimental results for these systems and place them in the context of recent theoretical developments. We then extend the theory to explain the behavior of both positively and negatively charged, low-concentration, analyte species in systems with CP. We conclude by discussing several applications of CP in microfluidics.

19.
Polymers (Basel) ; 13(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562507

RESUMO

The optical properties of polymer materials used for microfluidic device fabrication can impact device performance when used for optical measurements. In particular, conventional polymer materials used for microfluidic devices have a large difference in refractive index relative to aqueous media generally used for biomedical applications. This can create artifacts when used for microscopy-based assays. Fluorination can reduce polymer refractive index, but at the cost of reduced adhesion, creating issues with device bonding. Here, we present a novel fabrication technique for bonding microfluidic devices made of NOA1348, which is a fluorinated, UV-curable polymer with a refractive index similar to that of water, to a glass substrate. This technique is compatible with soft lithography techniques, making this approach readily integrated into existing microfabrication workflows. We also demonstrate that this material is compatible with quantitative phase imaging, which we used to validate the refractive index of the material post-fabrication. Finally, we demonstrate the use of this material with a novel image processing approach to precisely quantify the mass of cells in the microchannel without the use of cell segmentation or tracking. The novel image processing approach combined with this low refractive index material eliminates an important source of error, allowing for high-precision measurements of cell mass with a coefficient of variance of 1%.

20.
Anal Chem ; 82(8): 3114-7, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20349992

RESUMO

We extend the analytical theory of propagating concentration polarization (CP) to describe and compare the effects of constant-voltage versus constant-current conditions on the transient development of CP enrichment and depletion zones. We support our analysis with computational and experimental results. We find that at constant voltage, enrichment and depletion regions spread as t(1/2) as opposed to the previously observed t(1) scaling for constant current conditions. At low, constant voltages, the growth and propagation of CP zones can easily be misinterpreted as nonpropagating behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA