RESUMO
Assessing mobility in daily life can provide significant insights into several clinical conditions, such as Chronic Obstructive Pulmonary Disease (COPD). In this paper, we present a comprehensive analysis of wearable devices' performance in gait speed estimation and explore optimal device combinations for everyday use. Using data collected from smartphones, smartwatches, and smart shoes, we evaluated the individual capabilities of each device and explored their synergistic effects when combined, thereby accommodating the preferences and possibilities of individuals for wearing different types of devices. Our study involved 20 healthy subjects performing a modified Six-Minute Walking Test (6MWT) under various conditions. The results revealed only little performance differences among devices, with the combination of smartwatches and smart shoes exhibiting superior estimation accuracy. Particularly, smartwatches captured additional health-related information and demonstrated enhanced accuracy when paired with other devices. Surprisingly, wearing all devices concurrently did not yield optimal results, suggesting a potential redundancy in feature extraction. Feature importance analysis highlighted key variables contributing to gait speed estimation, providing valuable insights for model refinement.
Assuntos
Velocidade de Caminhada , Dispositivos Eletrônicos Vestíveis , Humanos , Velocidade de Caminhada/fisiologia , Masculino , Feminino , Adulto , Smartphone , Sapatos , Marcha/fisiologia , Caminhada/fisiologia , Adulto JovemRESUMO
An experimental method exploiting the capacitive response of most materials is here revised. The procedure called the "Voltage Ramp Method" (VRM) is based on applying proper voltage ramp cycles over time and measuring electrical current intensity flowing through the material sample. In the case of an ideal capacitor, a current plateau should be easily measured, and the capacitance value precisely determined. However, most media, e.g., semiconductors and insulating polymers, show dielectric absorption and hence electric leakage effects. Therefore, the VRM method allows simultaneous determination of their equivalent capacitance and resistance. Some case studies are discussed as concerning the application of VRM to both standard and actual media. A figure of merit of the method is the percentage difference between 2.5% and 1.5% with respect to the nominal values of a commercial capacitor and resistor, respectively. The simulation modeling of the material electrical response is compared to the experimental data also on polymer nanocomposites suitable for energy harvesting.