Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Fish Dis ; : e14014, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39244704

RESUMO

Among the most important aquaculture resources for our country, salmon and trout stand out. Their production has increased significantly in recent decades, making them two of the most valuable resources in economic terms. However, high aquaculture production has allowed many pathogens to proliferate, causing infectious diseases and significant production losses. Piscirickettsia salmonis is a gram-negative, facultative intracellular bacterium that is responsible for causing severe disease in a variety of salmonid fish species. Despite the significant impact of P. salmonis on aquaculture, effective treatments for this disease remain limited. Current prevention and control strategies often include antibiotics and vaccines. However, these treatments have shown varying degrees of efficacy. A promising approach involves synthesizing bioactive analog compounds with antibacterial properties. Quinones, secondary metabolites that are abundant in nature, have become a focal point of interest due to their diverse physiological activities, including antibiotic, insecticidal, antifungal, and anticancer properties. In this study, it is shown the synthesis of series 6-bromo-7-arylaminoisoquinoline-5,8-quinones, the characterization of these compounds using classical spectroscopic methods such as one-dimensional nuclear magnetic resonance (NMR), FT-IR (infrared), mass spectrometry, and the biological activity against Piscirickettsia salmonis. The brominated derivative compounds showed no cytotoxicity at any concentration evaluated. Furthermore, the infectivity of P. salmonis after treatment with the analog compounds indicated that derivatives methyl 6-bromo-7-((4-methoxyphenyl)amino)-1,3-dimethy-5,8-dioxo-5,8-dihydroisoquinoline-4-carboxylate (4b) and methyl 7-((4'-amino-[1,1'-biphenyl]-4-yl)amino)-6-bromo-1,3-dimethy-5,8-dioxo-5,8-dihydroisoquinoline-4-carboxylate (4g) reduced the bacterial load at 25 µg/mL concentration.

2.
J Insect Sci ; 24(4)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39193858

RESUMO

Rust fungi (Pucciniales) are plant pathogens that can cause devastating yield losses to economically important crops and threaten native plants with extinction. Rusts are usually controlled with fungicides when rust-resistant plant varieties are unavailable. However, natural enemies may offer an alternative to chemicals by acting as biological controls. The larvae of Mycodiplosis Rübsaamen (49 spp.) feed on the spores of rusts and powdery mildew fungi and have been suggested as a potential biocontrol candidate for disease-causing rusts. However, little is known about the phylogenetic relationships, biogeography, and host range of this genus. We screened 5,665 rust specimens from fungarium specimens and field collections and recovered a total of 363 larvae on 315 rust specimens from 17 countries. Three mitochondrial and 2 nuclear loci were amplified and sequenced for the phylogenetic reconstruction of 129 individuals. We recovered 12 clades, of which 12 and 10 were supported with maximum likelihood and Bayesian inference, respectively. Of the 12 clades, 7 comprised species from multiple continents and climatic regions, and 5 comprised species from a single region. Individuals forming clades were collected from 2 to 18 rust species, suggesting that Mycodiplosis species have a broad host range. In total, Mycodiplosis larvae were identified on 44 different rust species collected from 18 plant families. Future studies should focus on expanding field sampling efforts, including data from additional gene regions, and incorporating morphological data to further elucidate species diversity and distribution patterns.


Assuntos
Basidiomycota , Especificidade de Hospedeiro , Larva , Filogenia , Animais , Basidiomycota/fisiologia , Basidiomycota/genética , Larva/microbiologia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Dípteros/microbiologia , Filogeografia , Esporos Fúngicos/fisiologia
3.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999953

RESUMO

Hybrid scaffolds that are based on PLA and PLA/PMMA with 75/25, 50/50, and 25/75 weight ratios and functionalized with 10 wt.% of bioglass nanoparticles (n-BG) were developed using an electrospinning technique with a chloroform/dimethylformamide mixture in a 9:1 ratio for bone tissue engineering applications. Neat PLA and PLA/PMMA hybrid scaffolds were developed successfully through a (CF/DMF) solvent system, obtaining a random fiber deposition that generated a porous structure with pore interconnectivity. However, with the solvent system used, it was not possible to generate fibers in the case of the neat PMMA sample. With the increase in the amount of PMMA in PLA/PMMA ratios, the fiber diameter of hybrid scaffolds decreases, and the defects (beads) in the fiber structure increase; these beads are associated with a nanoparticle agglomeration, that could be related to a low interaction between n-BG and the polymer matrix. The Young's modulus of PLA/PMMA/n-BG decreases by 34 and 80%, indicating more flexible behavior compared to neat PLA. The PLA/PMMA/n-BG scaffolds showed a bioactive property related to the presence of hydroxyapatite crystals in the fiber surface after 28 days of immersion in a Simulated Body Fluids solution (SBF). In addition, the hydrolytic degradation process of PLA/PMMA/n-BG, analyzed after 35 days of immersion in a phosphate-buffered saline solution (PBS), was less than that of the pure PLA. The in vitro analysis using an HBOF-1.19 cell line indicated that the PLA/PMMA/n-BG scaffold showed good cell viability and was able to promote cell proliferation after 7 days. On the other hand, the in vivo biocompatibility evaluated via a subdermal model in BALC male mice corroborated the good behavior of the scaffolds in avoiding the generation of a cytotoxic effect and being able to enhance the healing process, suggesting that the materials are suitable for potential applications in tissue engineering.


Assuntos
Cerâmica , Nanopartículas , Poliésteres , Polimetil Metacrilato , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Poliésteres/química , Polimetil Metacrilato/química , Alicerces Teciduais/química , Cerâmica/química , Cerâmica/farmacologia , Nanopartículas/química , Animais , Camundongos , Osso e Ossos/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Humanos , Linhagem Celular
4.
Molecules ; 29(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39064841

RESUMO

Bone tissue engineering is a promising alternative to repair wounds caused by cellular or physical accidents that humans face daily. In this sense, the search for new graphene oxide (GO) nanofillers related to their degree of oxidation is born as an alternative bioactive component in forming new scaffolds. In the present study, three different GOs were synthesized with varying degrees of oxidation and studied chemically and tissue-wise. The oxidation degree was determined through infrared (FTIR), X-ray diffraction (XRD), X-ray photoelectron (XPS), and Raman spectroscopy (RS). The morphology of the samples was analyzed using scanning electron microscopy (SEM). The oxygen content was deeply described using the deconvolution of RS and XPS techniques. The latter represents the oxidation degree for each of the samples and the formation of new bonds promoted by the graphitization of the material. In the RS, two characteristic bands were observed according to the degree of oxidation and the degree of graphitization of the material represented in bands D and G with different relative intensities, suggesting that the samples have different crystallite sizes. This size was described using the Tuinstra-Koenig model, ranging between 18.7 and 25.1 nm. Finally, the bone neoformation observed in the cranial defects of critical size indicates that the F1 and F2 samples, besides being compatible and resorbable, acted as a bridge for bone healing through regeneration. This promoted healing by restoring bone and tissue structure without triggering a strong immune response.


Assuntos
Regeneração Óssea , Grafite , Engenharia Tecidual , Alicerces Teciduais , Grafite/química , Regeneração Óssea/efeitos dos fármacos , Engenharia Tecidual/métodos , Animais , Alicerces Teciduais/química , Nanoestruturas/química , Osso e Ossos/efeitos dos fármacos , Análise Espectral Raman , Oxirredução , Difração de Raios X , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Molecules ; 29(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39202929

RESUMO

Materials with a soft tissue regenerative capacity can be produced using biopolymer scaffolds and nanomaterials, which allow injured tissue to recover without any side effects or limitations. Four formulations were prepared using polyvinyl alcohol (PVA) and chitosan (CS), with silicon dioxide nanoparticles (NPs-SiO2) incorporated using the freeze-drying method at a temperature of -50 °C. TGA and DSC showed no change in thermal degradation, with glass transition temperatures around 74 °C and 77 °C. The interactions between the hydroxyl groups of PVA and CS remained stable. Scanning electron microscopy (SEM) indicated that the incorporation of NPs-SiO2 complemented the freeze-drying process, enabling the dispersion of the components on the polymeric matrix and obtaining structures with a small pore size (between 30 and 60 µm) and large pores (between 100 and 160 µm). The antimicrobial capacity analysis of Gram-positive and Gram-negative bacteria revealed that the scaffolds inhibited around 99% of K. pneumoniae, E. cloacae, and S. aureus ATCC 55804. The subdermal implantation analysis demonstrated tissue growth and proliferation, with good biocompatibility, promoting the healing process for tissue restoration through the simultaneous degradation and formation of type I collagen fibers. All the results presented expand the boundaries in tissue engineering and regenerative medicine by highlighting the crucial role of nanoparticles in optimizing scaffold properties.


Assuntos
Quitosana , Liofilização , Nanopartículas , Álcool de Polivinil , Dióxido de Silício , Engenharia Tecidual , Alicerces Teciduais , Quitosana/química , Álcool de Polivinil/química , Dióxido de Silício/química , Alicerces Teciduais/química , Nanopartículas/química , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Medicina Regenerativa/métodos , Regeneração/efeitos dos fármacos
6.
Chem Res Toxicol ; 36(7): 1107-1120, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37409673

RESUMO

Mitochondrial toxicity is a significant concern in the drug discovery process, as compounds that disrupt the function of these organelles can lead to serious side effects, including liver injury and cardiotoxicity. Different in vitro assays exist to detect mitochondrial toxicity at varying mechanistic levels: disruption of the respiratory chain, disruption of the membrane potential, or general mitochondrial dysfunction. In parallel, whole cell imaging assays like Cell Painting provide a phenotypic overview of the cellular system upon treatment and enable the assessment of mitochondrial health from cell profiling features. In this study, we aim to establish machine learning models for the prediction of mitochondrial toxicity, making the best use of the available data. For this purpose, we first derived highly curated datasets of mitochondrial toxicity, including subsets for different mechanisms of action. Due to the limited amount of labeled data often associated with toxicological endpoints, we investigated the potential of using morphological features from a large Cell Painting screen to label additional compounds and enrich our dataset. Our results suggest that models incorporating morphological profiles perform better in predicting mitochondrial toxicity than those trained on chemical structures alone (up to +0.08 and +0.09 mean MCC in random and cluster cross-validation, respectively). Toxicity labels derived from Cell Painting images improved the predictions on an external test set up to +0.08 MCC. However, we also found that further research is needed to improve the reliability of Cell Painting image labeling. Overall, our study provides insights into the importance of considering different mechanisms of action when predicting a complex endpoint like mitochondrial disruption as well as into the challenges and opportunities of using Cell Painting data for toxicity prediction.


Assuntos
Aprendizado de Máquina , Mitocôndrias , Reprodutibilidade dos Testes , Fígado , Membranas Mitocondriais
7.
Plant Dis ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669170

RESUMO

Limonium sinuatum (Plumbaginaceae) is the most commonly cultivated recognizable cut flower crop in the genus Limonium. It is known by several common names including statice and sea lavender, due to its lilac-colored flowers and the fact that it naturally inhabits mainly coastal areas (Mellesse et al, 2013). Limonium sinuatum is native to the Mediterranean, although as a popular garden plant, has been naturalized in other parts of the world including coastal areas of California (USDA NRCS 2020). Cultivated L. sinuatum is used in fresh and dry flower arrangements in the Americas, comprising approximately 20% of the floriculture cultivated area in Ecuador (Vega and Morales 2011; Abascal Cañas 2017). In December 2014, L. sinuatum plants in the public park "Baños del Inca" in Cajamarca, Peru (S 7 9'46"; W 78 27'53"), were found infected with a rust disease. The plants were scattered in the park but infection incidence was 100% as individual plants were all found to be infected (Fig 1). Based on the percentage of symptomatic areas, including the yellow halos around pustules, calculated with ImageJ (Collins, 2007) from field photographs, the disease severity was estimated to be 58.9% in average, ranging from 19.8% up to 90.0%. Uredinia were present on both sides of the leaves as well as on stems and were roundish, oblong, pulverulent, and cinnamon brown in color; urediniospores 25.5 to 35.0 × 22.5 to 31.0 µm, were globoid to ellipsoid; urediniospore walls were cinnamon-brown, 2.5 to 3.0 µm thick, densely verrucose, with 2 to 3 equatorial germ pores. Few telia were present on leaves; these were scattered roundish or oblong, and greyish in color; teliospores 26.5 to 41.0 × 16.0 to 25.0 µm, were ellipsoid to obovoid, mostly attenuated at the apex; teliospore walls were colorless, 2-3 µm thick at sides, and up to 10 µm thick at apex. Teliospores readily germinated in sori producing basidia and basidiospores (Fig. 2). The rust features and dimensions of rust spores are consistent with available descriptions of Uromyces savulescui Rayss (Guyot 1951; Vakalounakis and Malathrakis 1987). To confirm identity, a 576 bp region of the 28S subunit of the ribosomal DNA repeat was sequenced following previously published protocols and primers (Aime 2006, Aime et al. 2018). The resulting sequence (GenBank Accession No. OR291160) shared 99.83% (573/574 bp) identity with a sequence deposited as Uromyces limonii (DC.) Lev. (accession KY764194, BPI910295, Demers et al. unpublished) from L. sinuatum in Ethiopia. However, U. limonii produces orange uredinia, thin-walled yellow-orange urediniospores, teliospores with mostly light chestnut brown wall and infects different hosts (Savile and Conners 1951). It is likely that KY764194 represents a misannotated record of U. savulescui. While Koch's postulates can be a useful tool for establishing causality in certain infectious diseases, their use may be limited when it comes to rust diseases based on old herbarium specimens. In our case, due to the age of the specimen, which is almost nine years old, various other methods were employed to identify the pathogen. These methods included microscopic examination for morphological criteria of the urediniospores and teliospores, as well as molecular techniques like 28S rDNA sequencing. Rust disease on L. sinuatum has been previously reported in Ecuador but the causal agent was identified as a Puccinia sp. and reported that the rust was able to destroy entire plots in humid conditions (Vega and Morales 2011). Whether this report also represent U. savulescui is not certain, but given that the urediniospores of Puccinia species are generally 2-celled, it is unlikely. García-Hernández et al. (2008) reported U. limonii on Limonium spp. from Chile, and Coca (2020) also reported U. limonii on Limonium sp., from Bolivia. However, judging from the photomicrographs (Coca 2020), the rust in the latter report is definitely U. savulescui and not U. limonii. Uromyces savulescui has been previously reported from the Mediterranean region and the Canary Islands (Vakalounakis and Malathrakis 1987). To our knowledge there is no report of this rust in the Americas, excepting the probable misidentifications already listed herein. The specimen has been deposited in the Arthur Fungarium at Purdue University as PURN15037.

8.
Bioinformatics ; 37(6): 861-867, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33241296

RESUMO

MOTIVATION: Image-based profiling combines high-throughput screening with multiparametric feature analysis to capture the effect of perturbations on biological systems. This technology has attracted increasing interest in the field of plant phenotyping, promising to accelerate the discovery of novel herbicides. However, the extraction of meaningful features from unlabeled plant images remains a big challenge. RESULTS: We describe a novel data-driven approach to find feature representations from plant time-series images in a self-supervised manner by using time as a proxy for image similarity. In the spirit of transfer learning, we first apply an ImageNet-pretrained architecture as a base feature extractor. Then, we extend this architecture with a triplet network to refine and reduce the dimensionality of extracted features by ranking relative similarities between consecutive and non-consecutive time points. Without using any labels, we produce compact, organized representations of plant phenotypes and demonstrate their superior applicability to clustering, image retrieval and classification tasks. Besides time, our approach could be applied using other surrogate measures of phenotype similarity, thus providing a versatile method of general interest to the phenotypic profiling community. AVAILABILITY AND IMPLEMENTATION: Source code is provided in https://github.com/bayer-science-for-a-better-life/plant-triplet-net. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Plantas , Software , Análise por Conglomerados
9.
Molecules ; 27(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36144483

RESUMO

Autologous bone is the gold standard in regeneration processes. However, there is an endless search for alternative materials in bone regeneration. Xenografts can act as bone substitutes given the difficulty of obtaining bone tissue from patients and before the limitations in the availability of homologous tissue donors. Bone neoformation was studied in critical-size defects created in the parietal bone of 40 adult male Wistar rats, implanted with xenografts composed of particulate bovine hydroxyapatite (HA) and with blocks of bovine hydroxyapatite (HA) and Collagen, which introduces crystallinity to the materials. The Fourier-transform infrared spectroscopy (FTIR) analysis demonstrated the carbonate and phosphate groups of the hydroxyapatite and the amide groups of the collagen structure, while the thermal transitions for HA and HA/collagen composites established mainly dehydration endothermal processes, which increased (from 79 °C to 83 °C) for F2 due to the collagen presence. The xenograft's X-ray powder diffraction (XRD) analysis also revealed the bovine HA crystalline structure, with a prominent peak centered at 32°. We observed macroporosity and mesoporosity in the xenografts from the morphology studies with heterogeneous distribution. The two xenografts induced neoformation in defects of critical size. Histological, histochemical, and scanning electron microscopy (SEM) analyses were performed 30, 60, and 90 days after implantation. The empty defects showed signs of neoformation lower than 30% in the three periods, while the defects implanted with the material showed partial regeneration. InterOss Collagen material temporarily induced osteon formation during the healing process. The results presented here are promising for bone regeneration, demonstrating a beneficial impact in the biomedical field.


Assuntos
Substitutos Ósseos , Amidas , Animais , Regeneração Óssea , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Bovinos , Colágeno/química , Durapatita/química , Durapatita/farmacologia , Xenoenxertos , Humanos , Masculino , Ratos , Ratos Wistar
10.
Molecules ; 27(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35684575

RESUMO

Scaffolds based on biopolymers and nanomaterials with appropriate mechanical properties and high biocompatibility are desirable in tissue engineering. Therefore, polylactic acid (PLA) nanocomposites were prepared with ceramic nanobioglass (PLA/n-BGs) at 5 and 10 wt.%. Bioglass nanoparticles (n-BGs) were prepared using a sol-gel methodology with a size of ca. 24.87 ± 6.26 nm. In addition, they showed the ability to inhibit bacteria such as Escherichia coli (ATCC 11775), Vibrio parahaemolyticus (ATCC 17802), Staphylococcus aureus subsp. aureus (ATCC 55804), and Bacillus cereus (ATCC 13061) at concentrations of 20 w/v%. The analysis of the nanocomposite microstructures exhibited a heterogeneous sponge-like morphology. The mechanical properties showed that the addition of 5 wt.% n-BG increased the elastic modulus of PLA by ca. 91.3% (from 1.49 ± 0.44 to 2.85 ± 0.99 MPa) and influenced the resorption capacity, as shown by histological analyses in biomodels. The incorporation of n-BGs decreased the PLA crystallinity (from 7.1% to 4.98%) and increased the glass transition temperature (Tg) from 53 °C to 63 °C. In addition, the n-BGs increased the thermal stability due to the nanoparticle's intercalation between the polymeric chains and the reduction in their movement. The histological implantation of the nanocomposites and the cell viability with HeLa cells higher than 80% demonstrated their biocompatibility character with a greater resorption capacity than PLA. These results show the potential of PLA/n-BGs nanocomposites for biomedical applications, especially for long healing processes such as bone tissue repair and avoiding microbial contamination.


Assuntos
Nanocompostos , Poliésteres , Escherichia coli , Células HeLa , Humanos , Nanocompostos/química , Poliésteres/química , Poliésteres/farmacologia , Engenharia Tecidual
11.
Molecules ; 25(10)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423061

RESUMO

Scaffold development for cell regeneration has increased in recent years due to the high demand for more efficient and biocompatible materials. Nanomaterials have become a critical alternative for mechanical, thermal, and antimicrobial property reinforcement in several biopolymers. In this work, four different chitosan (CS) bead formulations crosslinked with glutaraldehyde (GLA), including titanium dioxide nanoparticles (TiO2), and graphene oxide (GO) nanosheets, were prepared with potential biomedical applications in mind. The characterization of by FTIR spectroscopy, X-ray photoelectron spectroscopy (XRD), thermogravimetric analysis (TGA), energy-dispersive spectroscopy (EDS) and scanning electron microscopy (SEM), demonstrated an efficient preparation of nanocomposites, with nanoparticles well-dispersed in the polymer matrix. In vivo, subdermal implantation of the beads in Wistar rat's tissue for 90 days showed a proper and complete healing process without any allergenic response to any of the formulations. Masson's trichrome staining of the histological implanted tissues demonstrated the presence of a group of macrophage/histiocyte compatible cells, which indicates a high degree of biocompatibility of the beads. The materials were very stable under body conditions as the morphometry studies showed, but with low resorption percentages. These high stability beads could be used as biocompatible, resistant materials for long-term applications. The results presented in this study show the enormous potential of these chitosan nanocomposites in cell regeneration and biomedical applications.


Assuntos
Quitosana/química , Grafite/química , Nanocompostos/química , Nanopartículas/química , Alicerces Teciduais , Titânio/química , Animais , Materiais Biocompatíveis , Sobrevivência Celular/efeitos dos fármacos , Quitosana/farmacologia , Grafite/farmacologia , Histiócitos/citologia , Histiócitos/efeitos dos fármacos , Histiócitos/fisiologia , Masculino , Nanocompostos/ultraestrutura , Nanopartículas/ultraestrutura , Ratos , Ratos Wistar , Pele/citologia , Pele/efeitos dos fármacos , Engenharia Tecidual/métodos , Titânio/farmacologia
12.
J Am Chem Soc ; 140(46): 15774-15782, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30362749

RESUMO

Target residence time is emerging as an important optimization parameter in drug discovery, yet target and off-target engagement dynamics have not been clearly linked to the clinical performance of drugs. Here we developed high-throughput binding kinetics assays to characterize the interactions of 270 protein kinase inhibitors with 40 clinically relevant targets. Analysis of the results revealed that on-rates are better correlated with affinity than off-rates and that the fraction of slowly dissociating drug-target complexes increases from early/preclinical to late stage and FDA-approved compounds, suggesting distinct contributions by each parameter to clinical success. Combining binding parameters with PK/ADME properties, we illustrate in silico and in cells how kinetic selectivity could be exploited as an optimization strategy. Furthermore, using bio- and chemoinformatics we uncovered structural features influencing rate constants. Our results underscore the value of binding kinetics information in rational drug design and provide a resource for future studies on this subject.


Assuntos
Fosfotransferases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Sítios de Ligação , Descoberta de Drogas , Humanos , Cinética , Estrutura Molecular , Fosfotransferases/metabolismo , Inibidores de Proteínas Quinases/química
13.
Molecules ; 24(1)2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-30602678

RESUMO

CaCO3 nanoparticles of around 60 nm were obtained by a co-precipitation method and used as filler to prepare low-density polyethylene (LDPE) composites by melt blending. The nanoparticles were also organically modified with oleic acid (O-CaCO3) in order to improve their interaction with the LDPE matrix. By adding 3 and 5 wt% of nanofillers, the mechanical properties under tensile conditions of the polymer matrix improved around 29%. The pure LDPE sample and the nanocomposites with 5 wt% CaCO3 were photoaged by ultraviolet (UV) irradiation during 35 days and the carbonyl index (CI), degree of crystallinity (χc), and Young's modulus were measured at different times. After photoaging, the LDPE/CaCO3 nanocomposites increased the percent crystallinity (χc), the CI, and Young's modulus as compared to the pure polymer. Moreover, the viscosity of the photoaged nanocomposite was lower than that of photoaged pure LDPE, while scanning electron microscopy (SEM) analysis showed that after photoaging the nanocomposites presented cavities around the nanoparticles. These difference showed that the presence of CaCO3 nanoparticles accelerate the photo-degradation of the polymer matrix. Our results show that the addition of CaCO3 nanoparticles into an LDPE polymer matrix allows future developments of more sustainable polyethylene materials that could be applied as films in agriculture. These LDPE-CaCO3 nanocomposites open the opportunity to improve the low degradation of the LDPE without sacrificing the polymer's behavior, allowing future development of novel eco-friendly polymers.


Assuntos
Carbonato de Cálcio/química , Ácido Oleico/química , Polietileno/química , Módulo de Elasticidade , Nanocompostos/química , Nanopartículas/química , Fotólise
14.
BMC Cancer ; 16: 355, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27268034

RESUMO

BACKGROUND: TFEB (transcription factor EB) regulates metabolic homeostasis through its activation of lysosomal biogenesis following its nuclear translocation. TFEB activity is inhibited by mTOR phosphorylation, which signals its cytoplasmic retention. To date, the temporal relationship between alterations to mTOR activity states and changes in TFEB subcellular localization and concentration has not been sufficiently addressed. METHODS: mTOR was activated by renewed addition of fully-supplemented medium, or inhibited by Torin1 or nutrient deprivation. Single-cell TFEB protein levels and subcellular localization in HeLa and MCF7 cells were measured over a time course of 15 hours by multispectral imaging cytometry. To extract single-cell level information on heterogeneous TFEB activity phenotypes, we developed a framework for identification of TFEB activity subpopulations. Through unsupervised clustering, cells were classified according to their TFEB nuclear concentration, which corresponded with downstream lysosomal responses. RESULTS: Bulk population results revealed that mTOR negatively regulates TFEB protein levels, concomitantly to the regulation of TFEB localization. Subpopulation analysis revealed maximal sensitivity of HeLa cells to mTOR activity stimulation, leading to inactivation of 100 % of the cell population within 0.5 hours, which contrasted with a lower sensitivity in MCF7 cells. Conversely, mTOR inhibition increased the fully active subpopulation only fractionally, and full activation of 100 % of the population required co-inhibition of mTOR and the proteasome. Importantly, mTOR inhibition activated TFEB for a limited duration of 1.5 hours, and thereafter the cell population was progressively re-inactivated, with distinct kinetics for Torin1 and nutrient deprivation treatments. CONCLUSION: TFEB protein levels and subcellular localization are under control of a short-term rheostat, which is highly responsive to negative regulation by mTOR, but under conditions of mTOR inhibition, restricts TFEB activation in a manner dependent on the proteasome. We further identify a long-term, mTOR-independent homeostatic control negatively regulating TFEB upon prolonged mTOR inhibition. These findings are of relevance for developing strategies to target TFEB activity in disease treatment. Moreover, our quantitative approach to decipher phenotype heterogeneity in imaging datasets is of general interest, as shifts between subpopulations provide a quantitative description of single cell behaviour, indicating novel regulatory behaviors and revealing differences between cell types.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Neoplasias/metabolismo , Análise de Célula Única/métodos , Serina-Treonina Quinases TOR/metabolismo , Citometria de Fluxo , Células HeLa , Homeostase , Humanos , Células MCF-7 , Microscopia de Fluorescência , Fosforilação , Transdução de Sinais , Fatores de Tempo
15.
An Pediatr (Engl Ed) ; 101(1): 36-45, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38906802

RESUMO

In this article we present a protocol for the use of the low-FODMAP diet in paediatric patients and review of the current evidence on its efficacy. These short-chain carbohydrates, which can be fermented by the intestinal microbiota, are found in a wide variety of foods, mainly of plant origin. The low-FODMAP diet is a therapeutic tool used for the management of gastrointestinal disorders such as irritable bowel syndrome. The sources we used were PubMed, Web of Science, Google Scholar and institutional websites. Following consumption of FODMAP-rich foods, a series of end products are generated that are not absorbed, giving rise to symptoms. Before starting a low-FODMAP diet, it is important to carry out a diagnostic evaluation including any applicable tests. Treatment is structured in 3 phases: elimination, reintroduction and personalization phase. In the first phase, FODMAP-rich foods are eliminated for 2-3 weeks. In the second phase, lasting 8 weeks, FODMAP-rich foods are gradually reintroduced. The last phase consists in customizing the diet according to individual tolerance. This article details which foods contain FODMAPs and possible substitutes. In addition, specific food diary/intake tracking and educational materials are provided in a series of appendices to facilitate adherence to the diet. Although most studies have been conducted in adults, there is also some evidence on the beneficial effects in the paediatric age group, with a reduction of symptoms, especially in patients with functional gastrointestinal disorders. Nevertheless, more research is required on the subject.


Assuntos
Gastroenteropatias , Humanos , Criança , Gastroenteropatias/dietoterapia , Gastroenteropatias/diagnóstico , Gastroenteropatias/terapia , Dieta com Restrição de Carboidratos/métodos , Síndrome do Intestino Irritável/dietoterapia , Síndrome do Intestino Irritável/diagnóstico , Carboidratos da Dieta/administração & dosagem , Dieta FODMAP
16.
Int J Biol Macromol ; 269(Pt 2): 132160, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718995

RESUMO

Environmentally friendly polymers such as cellulose acetate (CA) and chitosan (CS) were used to obtain electrospun fibers for Cu2+, Pb2+, and Mo6+ capture. The solvents dichloromethane (DCM) and dimethylformamide (DMF) allowed the development of a surface area of 148 m2 g-1 for CA fibers and 113 m2 g-1 for cellulose acetate/chitosan (CA/CS) fibers. The fibers were characterized by IR-DRIFT, SEM, TEM, CO2 sorption isotherms at 273 K, Hg porosimetry, TGA, stress-strain tests, and XPS. The CA/CS fibers had a higher adsorption capacity than CA fibers without affecting their physicochemical properties. The capture capacity reached 102 mg g-1 for Cu2+, 49.3 mg g-1 for Pb2+, and 13.1 mg g-1 for Mo6+. Furthermore, optimal pH, adsorption times qt, and C0 were studied for the evaluation of kinetic models and adsorption isotherms. Finally, a proposal for adsorbate-adsorbent interactions is presented as a possible capture mechanism where, in the case of Mo6+, a computational study is presented. The results demonstrate the potential to evaluate the fibers in tailings wastewater from copper mining.


Assuntos
Celulose , Quitosana , Cobre , Chumbo , Águas Residuárias , Poluentes Químicos da Água , Purificação da Água , Quitosana/química , Celulose/química , Celulose/análogos & derivados , Cobre/química , Águas Residuárias/química , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Chumbo/química , Chumbo/isolamento & purificação , Purificação da Água/métodos , Cinética , Concentração de Íons de Hidrogênio , Biopolímeros/química
17.
IMA Fungus ; 15(1): 18, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961514

RESUMO

Sphaerellopsis species are putative hyperparasites of rust fungi and may be promising biological control agents (BCA) of rust diseases. However, few detailed studies limit potential BCA development in Sphaerellopsis. Here, we explored the biogeography, host-specificity, and species diversity of Sphaerellopsis and examined the early infection stage of one species, S. macroconidialis, to infer its trophic status. We randomly screened 5,621 rust specimens spanning 99 genera at the Arthur Fungarium for the presence of Sphaerellopsis. We identified 199 rust specimens infected with Sphaerellopsis species on which we conducted morphological and multi-locus phylogenetic analyses. Five Sphaerellopsis species were recovered, infecting a total of 122 rust species in 18 genera from 34 countries. Sphaerellopsis melampsorinearum sp. nov. is described as a new species based on molecular phylogenetic data and morphological features of the sexual and asexual morphs. Sphaerellopsis paraphysata was the most commonly encountered species, found on 77 rust specimens, followed by Sphaerellopsis macroconidialis on 56 and S. melampsorinearum on 55 examined specimens. The type species, Sphaerellopsis filum, was found on 12 rust specimens and Sphaerellopsis hakeae on a single specimen. We also recovered and documented for the first time, the sexual morph of S. macroconidialis, from a specimen collected in Brazil. Our data indicate that Sphaerellopsis species are not host specific and furthermore that most species are cosmopolitan in distribution. However, S. paraphysata is more abundant in the tropics, and S. hakeae may be restricted to Australia. Finally, we confirm the mycoparasitic strategy of S. macroconidialis through in-vitro interaction tests with the urediniospores of Puccinia polysora. Shortly after germination, hyphae of S. macroconidialis began growing along the germ tubes of P. polysora and coiling around them. After 12 days of co-cultivation, turgor loss was evident in the germ tubes of P. polysora, and appressorium-like structures had formed on urediniospores. The interaction studies indicate that Sphaerellopsis species may be more effective as a BCA during the initial stages of rust establishment.

18.
RSC Adv ; 14(19): 13565-13582, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665501

RESUMO

The constant demand for biocompatible and non-invasive materials for regenerative medicine in accidents and various diseases has driven the development of innovative biomaterials that promote biomedical applications. In this context, using sol-gel and ionotropic gelation methods, zinc oxide nanoparticles (NPs-ZnO) and chitosan nanoparticles (NPs-CS) were synthesized with sizes of 20.0 nm and 11.98 nm, respectively. These nanoparticles were incorporated into chitosan scaffolds through the freeze-drying method, generating a porous morphology with small (<100 µm), medium (100-200 µm), and large (200-450 µm) pore sizes. Moreover, the four formulations showed preliminary bioactivity after hydrolytic degradation, facilitating the formation of a hydroxyapatite (HA) layer on the scaffold surface, as evidenced by the presence of Ca (4%) and P (5.1%) during hydrolytic degradation. The scaffolds exhibited average antibacterial activity of F1 = 92.93%, F2 = 99.90%, F3 = 74.10%, and F4 = 88.72% against four bacterial strains: K. pneumoniae, E. cloacae, S. enterica, and S. aureus. In vivo, evaluation confirmed the biocompatibility of the functionalized scaffolds, where F2 showed accelerated resorption attributed to the NPs-ZnO. At the same time, F3 exhibited controlled degradation with NPs-CS acting as initiation points for degradation. On the other hand, F4 combined NPs-CS and NPs-ZnO, resulting in progressive degradation, reduced inflammation, and an organized extracellular matrix. All the results presented expand the boundaries in tissue engineering and regenerative medicine by highlighting the crucial role of nanoparticles in optimizing scaffold properties.

19.
Int J Biol Macromol ; 273(Pt 1): 132891, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38848852

RESUMO

Electrospun nanocomposite scaffolds with improved bioactive and biological properties were fabricated from a blend of polycaprolactone (PCL) and starch, and then combined with 5 wt% of calcium oxide (CaO) nanoparticles sourced from eggshells. SEM analyses showed scaffolds with fibrillar morphology and a three-dimensional structure. The hydrophilicity of scaffolds was improved with starch and CaO nanoparticles, which was evidenced by enhanced water absorption (3500 %) for 7 days. In addition, PCL/Starch/CaO scaffolds exhibited major degradation, with a mass loss of approximately 60 % compared to PCL/Starch and PCL/CaO. The PCL/Starch/CaO scaffolds decreased in crystallinity as intermolecular interactions between the nanoparticles retarded the mobility of the polymeric chains, leading to a significant increase in Young's modulus (ca. 60 %) and a decrease in tensile strength and elongation at break, compared to neat PCL. SEM-EDS, FT-IR, and XRD analyses indicated that PCL/Starch/CaO scaffolds presented a higher biomineralization capacity due to the ability to form hydroxyapatite (HA) in their surface after 28 days. The PCL/Starch/CaO scaffolds showed attractive biological performance, allowing cell adhesion and viability of M3T3-E1 preosteoblastic cells. In vivo analysis using a subdermal dorsal model in Wistar rats showed superior biocompatibility and improved resorption process compared to a pure PCL matrix. This biological analysis suggested that the PCL/Starch/CaO electrospun mats are suitable scaffolds for guiding the regeneration of bone tissue.


Assuntos
Osso e Ossos , Compostos de Cálcio , Nanopartículas , Óxidos , Poliésteres , Amido , Engenharia Tecidual , Alicerces Teciduais , Amido/química , Poliésteres/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Nanopartículas/química , Óxidos/química , Compostos de Cálcio/química , Ratos , Camundongos , Materiais Biocompatíveis/química , Ratos Wistar , Linhagem Celular , Nanocompostos/química
20.
Pharmaceutics ; 15(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37765166

RESUMO

The increasing demand for non-invasive biocompatible materials in biomedical applications, driven by accidents and diseases like cancer, has led to the development of sustainable biomaterials. Here, we report the synthesis of four block formulations using polycaprolactone (PCL), polylactic acid (PLA), and zinc oxide nanoparticles (ZnO-NPs) for subdermal tissue regeneration. Characterization by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) confirmed the composition of the composites. Additionally, the interaction of ZnO-NPs mainly occurred with the C=O groups of PCL occurring at 1724 cm-1, which disappears for F4, as evidenced in the FT-IR analysis. Likewise, this interaction evidenced the decrease in the crystallinity of the composites as they act as crosslinking points between the polymer backbones, inducing gaps between them and weakening the strength of the intermolecular bonds. Thermogravimetric (TGA) and differential scanning calorimetry (DSC) analyses confirmed that the ZnO-NPs bind to the carbonyl groups of the polymer, acting as weak points in the polymer backbone from where the different fragmentations occur. Scanning electron microscopy (SEM) showed that the increase in ZnO-NPs facilitated a more compact surface due to the excellent dispersion and homogeneous accumulation between the polymeric chains, facilitating this morphology. The in vivo studies using the nanocomposites demonstrated the degradation/resorption of the blocks in a ZnO-NP-dependant mode. After degradation, collagen fibers (Type I), blood vessels, and inflammatory cells continue the resorption of the implanted material. The results reported here demonstrate the relevance and potential impact of the ZnO-NP-based scaffolds in soft tissue regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA