Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1328781, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550597

RESUMO

Metabolic changes are coupled with alteration in protein glycosylation. In this review, we will focus on macrophages that are pivotal in the pathogenesis of pulmonary fibrosis and sarcoidosis and thanks to their adaptable metabolism are an attractive therapeutic target. Examples presented in this review demonstrate that protein glycosylation regulates metabolism-driven immune responses in macrophages, with implications for fibrotic processes and granuloma formation. Targeting proteins that regulate glycosylation, such as fucosyltransferases, neuraminidase 1 and chitinase 1 could effectively block immunometabolic changes driving inflammation and fibrosis, providing novel avenues for therapeutic interventions.


Assuntos
Doenças Pulmonares Intersticiais , Fibrose Pulmonar , Sarcoidose , Humanos , Glicosilação , Doenças Pulmonares Intersticiais/metabolismo , Fibrose Pulmonar/etiologia , Sarcoidose/metabolismo , Fibrose
2.
Biomolecules ; 14(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38785919

RESUMO

Asthma has reached epidemic levels, yet progress in developing specific therapies is slow. One of the main reasons for this is the fact that asthma is an umbrella term for various distinct subsets. Due to its high heterogeneity, it is difficult to establish biomarkers for each subset of asthma and to propose endotype-specific treatments. This review focuses on protein glycosylation as a process activated in asthma and ways to utilize it to develop novel biomarkers and treatments. We discuss known and relevant glycoproteins whose functions control disease development. The key role of glycoproteins in processes integral to asthma, such as inflammation, tissue remodeling, and repair, justifies our interest and research in the field of glycobiology. Altering the glycosylation states of proteins contributing to asthma can change the pathological processes that we previously failed to inhibit. Special emphasis is placed on chitotriosidase 1 (CHIT1), an enzyme capable of modifying LacNAc- and LacdiNAc-containing glycans. The expression and activity of CHIT1 are induced in human diseased lungs, and its pathological role has been demonstrated by both genetic and pharmacological approaches. We propose that studying the glycosylation pattern and enzymes involved in glycosylation in asthma can help in patient stratification and in developing personalized treatment.


Assuntos
Asma , Glicoproteínas , Humanos , Asma/metabolismo , Asma/genética , Glicosilação , Glicoproteínas/metabolismo , Glicoproteínas/genética , Hexosaminidases/metabolismo , Hexosaminidases/genética , Biomarcadores/metabolismo , Animais , Polissacarídeos/metabolismo
3.
Eur J Med Chem ; 264: 116033, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38096651

RESUMO

Arginase is a multifaced enzyme that plays an important role in health and disease being regarded as a therapeutic target for the treatment of various pathological states such as malignancies, asthma, and cardiovascular disease. The discovery of boronic acid-based arginase inhibitors in 1997 revolutionized attempts of medicinal chemistry focused on development of drugs targeting arginase. Unfortunately, these very polar compounds had limitations such as analysis and purification without chromophores, synthetically challenging space, and poor oral bioavailability. Herein, we present a novel class of boronic acid-based arginase inhibitors which are piperidine derivatives exhibiting a different pharmacological profile compared to our drug candidate in cancer immunotherapy -OATD-02 - dual ARG1/2 inhibitor with high intracellular activity. Compounds from this new series show low intracellular activity, hence they can inhibit mainly extracellular arginase, providing different therapeutic space compared to a dual intracellular ARG1/2 inhibitor. The disclosed series showed good inhibitory potential towards arginase enzyme in vitro (IC50 up to 160 nM), favorable pharmacokinetics in animal models, and encouraging preliminary in vitro and in vivo tolerability. Compounds from the new series have moderate-to-high oral bioavailability (up to 66 %) and moderate clearance in vivo. Herein we describe the development and optimization of the synthesis of the new class of boronic acid-based arginase inhibitors via a ring expansion approach starting from the inexpensive chirality source (d-hydroxyproline). This upgraded methodology facilitated a gram-scale delivery of the final compound and eliminated the need for costly and time-consuming chiral resolution.


Assuntos
Arginase , Inibidores Enzimáticos , Animais , Arginase/química , Inibidores Enzimáticos/química , Ácidos Borônicos/farmacologia , Hidroxiprolina , Química Farmacêutica
4.
J Med Chem ; 67(5): 3959-3985, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38427954

RESUMO

Chitinase-3-like-1 (CHI3L1), also known as YKL-40, is a glycoprotein linked to inflammation, fibrosis, and cancer. This study explored CHI3L1's interactions with various oligosaccharides using microscale thermophoresis (MST) and AlphaScreen (AS). These investigations guided the development of high-throughput screening assays to assess interference of small molecules in binding between CHI3L1 and biotinylated small molecules or heparan sulfate-based probes. Small molecule binders of YKL-40 were identified in our chitotriosidase inhibitors library with MST and confirmed through X-ray crystallography. Based on cocrystal structures of potent hit compounds with CHI3L1, small molecule probes 19 and 20 were designed for an AS assay. Structure-based optimization led to compounds 30 and 31 with nanomolar activities and drug-like properties. Additionally, an orthogonal AS assay using biotinylated heparan sulfate as a probe was developed. The compounds' affinity showed a significant correlation in both assays. These screening tools and compounds offer novel avenues for investigating the role of CHI3L1.


Assuntos
Quitinases , Proteína 1 Semelhante à Quitinase-3 , Glicoproteínas , Ensaios de Triagem em Larga Escala , Heparitina Sulfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA