Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Haematol ; 204(5): 2057-2065, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38302093

RESUMO

Increased iron loss may reduce the effectiveness of iron supplementation. The objective of this study was to determine if daily oral iron supplementation increases iron loss, measured using a stable isotope of iron (58Fe). We enrolled and dewormed 24 iron-depleted Kenyan children, 24-27 months of age, whose body iron was enriched and equilibrated with 58Fe given at least 1 year earlier. Over 3 months of supplementation (6 mg iron/kg body weight [BW]/day), mean (±SD) iron absorption was 1.10 (±0.28) mg/day. During supplementation, 0.55 (±0.36) mg iron/day was lost, equal to half of the amount of absorbed iron. Supplementation did not increase faecal haem/porphyrin or biomarkers of enterocyte damage and gut or systemic inflammation. Using individual patient data, we examined iron dose, absorption and loss among all available long-term iron isotopic studies of supplementation. Expressed in terms of body weight, daily iron loss was correlated significantly with iron absorption (Pearson's r = 0.66 [95% confidence interval 0.48-0.78]) but not with iron dose (r = 0.16 [95% CI -0.10-0.40]). The results of this study indicate that iron loss is increased with daily oral iron supplementation and may blunt the efficacy of iron supplements in children. This study was registered at ClinicalTrials.gov as NCT04721964.


Assuntos
Suplementos Nutricionais , Isótopos de Ferro , Ferro , Humanos , Feminino , Masculino , Pré-Escolar , Quênia , Ferro/metabolismo , Ferro/administração & dosagem , Anemia Ferropriva/tratamento farmacológico , Lactente
2.
Sci Adv ; 10(28): eado4262, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38985881

RESUMO

Little is known about iron kinetics in early infancy. We administered stable iron isotopes to pregnant women and used maternal-fetal iron transfer to enrich newborn body iron. Dilution of enriched body iron by dietary iron with natural isotopic composition was used to assess iron kinetics from birth to 6 months. In breastfed (BF, n = 8), formula-fed (FF, n = 7), or mixed feeding (MF, n = 8) infants, median (interquartile range) iron intake was 0.27, 11.19 (10.46-15.55), and 4.13 (2.33-6.95) mg/day; iron absorbed was 0.128 (0.095-0.180), 0.457 (0.374-0.617), and 0.391 (0.283-0.473) mg/day (BF versus FF, P < 0.01); and total iron gains were 0.027 (-0.002-0.055), 0.349 (0.260-0.498), and 0.276 (0.175-0.368) mg/day (BF versus FF, P < 0.001; BF versus MF, P < 0.05). Isotope dilution can quantify long-term iron absorption and describe the trajectory of iron depletion during early infancy.


Assuntos
Aleitamento Materno , Fórmulas Infantis , Isótopos de Ferro , Ferro , Humanos , Feminino , Lactente , Recém-Nascido , Ferro/metabolismo , Ferro/análise , Fórmulas Infantis/química , Fórmulas Infantis/análise , Masculino , Gravidez , Adulto
3.
Med Sci Sports Exerc ; 56(1): 118-127, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38098150

RESUMO

PURPOSE: We examined iron absorption and its regulation during two common scenarios experienced by endurance athletes. Our aims were to: (i) compare the effects of preexercise versus postexercise iron intake on iron absorption; and (ii) compare the impact of training at altitude (1800 m) on iron absorption preexercise. METHODS: Male runners (n = 18) completed three exercise trials over a 5-wk period, each preceded by 24 h of standardized low-iron diets. First, athletes completed two 60-min treadmill running trials at 65% V̇O2max at near sea-level (580 m). In a randomized order, preexercise and postexercise test meals labeled with 4 mg of 57Fe or 58Fe were consumed 30 min before or 30 min after exercise. Then, the same exercise trial was performed after living and training at altitude (~1800 m) for 7 d, with the labeled test meal consumed 30 min preexercise. We collected venous blood samples preexercise and postexercise for markers of iron status and regulation, and 14 d later to measure erythrocyte isotope incorporation. RESULTS: No differences in fractional iron absorption were evident when test meals were consumed preexercise (7.3% [4.4, 12.1]) or postexercise (6.2% [3.1, 12.5]) (n = 18; P = 0.058). Iron absorption preexercise was greater at altitude (18.4% [10.6, 32.0]) than at near sea-level (n = 17; P < 0.001) and hepcidin concentrations at altitude were lower at rest and 3 h postexercise compared with near sea level (P < 0.001). CONCLUSIONS: In an acute setting, preexercise and postexercise iron absorption is comparable if consumed within 30 min of exercise. Preexercise iron absorption increases 2.6-fold at altitude compared with near sea-level, likely due to the homeostatic response to provide iron for enhanced erythropoiesis and maintain iron stores.


Assuntos
Ferro , Corrida , Humanos , Masculino , Ferro/metabolismo , Corrida/fisiologia , Exercício Físico/fisiologia , Eritrócitos/metabolismo , Atletas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA