Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928209

RESUMO

Complex gut microbiota increases chickens' resistance to enteric pathogens. However, the principles of this phenomenon are not understood in detail. One of the possibilities for how to decipher the role of gut microbiota in chickens' resistance to enteric pathogens is to systematically characterise the gene expression of individual gut microbiota members colonising the chicken caecum. To reach this aim, newly hatched chicks were inoculated with bacterial species whose whole genomic sequence was known. Total protein purified from the chicken caecum was analysed by mass spectrometry, and the obtained spectra were searched against strain-specific protein databases generated from known genomic sequences. Campylobacter jejuni, Phascolarctobacterium sp. and Sutterella massiliensis did not utilise carbohydrates when colonising the chicken caecum. On the other hand, Bacteroides, Mediterranea, Marseilla, Megamonas, Megasphaera, Bifidobacterium, Blautia, Escherichia coli and Succinatimonas fermented carbohydrates. C. jejuni was the only motile bacterium, and Bacteroides mediterraneensis expressed the type VI secretion system. Classification of in vivo expression is key for understanding the role of individual species in complex microbial populations colonising the intestinal tract. Knowledge of the expression of motility, the type VI secretion system, and preference for carbohydrate or amino acid fermentation is important for the selection of bacteria for defined competitive exclusion products.


Assuntos
Aminoácidos , Galinhas , Microbioma Gastrointestinal , Sistemas de Secreção Tipo VI , Animais , Galinhas/microbiologia , Aminoácidos/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Sistemas de Secreção Tipo VI/genética , Metabolismo dos Carboidratos , Ceco/microbiologia , Ceco/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética
2.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108420

RESUMO

The circadian rhythms evolved to anticipate and cope with cyclic changes in environmental conditions. This adaptive function is currently compromised by increasing levels of artificial light at night (ALAN), which can represent a risk for the development of diseases of civilisation. The causal links are not completely understood, and this featured review focuses on the chronodisruption of the neuroendocrine control of physiology and behaviour by dim ALAN. The published data indicate that low levels of ALAN (2-5 lux) can attenuate the molecular mechanisms generating circadian rhythms in the central oscillator, eliminate the rhythmic changes in dominant hormonal signals, such as melatonin, testosterone and vasopressin, and interfere with the circadian rhythm of the dominant glucocorticoid corticosterone in rodents. These changes are associated with a disturbed daily pattern of metabolic changes and behavioural rhythms in activity and food and water intake. The increasing levels of ALAN require the identification of the pathways mediating possible negative consequences on health to design effective mitigation strategies to eliminate or minimise the effects of light pollution.


Assuntos
Poluição Luminosa , Melatonina , Ritmo Circadiano/fisiologia , Melatonina/metabolismo , Corticosterona/metabolismo , Testosterona
3.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445698

RESUMO

Colorectal cancer (CRC) has one of the highest incidences among all types of malignant diseases, affecting millions of people worldwide. It shows slow progression, making it preventable. However, this is not the case due to shortcomings in its diagnostic and management procedure and a lack of effective non-invasive biomarkers for screening. Here, we discuss CRC-associated microRNAs (miRNAs) and gut microbial species with potential as CRC diagnostic and therapy biomarkers. We provide rich evidence of cross-kingdom miRNA-mediated interactions between the host and gut microbiome. miRNAs have emerged with the ability to shape the composition and dynamics of gut microbiota. Intestinal microbes can uptake miRNAs, which in turn influence microbial growth and provide the ability to regulate the abundance of various microbial species. In the context of CRC, targeting miRNAs could aid in manipulating the balance of the microbiota. Our findings suggest the need for correlation analysis between the composition of the gut microbiome and the miRNA expression profile.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , MicroRNAs , Microbiota , Humanos , Microbioma Gastrointestinal/genética , MicroRNAs/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Biomarcadores
4.
Appl Environ Microbiol ; 88(24): e0180922, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36468876

RESUMO

Chickens are in constant interaction with their environment, e.g., bedding and litter, and their microbiota. However, how litter microbiota develops over time and whether bedding and litter microbiota may affect the cecal microbiota is not clear. We addressed these questions using sequencing of V3/V4 variable region of 16S rRNA genes of cecal, bedding, and litter samples from broiler breeder chicken flocks for 4 months of production. Cecal, bedding, and litter samples were populated by microbiota of distinct composition. The microbiota in the bedding material did not expand in the litter. Similarly, major species from litter microbiota did not expand in the cecum. Only cecal microbiota was found in the litter forming approximately 20% of total litter microbiota. A time-dependent development of litter microbiota was observed. Escherichia coli, Staphylococcus saprophyticus, and Weissella jogaejeotgali were characteristic of fresh litter during the first month of production. Corynebacterium casei, Lactobacillus gasseri, and Lactobacillus salivarius dominated in a 2-month-old litter, Brevibacterium, Brachybacterium, and Sphingobacterium were characteristic for 3-month-old litter, and Salinococcus, Dietzia, Yaniella, and Staphylococcus lentus were common in a 4-month-old litter. Although the development was likely determined by physicochemical conditions in the litter, it might be interesting to test some of these species for active modification of litter to improve the chicken environment and welfare. IMPORTANCE Despite intimate contact, the composition of bedding, litter, and cecal microbiota differs considerably. Species characteristic for litter microbiota at different time points of chicken production were identified thus opening the possibility for active manipulation of litter microbiota.


Assuntos
Galinhas , Microbiota , Animais , Galinhas/microbiologia , RNA Ribossômico 16S/genética , Microbiota/genética , Ceco/microbiologia
5.
Neuroendocrinology ; 112(11): 1116-1128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35316813

RESUMO

AIMS: Our study addresses underlying mechanisms of disruption of the circadian timing system by low-intensity artificial light at night (ALAN), which is a growing global problem, associated with serious health consequences. METHODS: Rats were exposed to low-intensity (∼2 lx) ALAN for 2 weeks. Using in situ hybridization, we assessed 24-h profiles of clock and clock-controlled genes in the suprachiasmatic nuclei (SCN) and other hypothalamic regions, which receive input from the master clock. Moreover, we measured the daily rhythms of hormones within the main neuroendocrine axes as well as the detailed daily pattern of feeding and drinking behavior in metabolic cages. RESULTS: ALAN strongly suppressed the molecular clockwork in the SCN, as indicated by the suppressed rhythmicity in the clock (Per1, Per2, and Nr1d1) and clock output (arginine vasopressin) genes. ALAN disturbed rhythmic Per1 expression in the paraventricular and dorsomedial hypothalamic nuclei, which convey the circadian signals from the master clock to endocrine and behavioral rhythms. Disruption of hormonal output pathways was manifested by the suppressed and phase-advanced corticosterone rhythm and lost daily variations in plasma melatonin, testosterone, and vasopressin. Importantly, ALAN altered the daily profile in food and water intake and eliminated the clock-controlled surge of drinking 2 h prior to the onset of the rest period, indicating disturbed circadian control of anticipatory thirst and fluid balance during sleep. CONCLUSION: Our findings highlight compromised time-keeping function of the central clock and multiple circadian outputs, through which ALAN disturbs the temporal organization of physiology and behavior.


Assuntos
Ritmo Circadiano , Melatonina , Animais , Ratos , Ritmo Circadiano/genética , Corticosterona/metabolismo , Sede , Luz , Fatores de Transcrição , Vasopressinas , Arginina Vasopressina , Testosterona
6.
Int J Mol Sci ; 23(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35270026

RESUMO

Prenatal hypoxia during the prenatal period can interfere with the developmental trajectory and lead to developing hypertension in adulthood. Prenatal hypoxia is often associated with intrauterine growth restriction that interferes with metabolism and can lead to multilevel changes. Therefore, we analysed the effects of prenatal hypoxia predominantly not associated with intrauterine growth restriction using publications up to September 2021. We focused on: (1) The response of cardiovascular regulatory mechanisms, such as the chemoreflex, adenosine, nitric oxide, and angiotensin II on prenatal hypoxia. (2) The role of the placenta in causing and attenuating the effects of hypoxia. (3) Environmental conditions and the mother's health contribution to the development of prenatal hypoxia. (4) The sex-dependent effects of prenatal hypoxia on cardiovascular regulatory mechanisms and the connection between hypoxia-inducible factors and circadian variability. We identified that the possible relationship between the effects of prenatal hypoxia on the cardiovascular regulatory mechanism may vary depending on circadian variability and phase of the days. In summary, even short-term prenatal hypoxia significantly affects cardiovascular regulatory mechanisms and programs hypertension in adulthood, while prenatal programming effects are not only dependent on the critical period, and sensitivity can change within circadian oscillations.


Assuntos
Sistema Cardiovascular , Hipertensão , Efeitos Tardios da Exposição Pré-Natal , Adulto , Feminino , Retardo do Crescimento Fetal , Humanos , Hipóxia/complicações , Gravidez
7.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430199

RESUMO

Circadian rhythms control almost all aspects of physiology and behavior, allowing temporal synchrony of these processes between each other, as well as with the external environment. In the immune system, daily rhythms of leukocyte functions can determine the strength of the immune response, thereby regulating the efficiency of defense mechanisms to cope with infections or tissue injury. The natural light/dark cycle is the prominent synchronizing agent perceived by the circadian clock, but this role of light is highly compromised by irregular working schedules and unintentional exposure to artificial light at night (ALAN). The primary concern is disrupted circadian control of important physiological processes, underlying potential links to adverse health effects. Here, we first discuss the immune consequences of genetic circadian disruption induced by mutation or deletion of specific clock genes. Next, we evaluate experimental research into the effects of disruptive light/dark regimes, particularly light-phase shifts, dim ALAN, and constant light on the innate immune mechanisms under steady state and acute inflammation, and in the pathogenesis of common lifestyle diseases. We suggest that a better understanding of the mechanisms by which circadian disruption influences immune status can be of importance in the search for strategies to minimize the negative consequences of chronodisruption on health.


Assuntos
Relógios Circadianos , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Imunidade Inata
8.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36498872

RESUMO

Artificial light at night (ALAN) is considered an environmental risk factor that can interfere with the circadian control of the endocrine system and metabolism. We studied the impact of ALAN during pregnancy on the hormonal and biochemical parameters in rat pups at postnatal (P) days P3, P10, and P20. Control dams (CTRL) were kept in a standard light-dark regime, and ALAN dams were exposed to dim ALAN (<2 lx) during the whole pregnancy. A plasma melatonin rhythm was found in all CTRL groups, whereas in ALAN pups, melatonin was not rhythmic at P3, and its amplitude was lowered at P10; no differences were found between groups at P20. Plasma corticosterone was rhythmic at P20 in both groups, with decreased mesor in ALAN pups. Plasma thyroid hormones exhibited an inconsistent developmental pattern, and vasopressin levels were suppressed at the beginning of the dark phase at P20 in ALAN compared to CTRL. Glucose and cholesterol showed significant daily rhythms in CTRL but not in ALAN offspring at P3. Exposure to ALAN during pregnancy disturbed the development of daily rhythms in measured hormones and metabolites, suggesting that ALAN during pregnancy can act as an endocrine disruptor that can interfere with the normal development of the progeny.


Assuntos
Ritmo Circadiano , Melatonina , Gravidez , Feminino , Animais , Ratos , Luz , Melatonina/metabolismo , Corticosterona
9.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430773

RESUMO

Activated endothelial, immune, and cancer cells prefer glycolysis to obtain energy for their proliferation and migration. Therefore, the blocking of glycolysis can be a promising strategy against cancer and autoimmune disease progression. Inactivation of the glycolytic enzyme PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase) suppresses glycolysis level and contributes to decreased proliferation and migration of cancer (tumorigenesis) and endothelial (angiogenesis) cells. Recently, several glycolysis inhibitors have been developed, among them (E)-1-(pyridin-4-yl)-3-(quinolin-2-yl)prop-2-en-1-one (PFK15) that is considered as one of the most promising. It is known that PFK15 decreases glucose uptake into the endothelial cells and efficiently blocks pathological angiogenesis. However, no study has described sufficiently PFK15 synthesis enabling its general availability. In this paper we provide all necessary details for PFK15 preparation and its advanced characterization. On the other hand, there are known tyrosine kinase inhibitors (e.g., sunitinib), that affect additional molecular targets and efficiently block angiogenesis. From a biological point of view, we have studied and proved the synergistic inhibitory effect by simultaneous administration of glycolysis inhibitor PFK15 and multikinase inhibitor sunitinib on the proliferation and migration of HUVEC. Our results suggest that suppressing the glycolytic activity of endothelial cells in combination with growth factor receptor blocking can be a promising antiangiogenic treatment.


Assuntos
Inibidores da Angiogênese , Neoplasias , Humanos , Inibidores da Angiogênese/farmacologia , Células Endoteliais/metabolismo , Sunitinibe/farmacologia , Glicólise/fisiologia , Neovascularização Patológica/tratamento farmacológico , Neoplasias/metabolismo , Proliferação de Células
10.
Cell Mol Neurobiol ; 41(7): 1589-1598, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32734322

RESUMO

Melatonin is released by the pineal gland and can modulate cardiovascular system function via the G protein-coupled melatonin receptors MT1 and MT2. Most vessels are surrounded by perivascular adipose tissue (PVAT), which affects their contractility. The aim of our study was to evaluate mRNA and protein expression of MT1 and MT2 in the mesenteric artery (MA) and associated PVAT of male rats by RT-PCR and Western blot. Receptor localization was further studied by immunofluorescence microscopy. Effects of melatonin on neurogenic contractions were explored in isolated superior MA ex vivo by measurement of isometric contractile tension. MT1, but not MT2, was present in MA, and MT1 was localized mainly in vascular smooth muscle. Moreover, we proved the presence of MT1, but not MT2 receptors, in MA-associated PVAT. In isolated superior MA with intact PVAT, neuro-adrenergic contractile responses were significantly smaller when compared to arteries with removed PVAT. Pre-treatment with melatonin of PVAT-stripped arterial rings enhanced neurogenic contractions, while the potentiating effect of melatonin was not detected in preparations with preserved PVAT. We hypothesize that melatonin can stimulate the release of PVAT-derived relaxing factor(s) via MT1, which can override the direct pro-contractile effect of melatonin on vascular smooth muscle. Our results suggest that melatonin is involved in the control of vascular tone in a complex way, which is vessel specific and can reflect a sum of action on different layers of the vessel wall and surrounding PVAT.


Assuntos
Melatonina/farmacologia , Artérias Mesentéricas/metabolismo , Receptores de Melatonina/efeitos dos fármacos , Receptores de Melatonina/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/fisiologia , Animais , Melatonina/metabolismo , Artérias Mesentéricas/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Norepinefrina/metabolismo , Norepinefrina/farmacologia , Ratos Wistar
11.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34948470

RESUMO

Glycolysis is considered a main metabolic pathway in highly proliferative cells, including endothelial, epithelial, immune, and cancer cells. Although oxidative phosphorylation (OXPHOS) is more efficient in ATP production per mole of glucose, proliferative cells rely predominantly on aerobic glycolysis, which generates ATP faster compared to OXPHOS and provides anabolic substrates to support cell proliferation and migration. Cellular metabolism, including glucose metabolism, is under strong circadian control. Circadian clocks control a wide array of metabolic processes, including glycolysis, which exhibits a distinct circadian pattern. In this review, we discuss circadian regulations during metabolic reprogramming and key steps of glycolysis in activated, highly proliferative cells. We suggest that the inhibition of metabolic reprogramming in the circadian manner can provide some advantages in the inhibition of oxidative glycolysis and a chronopharmacological approach is a promising way to treat diseases associated with up-regulated glycolysis.


Assuntos
Trifosfato de Adenosina/metabolismo , Relógios Circadianos , Glucose/metabolismo , Aerobiose , Proliferação de Células , Glicólise , Humanos , Fosforilação Oxidativa
12.
Int J Mol Sci ; 22(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922320

RESUMO

A high rate of glycolysis is considered a hallmark of tumor progression and is caused by overexpression of the enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3). Therefore, we analyzed the possibility of inhibiting tumor and endothelial cell metabolism through the inhibition of PFKFB3 by a small molecule, (E)-1-(pyridin-4-yl)-3-(quinolin-2-yl)prop-2-en-1-one (PFK15), as a promising therapy. The effects of PFK15 on cell proliferation and apoptosis were analyzed on human umbilical vein endothelial cells (HUVEC) and the human colorectal adenocarcinoma cell line DLD1 through cytotoxicity and proliferation assays, flow cytometry, and western blotting. The results showed that PFK15 inhibited the proliferation of both cell types and induced apoptosis with decreasing the Bcl-2/Bax ratio. On the basis of the results obtained from in vitro experiments, we performed a study on immunodeficient mice implanted with DLD1 cells. We found a reduced tumor mass after morning PFK15 treatment but not after evening treatment, suggesting circadian control of underlying processes. The reduction in tumor size was related to decreased expression of Ki-67, a marker of cell proliferation. We conclude that inhibition of glycolysis can represent a promising therapeutic strategy for cancer treatment and its efficiency is circadian dependent.


Assuntos
Cronoterapia/métodos , Neoplasias do Colo/tratamento farmacológico , Glucose/metabolismo , Glicólise , Fosfofrutoquinase-2/antagonistas & inibidores , Piridinas/farmacologia , Quinolinas/farmacologia , Animais , Apoptose , Proliferação de Células , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Humanos , Masculino , Camundongos , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Int J Syst Evol Microbiol ; 70(1): 302-308, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31617844

RESUMO

A taxonomic study was carried out on four Gram-stain-negative strains P5773T, P6169, P4708 and P6245, isolated from anus or mouth samples of Weddell seals at James Ross Island, Antarctica. The results of initial 16S rRNA gene sequence analysis showed that all four strains formed a group placed in the genus Pseudomonas and found Pseudomonas guineae and Pseudomonas peli to be their closest neighbours with 99.9 and 99.2 % sequence similarity, respectively. Sequence analysis of rpoD, rpoB and gyrB housekeeping genes confirmed the highest similarity of isolates to P. peli (rpoD) and to P. guineae (rpoB and gyrB). The average nucleotide identity value below 86 %, as calculated from the whole-genome sequence data, showed the low genomic relatedness of P5773T to its phylogenetic neighbours. The complete genome of strain P5773T was 4.4 Mb long and contained genes encoding proteins with biotechnological potential. The major fatty acids of the seal isolates were summed feature 8 (C18 : 1 ω7c), summed feature 3 (C16 : 1 ω 7 c/C16  : 1 ω6c) and C16:0. The major respiratory quinone was Q9. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Putrescine and spermidine are predominant in the polyamine pattern. Further characterization performed using repetitive sequence-based PCR fingerprinting and MALDI-TOF MS analysis showed that the studied isolates formed a coherent cluster separated from the remaining Pseudomonas species and confirmed that they represent a novel species within the genus Pseudomonas, for which the name Pseudomonas leptonychotis sp. nov. is suggested. The type strain is P5773T (=CCM 8849T=LMG 30618T).


Assuntos
Filogenia , Pseudomonas/classificação , Focas Verdadeiras/microbiologia , Animais , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
14.
Int J Syst Evol Microbiol ; 70(9): 5131-5140, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32821035

RESUMO

A taxonomic study of two fluorescent Pseudomonas strains (HJ/4T and SJ/9/1T) isolated from calcite moonmilk samples obtained from two caves in the Moravian Karst in the Czech Republic was carried out. Results of initial 16S rRNA gene sequence analysis assigned both strains into the genus Pseudomonas and showed Pseudomonas yamanorum 8H1T as their closest neighbour with 99.8 and 99.7 % 16S rRNA gene similarities to strains HJ/4T and SJ/9/1T, respectively. Subsequent sequence analysis of rpoD, rpoB and gyrB housekeeping genes confirmed the highest similarity of both isolates to P. yamanorum 8H1T, but phylogeny and sequences similarities implied that they are representatives of two novel species within the genus Pseudomonas. Further study comprising whole-genome sequencing followed by average nucleotide identity and digital DNA-DNA hybridization calculations, repetitive sequence-based PCR fingerprinting with the REP and ERIC primers, automated ribotyping with the EcoRI restriction endonuclease, cellular fatty acid analysis, quinone and polar lipid characterization, and extensive biotyping confirmed clear separation of both analysed strains from the remaining Pseudomonas species and showed that they represent two novel species within the genus Pseudomonas for which the names Pseudomonas karstica sp. nov. (type strain HJ/4T=CCM 7891T=LMG 27930T) and Pseudomonas spelaei sp. nov. (type strain SJ/9/1T=CCM 7893T=LMG 27931T) are suggested.


Assuntos
Carbonato de Cálcio , Cavernas/microbiologia , Filogenia , Pseudomonas/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , República Tcheca , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Lipídeos/análise , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
15.
Int J Syst Evol Microbiol ; 70(12): 6364-6372, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33599603

RESUMO

A group of four psychrotrophic bacterial strains was isolated on James Ross Island (Antarctica) in 2013. All isolates, originating from different soil samples, were collected from the ice-free northern part of the island. They were rod-shaped, Gram-stain-negative, and produced moderately slimy red-pink pigmented colonies on R2A agar. A polyphasic taxonomic approach based on 16S rRNA gene sequencing, whole-genome sequencing, MALDI-TOF MS, rep-PCR analyses, chemotaxonomic methods and extensive biotyping was used to clarify the taxonomic position of these isolates. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates belonged to the genus Hymenobacter. The closest relative was Hymenobacter humicola CCM 8763T, exhibiting 98.3 and 98.9% 16S rRNA pairwise similarity with the reference isolates P5342T and P5252T, respectively. Average nucleotide identity, digital DNA-DNA hybridization and core gene distances calculated from the whole-genome sequencing data confirmed that P5252T and P5342T represent two distinct Hymenobacter species. The menaquinone systems of both strains contained MK-7 as the major respiratory quinone. The predominant polar lipids for both strains were phosphatidylethanolamine and one unidentified glycolipid. The major components in the cellular fatty acid composition were summed feature 3 (C16:1 ω7c/C16:1ω6c), C16:1ω5c, summed feature 4 (anteiso-C17:1 B/iso-C17:1 I), anteiso-C15:0 and iso-C15 : 0 for all isolates. Based on the obtained results, two novel species are proposed, for which the names Hymenobacter terrestris sp. nov. (type strain P5252T=CCM 8765T=LMG 31495T) and Hymenobacter lapidiphilus sp. nov. (type strain P5342T=CCM 8764T=LMG 30613T) are suggested.


Assuntos
Cytophagaceae/classificação , Filogenia , Microbiologia do Solo , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Composição de Bases , Cytophagaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Glicolipídeos/química , Ilhas , Hibridização de Ácido Nucleico , Fosfatidiletanolaminas/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
16.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751870

RESUMO

The disruption of circadian rhythms by environmental conditions can induce alterations in body homeostasis, from behavior to metabolism. The light:dark cycle is the most reliable environmental agent, which entrains circadian rhythms, although its credibility has decreased because of the extensive use of artificial light at night. Light pollution can compromise performance and health, but underlying mechanisms are not fully understood. The present review assesses the consequences induced by constant light (LL) in comparison with dim light at night (dLAN) on the circadian control of metabolism and behavior in rodents, since such an approach can identify the key mechanisms of chronodisruption. Data suggest that the effects of LL are more pronounced compared to dLAN and are directly related to the light level and duration of exposure. Dim LAN reduces nocturnal melatonin levels, similarly to LL, but the consequences on the rhythms of corticosterone and behavioral traits are not uniform and an improved quantification of the disrupted rhythms is needed. Metabolism is under strong circadian control and its disruption can lead to various pathologies. Moreover, metabolism is not only an output, but some metabolites and peripheral signal molecules can feedback on the circadian clockwork and either stabilize or amplify its desynchronization.


Assuntos
Ritmo Circadiano , Poluição Ambiental , Luz/efeitos adversos , Fotoperíodo , Animais , Corticosterona/metabolismo , Humanos , Melatonina/metabolismo
17.
Int J Mol Sci ; 21(20)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086713

RESUMO

Artificial light at night can have negative effects on human wellbeing and health. It can disrupt circadian rhythms, interfere with sleep, and participate in the progress of civilisation diseases. The aim of the present study was to explore if dim artificial light during the entire night (ALAN) can affect melatonin production and sleep quality in young volunteers. We performed two experiments in real-life home-based conditions. Young volunteers (n = 33) were exposed to four nights of one lux ALAN or two nights of five lux ALAN. Melatonin production, based on 6-sulphatoxymelatonin/creatinine concentrations in urine, and sleep quality, based on actimetry, were evaluated. Exposure to ALAN one lux during the entire night did not suppress aMT6s/creatinine concentrations but did aggravate sleep quality by increasing sleep fragmentation and one-minute immobility. ALAN up to five lux reduced melatonin biosynthesis significantly and interfered with sleep quality, as evidenced by an increased percentage of one-minute immobility and a tendency of increased fragmentation index. Our results show that people are more sensitive to low illuminance during the entire night, as previously expected. ALAN can interfere with melatonin production and sleep quality in young, healthy individuals, and both processes have different sensitivities to light.


Assuntos
Ritmo Circadiano/efeitos da radiação , Saúde , Luz , Melatonina/análogos & derivados , Sono/efeitos da radiação , Creatinina/urina , Feminino , Humanos , Masculino , Melatonina/urina , Adulto Jovem
18.
Int J Mol Sci ; 21(18)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967195

RESUMO

Dim light at night (dLAN) is associated with metabolic risk but the specific effects on lipid metabolism have only been evaluated to a limited extent. Therefore, to explore whether dLAN can compromise lipid metabolic homeostasis in healthy individuals, we exposed Wistar rats to dLAN (~2 lx) for 2 and 5 weeks and analyzed the main lipogenic pathways in the liver and epididymal fat pad, including the control mechanisms at the hormonal and molecular level. We found that dLAN promoted hepatic triacylglycerol accumulation, upregulated hepatic genes involved in de novo synthesis of fatty acids, and elevated glucose and fatty acid uptake. These observations were paralleled with suppressed fatty acid synthesis in the adipose tissue and altered plasma adipokine levels, indicating disturbed adipocyte metabolic function with a potential negative impact on liver metabolism. Moreover, dLAN-exposed rats displayed an elevated expression of two peroxisome proliferator-activated receptor family members (Pparα and Pparγ) in the liver and adipose tissue, suggesting the deregulation of important metabolic transcription factors. Together, our results demonstrate that an impaired balance of lipid biosynthetic pathways caused by dLAN can increase lipid storage in the liver, thereby accounting for a potential linking mechanism between dLAN and metabolic diseases.


Assuntos
Tecido Adiposo/metabolismo , Ritmo Circadiano , Regulação da Expressão Gênica , Iluminação/efeitos adversos , Metabolismo dos Lipídeos , Fígado/metabolismo , Animais , Ácidos Graxos/biossíntese , Masculino , PPAR alfa/biossíntese , PPAR gama/biossíntese , Ratos , Ratos Wistar , Triglicerídeos/biossíntese
19.
Int J Mol Sci ; 21(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858878

RESUMO

Despite growing evidence that demonstrate adverse effects of artificial light at night (ALAN) on many species, relatively little is known regarding its effects on brain plasticity in birds. We recently showed that although ALAN increases cell proliferation in brains of birds, neuronal densities in two brain regions decreased, indicating neuronal death, which might be due to mortality of newly produced neurons or of existing ones. Therefore, in the present study we studied the effect of long-term ALAN on the recruitment of newborn neurons into their target regions in the brain. Accordingly, we exposed zebra finches (Taeniopygia guttata) to 5 lux ALAN, and analysed new neuronal recruitment and total neuronal densities in several brain regions. We found that ALAN increased neuronal recruitment, possibly as a compensatory response to ALAN-induced neuronal death, and/or due to increased nocturnal locomotor activity caused by sleep disruption. Moreover, ALAN also had a differential temporal effect on neuronal densities, because hippocampus was more sensitive to ALAN and its neuronal densities were more affected than in other brain regions. Nocturnal melatonin levels under ALAN were significantly lower compared to controls, indicating that very low ALAN intensities suppress melatonin not only in nocturnal, but also in diurnal species.


Assuntos
Encéfalo/fisiologia , Tentilhões/fisiologia , Luz/efeitos adversos , Neurônios/fisiologia , Animais , Animais Recém-Nascidos , Encéfalo/efeitos da radiação , Feminino , Melatonina/sangue , Plasticidade Neuronal/efeitos da radiação , Neurônios/efeitos da radiação
20.
Opt Express ; 27(23): 33351-33358, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31878405

RESUMO

Our measurement of the soft X-ray emission of Mo plasmas produced by picosecond Nd:YAG lasers emitting on the fundamental (1064 nm, 150 ps) and second (532 nm, 130 ps) harmonics is presented. The contrast in intensity between spectral peaks and the intensity outside them is lower for the second harmonic produced plasmas probably due to the presence more intense satellite emission and higher optical thickness. The measured spectra are absolutely calibrated and the observed output photon flux was (7 - 9) × 1013 photons/sr in the water-window (2.3 - 4.4 nm) spectral range for a laser energy of 160 mJ independent of laser wavelength. However, in the short wavelength range 1.5 - 2 nm, the emission using the second harmonic is strongly enhanced and is even higher than for the maximum energy of 220 mJ of the fundamental wavelength, so despite inevitable energy losses, laser wavelength conversion may lead to emission enhancement in certain spectral ranges. This enhancement is attributed to higher absorption of short wavelength laser light and higher charge state generation in denser plasmas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA