Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(5): 7185-7196, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439406

RESUMO

We propose and analyze theoretically a promising design of an optical trap for vacuum levitation of nanoparticles based on a one-dimensional (1D) silicon photonic crystal cavity (PhC). The considered cavity has a quadratically modulated width of the silicon wave guiding structure, leading to a calculated cavity quality factor of 8 × 105. An effective mode volume of approximately 0.16 µm3 having the optical field strongly confined outside the silicon structure enables optical confinement on nanoparticle in all three dimensions. The optical forces and particle-cavity optomechanical coupling are comprehensively analyzed for two sizes of silica nanoparticles (100 nm and 150 nm in diameter) and various mode detunings. The value of trapping stiffnesses in the microcavity is predicted to be 5 order of magnitudes higher than that reached for optimized optical tweezers, moreover the linear single photon coupling rate can reach MHz level which is 6 order magnitude larger than previously reported values for common bulk cavities. The theoretical results support optimistic prospects towards a compact chip for optical levitation in vacuum and cooling of translational mechanical degrees of motion for the silica nanoparticle of a diameter of 100 nm.

2.
J Chem Phys ; 156(3): 034201, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35065575

RESUMO

While colloidal chemistry provides ways to obtain a great variety of nanoparticles with different shapes, sizes, material compositions, and surface functions, their controlled deposition and combination on arbitrary positions of substrates remain a considerable challenge. Over the last ten years, optical printing arose as a versatile method to achieve this purpose for different kinds of nanoparticles. In this article, we review the state of the art of optical printing of single nanoparticles and discuss its strengths, limitations, and future perspectives by focusing on four main challenges: printing accuracy, resolution, selectivity, and nanoparticle photostability.

3.
Sensors (Basel) ; 22(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35890804

RESUMO

Widely used classical angiography with the use of iodine contrast agents is highly problematic, particularly in patients with diabetes mellitus, cardiac and pulmonary diseases, or degree III or IV renal insufficiency. Some patients may be susceptible to allergic reaction to the iodine contrast substance. The intravenous injection of a bolus of CO2 (negative contrast) is an alternative method, which is, however, currently only used for imaging blood vessels of the lower limbs. The aim of our project was to design and test on an animal model a methodology for injecting the CO2 foam which would minimize the possibility of embolization of the brain tissue and heart infarction, leading to their damage. This is important research for the further promotion of the use of CO2, which is increasingly important for endovascular diagnosis and treatment, because carbon-dioxide-related complications are extremely rare. CO2 foam was prepared by the rapid mixing in a 2:1 ratio of CO2 and fetal bovine serum (FBS)-enriched Dulbecco's Modified Eagle Medium (DMEM). Freshly prepared CO2 foam was administered into the catheterized rat tail vein or cannulated rat abdominal aorta and inferior vena cava (IVC). CO2 foam was compared with commercially available microbubbles (lipid shell/gas core). The rat heart in its parasternal long axis was imaged in B-Mode and Non-linear Contrast Mode before/during and after the contrast administration. Samples of the brain, heart and lungs were collected and subjected to histological examination. The non-linear contrast imaging method enables the imaging of micron-sized gas microbubbles inside a rat heart. The significantly shorter lifetime of the prepared CO2 foam is a benefit for avoiding the local ischemia of tissues.


Assuntos
Dióxido de Carbono , Iodo , Angiografia , Animais , Dióxido de Carbono/efeitos adversos , Meios de Contraste , Microbolhas , Ratos
4.
Anal Chem ; 92(18): 12304-12311, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32815709

RESUMO

Bacteriophages, or "phages" for short, are viruses that replicate in bacteria. The therapeutic and biotechnological potential of phages and their lytic enzymes is of interest for their ability to selectively destroy pathogenic bacteria, including antibiotic-resistant strains. Introduction of phage preparations into medicine, biotechnology, and food industry requires a thorough characterization of phage-host interaction on a molecular level. We employed Raman tweezers to analyze the phage-host interaction of Staphylococcus aureus strain FS159 with a virulent phage JK2 (=812K1/420) of the Myoviridae family and a temperate phage 80α of the Siphoviridae family. We analyzed the timeline of phage-induced molecular changes in infected host cells. We reliably detected the presence of replicating phages in bacterial cells within 5 min after infection. Our results lay the foundations for building a Raman-based diagnostic instrument capable of real-time, in vivo, in situ, nondestructive characterization of the phage-host relationship on the level of individual cells, which has the potential of importantly contributing to the development of phage therapy and enzybiotics.


Assuntos
Bacteriófagos/química , Pinças Ópticas , Staphylococcus aureus/química , Análise Espectral Raman
5.
Opt Express ; 28(25): 37700-37707, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33379599

RESUMO

Illumination of a colloidal suspension of dielectric nanoparticles (50 nm in radius) with counter-propagating non-interfering laser beams of sufficient power leads to spatial redistribution of particles due to associated optical forces and formation of colloidal structures composed of thousands of nanoparticles along the beams. We employ a weak probe beam propagating through the colloidal structure and demonstrate that the colloidal structure acts effectively as a non-linear optical medium, similar to a gradient index lens, with optical transformation properties externally tunable by trapping laser power. With an increasing number of nanoparticles we observe the formation of a more complex colloidal structure axially and even laterally and we explain the origin of this process.

6.
Nano Lett ; 19(1): 342-352, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30525673

RESUMO

Silicon nanowires are held and manipulated in controlled optical traps based on counter-propagating beams focused by low numerical aperture lenses. The double-beam configuration compensates light scattering forces enabling an in-depth investigation of the rich dynamics of trapped nanowires that are prone to both optical and hydrodynamic interactions. Several polarization configurations are used, allowing the observation of optical binding with different stable structure as well as the transfer of spin and orbital momentum of light to the trapped silicon nanowires. Accurate modeling based on Brownian dynamics simulations with appropriate optical and hydrodynamic coupling confirms that this rich scenario is crucially dependent on the non-spherical shape of the nanowires. Such an increased level of optical control of multiparticle structure and dynamics open perspectives for nanofluidics and multi-component light-driven nanomachines.

7.
Anal Chem ; 91(15): 10008-10015, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31240908

RESUMO

Functional annotation of novel proteins lags behind the number of sequences discovered by the next-generation sequencing. The throughput of conventional testing methods is far too low compared to sequencing; thus, experimental alternatives are needed. Microfluidics offer high throughput and reduced sample consumption as a tool to keep up with a sequence-based exploration of protein diversity. The most promising droplet-based systems have a significant limitation: leakage of hydrophobic compounds from water compartments to the carrier prevents their use with hydrophilic reagents. Here, we present a novel approach of substrate delivery into microfluidic droplets and apply it to high-throughput functional characterization of enzymes that convert hydrophobic substrates. Substrate delivery is based on the partitioning of hydrophobic chemicals between the oil and water phases. We applied a controlled distribution of 27 hydrophobic haloalkanes from oil to reaction water droplets to perform substrate specificity screening of eight model enzymes from the haloalkane dehalogenase family. This droplet-on-demand microfluidic system reduces the reaction volume 65 000-times and increases the analysis speed almost 100-fold compared to the classical test tube assay. Additionally, the microfluidic setup enables a convenient analysis of dependences of activity on the temperature in a range of 5 to 90 °C for a set of mesophilic and hyperstable enzyme variants. A high correlation between the microfluidic and test tube data supports the approach robustness. The precision is coupled to a considerable throughput of >20 000 reactions per day and will be especially useful for extending the scope of microfluidic applications for high-throughput analysis of reactions including compounds with limited water solubility.


Assuntos
Hidrolases/metabolismo , Microfluídica/métodos , Óleos/química , Água/química , Interações Hidrofóbicas e Hidrofílicas , Análise de Componente Principal , Solubilidade , Especificidade por Substrato , Temperatura
8.
Opt Lett ; 44(3): 707-710, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30702716

RESUMO

When a suspension of wavelength-sized polystyrene spheres is illuminated with non-interfering counter-propagating Gaussian beams, the particles self-arrange into a colloidal waveguide (CWG). Mutual force interaction among particles is mediated by scattered light, referred to as the optical binding. We analyzed the longitudinal and lateral motion of particles in such CWGs made of an increasing number of particles with diameters of either 520 or 657 nm. We observed the enhancement of the binding stiffness of neighboring particles by more than an order of magnitude. This enhancement is done by optical means, mainly due to a local increase of optical intensity due to multiple light scattering in an optically bound structure.

9.
Phys Rev Lett ; 121(23): 230601, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30576167

RESUMO

Stochastic motion of particles in a highly unstable potential generates a number of diverging trajectories leading to undefined statistical moments of the particle position. This makes experiments challenging and breaks down a standard statistical analysis of unstable mechanical processes and their applications. A newly proposed approach takes advantage of the local characteristics of the most probable particle motion instead of the divergent averages. We experimentally verify its theoretical predictions for a Brownian particle moving near an inflection in a highly unstable cubic optical potential. The most likely position of the particle atypically shifts against the force, despite the trajectories diverging in the opposite direction. The local uncertainty around the most likely position saturates even for strong diffusion and enables well-resolved position detection. Remarkably, the measured particle distribution quickly converges to a quasistationary one with the same atypical shift for different initial particle positions. The demonstrated experimental confirmation of the theoretical predictions approves the utility of local characteristics for highly unstable systems which can be exploited in thermodynamic processes to uncover energetics of unstable systems.

10.
Sensors (Basel) ; 18(5)2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29783713

RESUMO

Analyzing the cells in various body fluids can greatly deepen the understanding of the mechanisms governing the cellular physiology. Due to the variability of physiological and metabolic states, it is important to be able to perform such studies on individual cells. Therefore, we developed an optofluidic system in which we precisely manipulated and monitored individual cells of Escherichia coli. We tested optical micromanipulation in a microfluidic chamber chip by transferring individual bacteria into the chambers. We then subjected the cells in the chambers to antibiotic cefotaxime and we observed the changes by using time-lapse microscopy. Separately, we used laser tweezers Raman spectroscopy (LTRS) in a different micro-chamber chip to manipulate and analyze individual cefotaxime-treated E. coli cells. Additionally, we performed conventional Raman micro-spectroscopic measurements of E. coli cells in a micro-chamber. We found observable changes in the cellular morphology (cell elongation) and in Raman spectra, which were consistent with other recently published observations. The principal component analysis (PCA) of Raman data distinguished between the cefotaxime treated cells and control. We tested the capabilities of the optofluidic system and found it to be a reliable and versatile solution for this class of microbiological experiments.


Assuntos
Escherichia coli/efeitos dos fármacos , Dispositivos Lab-On-A-Chip , Pinças Ópticas , Antibacterianos/efeitos adversos , Escherichia coli/crescimento & desenvolvimento , Micromanipulação/métodos , Análise de Componente Principal , Análise Espectral Raman
11.
Sensors (Basel) ; 18(10)2018 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-30249041

RESUMO

Optofluidics, a research discipline combining optics with microfluidics, currently aspires to revolutionize the analysis of biological and chemical samples, e.g., for medicine, pharmacology, or molecular biology. In order to detect low concentrations of analytes in water, we have developed an optofluidic device containing a nanostructured substrate for surface enhanced Raman spectroscopy (SERS). The geometry of the gold surface allows localized plasmon oscillations to give rise to the SERS effect, in which the Raman spectral lines are intensified by the interaction of the plasmonic field with the electrons in the molecular bonds. The SERS substrate was enclosed in a microfluidic system, which allowed transport and precise mixing of the analyzed fluids, while preventing contamination or abrasion of the highly sensitive substrate. To illustrate its practical use, we employed the device for quantitative detection of persistent environmental pollutant 1,2,3-trichloropropane in water in submillimolar concentrations. The developed sensor allows fast and simple quantification of halogenated compounds and it will contribute towards the environmental monitoring and enzymology experiments with engineered haloalkane dehalogenase enzymes.

12.
Nano Lett ; 17(6): 3485-3492, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28535340

RESUMO

Multiple scattering of light induces structured interactions, or optical binding forces, between collections of small particles. This has been extensively studied in the case of microspheres. However, binding forces are strongly shape dependent: here, we turn our attention to dielectric nanowires. Using a novel numerical model we uncover rich behavior. The extreme geometry of the nanowires produces a sequence of stationary and dynamic states. In linearly polarized light, thermally stable ladder-like structures emerge. Lower symmetry, sagittate arrangements can also arise, whose configurational asymmetry unbalances the optical forces leading to nonconservative, translational motion. Finally, the addition of circular polarization drives a variety of coordinated rotational states whose dynamics expose fundamental properties of optical spin. These results suggest that optical binding can provide an increased level of control over the positions and motions of nanoparticles, opening new possibilities for driven self-organization and heralding a new field of self-assembling optically driven micromachines.

13.
Opt Lett ; 42(7): 1436-1439, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28362787

RESUMO

This theoretical study based on the coupled dipoles model focuses on the dynamics of two optically bound dielectric spheres of unequal sizes confined in counter-propagating incoherent Bessel beams. We analyzed the relative motion of the particles with respect to each other and defined conditions where they form a stable optically bound structure (OBS). We also investigated the motion of the center of mass of the OBS and found that its direction depends on the particle separation in the structure. Besides the optical interaction between objects, we also considered a hydrodynamic coupling in order to obtain more precise results for moving an OBS.

14.
Phys Rev Lett ; 118(13): 138002, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28409984

RESUMO

A fully reconfigurable two-dimensional (2D) rocking ratchet system created with holographic optical micromanipulation is presented. We can generate optical potentials with the geometry of any Bravais lattice in 2D and introduce a spatial asymmetry with arbitrary orientation. Nontrivial directed transport of Brownian particles along different directions is demonstrated numerically and experimentally, including on axis, perpendicular, and oblique with respect to an unbiased ac driving. The most important aspect to define the current direction is shown to be the asymmetry and not the driving orientation, and yet we show a system in which the asymmetry orientation of each potential well does not coincide with the transport direction, suggesting an additional symmetry breaking as a result of a coupling with the lattice configuration. Our experimental device, due to its versatility, opens up a new range of possibilities in the study of nonequilibrium dynamics at the microscopic level.

15.
Sensors (Basel) ; 17(11)2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29144389

RESUMO

Baker's yeast (Saccharomyces cerevisiae) represents a very popular single-celled eukaryotic model organism which has been studied extensively by various methods and whose genome has been completely sequenced. It was also among the first living organisms that were manipulated by optical tweezers and it is currently a frequent subject of optical micromanipulation experiments. We built a microfluidic system for optical trapping experiments with individual cells and used it for the assessment of cell tolerance to phototoxic stress. Using optical tweezers with the wavelength of 1064 nm, we trapped individual Saccharomyces cerevisiae cells for 15 min and, subsequently, observed their stress response in specially designed microfluidic chambers over time periods of several hours by time-lapse video-microscopy. We determined the time between successive bud formations after the exposure to the trapping light, took account of damaged cells, and calculated the population doubling period and cell areas for increasing trapping power at a constant trapping time. Our approach represents an attractive, versatile microfluidic platform for quantitative optical trapping experiments with living cells. We demonstrate its application potential by assessing the limits for safe, non-invasive optical trapping of Saccharomyces cerevisiae with infrared laser light.


Assuntos
Saccharomyces cerevisiae , Microfluídica , Micromanipulação , Pinças Ópticas
16.
Opt Express ; 24(23): 26382-26391, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27857373

RESUMO

We investigate the dynamics of chiral microparticles in a dual-beam optical trap. The chiral particles have the structure of spherical chiral microresonators, with a reflectance deriving from the supramolecular helicoidal arrangement. Due to the strong asymmetric response of the particles to light with a specific helicity and wavelength, their trapping position and rotational frequency can be controlled by proper combination of the polarization state of the two light beams. Here symmetric and asymmetric polarization configurations of dual- interfering beam traps have been investigated. Based on the polarization controlled asymmetric transmission of the chiral particles, a tunable wash-board potential is created enabling the control of the trapping position along the beams axis. Asymmetric configurations display polarization controlled rotation of the trapped particles. Optical binding of rotating particles exhibits a complex dynamics.

17.
Opt Lett ; 41(5): 870-3, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26974067

RESUMO

The surface temperature of an absorbing particle trapped in optical tweezers (OTs) is measured using a mixture of two fluorescent dyes. We analyze the dependence of temperature on both laser power and the radial distance from its surface, and we verify the 1/r decrease of temperature with increasing distance from the particle surface. We detect the variations of spectral profiles as the medium temperature changes. The temperature dependent signal, i.e., the ratio of summed intensities from two distinct spectral regions, is affected by the convolution of temperature profile with transfer function of the spectroscopic system. We analyze this effect and determine the temperature increase on the surface of a core-shell particle trapped by OTs.


Assuntos
Absorção Fisico-Química , Microscopia/métodos , Pinças Ópticas , Temperatura , Lasers
18.
Sensors (Basel) ; 16(11)2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27801828

RESUMO

We report herein on the application of Raman spectroscopy to the rapid quantitative analysis of polyhydroxyalkanoates (PHAs), biodegradable polyesters accumulated by various bacteria. This theme was exemplified for quantitative detection of the most common member of PHAs, poly(3-hydroxybutyrate) (PHB) in Cupriavidus necator H16. We have identified the relevant spectral region (800-1800 cm-1) incorporating the Raman emission lines exploited for the calibration of PHB (PHB line at 1736 cm-1) and for the selection of the two internal standards (DNA at 786 cm-1 and Amide I at 1662 cm-1). In order to obtain quantitative data for calibration of intracellular content of PHB in bacterial cells reference samples containing PHB amounts-determined by gas chromatography-from 12% to 90% (w/w) were used. Consequently, analytical results based on this calibration can be used for fast and reliable determination of intracellular PHB content during biotechnological production of PHB since the whole procedure-from bacteria sampling, centrifugation, and sample preparation to Raman analysis-can take about 12 min. In contrast, gas chromatography analysis takes approximately 8 h.

19.
Opt Express ; 23(7): 8179-89, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25968657

RESUMO

We present the results of a theoretical analysis focused on three-dimensional optical trapping of non-spherical gold nanoparticles using a tightly focused laser beam (i.e. optical tweezers). We investigate how the wavelength of the trapping beam enhances trapping stiffness and determines the stable orientation of nonspherical nanoparticles in the optical trap which reveals the optimal trapping wavelength. We consider nanoparticles with diameters being between 20 nm and 254 nm illuminated by a highly focused laser beam at wavelength 1064 nm and compare our results based on the coupled-dipole method with published theoretical and experimental data. We demonstrate that by considering the non-spherical morphology of the nanoparticle we can explain the experimentally observed three-dimensional trapping of plasmonic nanoparticles with size higher than 170 nm. These results will contribute to a better understanding of the trapping and alignment of real metal nanoparticles in optical tweezers and their applications as optically controllable nanosources of heat or probes of weak forces and torques.

20.
Opt Express ; 23(6): 7273-87, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25837071

RESUMO

We examine the rotational dynamics of spheroidal particles in an optical trap comprising counter-propagating Gaussian beams of opposing helicity. Isolated spheroids undergo continuous rotation with frequencies determined by their size and aspect ratio, whilst pairs of spheroids display phase locking behaviour. The introduction of additional particles leads to yet more complex behaviour. Experimental results are supported by numerical calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA