Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 27(24): 4181-4194, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37909856

RESUMO

Solute carrier (SLC) transporters play a dual role in the occurrence and progression of tumours by acting as both suppressors and promoters. However, the overall impact of SLC transcriptome signatures on the tumour microenvironment, biological behaviour and clinical stratification of gastric cancer has not been thoroughly investigated. Therefore, we comprehensively analysed the expression profiles of the SLC transporter family members to identify novel molecular subtypes in gastric cancer. We identified two distinct SLC subtypes, SLC-S1 and SLC-S2, using non-negative matrix factorization. These subtypes were markedly linked with the tumour microenvironment landscape, biological pathway activation and distinct clinical features of gastric cancer. Furthermore, a new scoring model, the SLC score, was developed to quantify the SLC subtypes. High SLC scores indicated a pattern of 'SLC-S2', characterized by stromal infiltration and activation, poor prognosis and insensitivity to chemotherapy and immunotherapy, but high sensitivity to imatinib. The SLC score could serve as a supplement to the Tumour Node Metastasis (TNM) staging system to guide personalized treatment strategies and predict prognosis for patients with gastric cancer.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico , Imunoterapia , Microambiente Tumoral/genética
2.
Lab Invest ; 103(9): 100170, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37150296

RESUMO

Epigenetic modification is involved in tumorigenesis and cancer progression. We developed an epigenetic modification-associated molecular classification of gastric cancer (GC) to identify signature genes that accurately predict prognosis and the efficacy of immunotherapy. Least absolute shrinkage and selection operator and multivariate Cox regression analysis were conducted to develop an epigenetic modification-associated molecular classification. We investigated the significance of PIP4P2, an independent prognostic factor of the classification system, in predicting the prognosis and immunotherapy efficacy of patients with GC. The epigenetic modification-associated molecular classification was highly associated with the clinicopathological characteristics of patients and the existing classification of GC. PIP4P2 was highly expressed in GC tissue and tumor-associated macrophages. High PIP4P2 expression in GC tissue-induced tumor progression by activating PI3K/AKT signal transduction had a negative impact on immunotherapy efficacy. High expression of PIP4P2 in macrophages was correlated with poor prognosis in patients with GC. PIP4P2 is an independent unfavorable prognostic factor of epigenetic modification-associated molecular classification, is involved in tumorigenic progression, and is essential for assessing the prognosis and immunotherapy efficacy of GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Fosfatidilinositol 3-Quinases , Carcinogênese , Epigênese Genética , Imunoterapia , Prognóstico
3.
Pestic Biochem Physiol ; 195: 105576, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666602

RESUMO

Herbicide resistance is rapidly emerging in Cyperus difformis in rice fields across China. The response of a C. difformis population GX-35 was tested against five acetolactate synthase (ALS)-inhibiting herbicides, auxin herbicide MCPA and photosynthesis II (PSII)-inhibitor bentazone. Population GX-35 evolved multiple resistance to ALS-inhibiting herbicides (penoxsulam, bispyribac­sodium, pyrazosulfuron-ethyl, halosulfuron-methly and imazapic) and auxin herbicide MCPA, with resistance levels of 140-, 1253-, 578-, 18-, 13-, and 21-fold, respectively, compared to the susceptible population. In this population, ALS gene expression was similar to that of the susceptible population. However, an Asp376Glu mutation in ALS gene was observed, leading to reduced inhibition of in-vitro ALS activities by five ALS-inhibiting herbicides. Furthermore, CYP71D8, CYP77A3, CYP78A5 and three ABC transporter genes (cluster-14412.23067, cluster-14412.25321, and cluster-14412.24716) over-expressed in absence of penoxsulam. On the other hand, an UGT73C1 and an ABC transporter (cluster-14412.25038) were induced by penoxsulam. Additionally, both over-expression and induction were observed for CYP74, CYP71A1, UGT88A1 and an ABC transporter (cluster-14412.21723). The GX-35 population has indeed evolved multiple herbicide resistance in China. Therefore, a diverse range of weed control tactics should be implemented in rice field.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético , Acetolactato Sintase , Cyperus , Herbicidas , Oryza , Oryza/genética , Resistência a Herbicidas/genética , China , Transportadores de Cassetes de Ligação de ATP , Acetolactato Sintase/genética , Herbicidas/farmacologia , Ácidos Indolacéticos
4.
Pestic Biochem Physiol ; 197: 105653, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072528

RESUMO

Allatostatin (AS) or Allatotropin (AT) is a class of insect short neuropeptide F (sNPF) that affects insect growth and development by inhibiting or promote the synthesis of juvenile hormone (JH) in different insects. III-2 is a novel sNPF analog derived from a group of nitroaromatic groups connected by different amino acids. In this study, we found that III-2 showed high insecticidal activity against S. frugiperda larvae with a LC50 of 18.7 mg L-1. As demonstrated by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), III-2 particularly facilitated JH III and hindered 20E synthesis in S. frugiperda. The results of RNA-Seq and quantitative real-time polymerase chain reaction (qPCR) showed that III-2 treatment promoted the expression of key genes such as SfCYP15C1 in JH synthesis pathway and inhibited the expression of SfCYP314A1 and other genes in the 20E synthetic pathway. Significant differences were also observed in the expression of the genes related to cuticle formation. We report for the first time that sNPF compounds specifically interfere with the synthesis and secretion of a certain JH in insects, thus affecting the ecdysis and growth of insects, and leading to death. This study may provide a new plant conservation concept for us to seek the targeted control of certain insects based on specific interference with different JH.


Assuntos
Hormônios Juvenis , Espectrometria de Massas em Tandem , Animais , Spodoptera/genética , Spodoptera/metabolismo , Cromatografia Líquida , Hormônios Juvenis/farmacologia , Hormônios Juvenis/metabolismo , Larva/metabolismo , Insetos
5.
Ecotoxicol Environ Saf ; 242: 113943, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35999761

RESUMO

Bruceine D is a natural quassinoid, which was successfully isolated in our research group from the residue of Brucea javanica (L.) seeds. Our previous research showed that Bruceine D prevented Bidens pilosa L. seed germination by suppressing the activity of key enzymes and the expression levels of key genes involved in the phenylpropanoid biosynthesis pathway. In this study, integrated analyses of non-targeted metabolomic and transcriptomic were performed. A total of 356 different accumulated metabolites (DAMs) were identified, and KEGG pathway analyses revealed that most of these DAMs were involved in phenylpropanoid biosynthesis. The decreased expression of ADTs and content of L-phenylalanine implicates that Bruceine D may suppress the downstream phenylpropanoid biosynthesis pathway by disrupting primary metabolism, that is, the phenylalanine biosynthesis pathway, thus inhibiting the final products, resulting in the interruption of B. pilosa seed germination. These results suggest that Bruceine D may inhibit the B. pilosa seed germination by suppressing phenylpropanoid biosynthesis through acting on ADTs.


Assuntos
Bidens , Quassinas , Germinação , Quassinas/farmacologia , Sementes
6.
J Transl Med ; 19(1): 381, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496872

RESUMO

BACKGROUND: Tumor-derived exosomes (TEXs) are involved in tumor progression and the immune modulation process and mediate intercellular communication in the tumor microenvironment. Although exosomes are considered promising liquid biomarkers for disease diagnosis, it is difficult to discriminate TEXs and to develop TEX-based predictive biomarkers. METHODS: In this study, the gene expression profiles and clinical information were collected from The Cancer Genome Atlas (TCGA) database, IMvigor210 cohorts, and six independent Gene Expression Omnibus datasets. A TEXs-associated signature named TEXscore was established to predict overall survival in multiple cancer types and in patients undergoing immune checkpoint blockade therapies. RESULTS: Based on exosome-associated genes, we first constructed a tumor-derived exosome signature named TEXscore using a principal component analysis algorithm. In single-cell RNA-sequencing data analysis, ascending TEXscore was associated with disease progression and poor clinical outcomes. In the TCGA Pan-Cancer cohort, TEXscore was elevated in tumor samples rather than in normal tissues, thereby serving as a reliable biomarker to distinguish cancer from non-cancer sources. Moreover, high TEXscore was associated with shorter overall survival across 12 cancer types. TEXscore showed great potential in predicting immunotherapy response in melanoma, urothelial cancer, and renal cancer. The immunosuppressive microenvironment characterized by macrophages, cancer-associated fibroblasts, and myeloid-derived suppressor cells was associated with high TEXscore in the TCGA and immunotherapy cohorts. Besides, TEXscore-associated miRNAs and gene mutations were also identified. Further experimental research will facilitate the extending of TEXscore in tumor-associated exosomes. CONCLUSIONS: TEXscore capturing tumor-derived exosome features might be a robust biomarker for prognosis and treatment responses in independent cohorts.


Assuntos
Exossomos , Melanoma , Biomarcadores Tumorais/genética , Humanos , Imunoterapia , Melanoma/genética , Melanoma/terapia , Prognóstico , Análise de Célula Única , Microambiente Tumoral
7.
Ecotoxicol Environ Saf ; 225: 112744, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34481358

RESUMO

Thiamethoxam, an insecticide with high usage and large amounts of environmental residues, has been reported to affect the pupation and survival of honey bee larvae at sublethal concentrations. The molecular mechanisms are not fully understood. In this study, we measured the response of juvenile hormone (JH) to environmental concentrations of thiamethoxam using liquid chromatography-tandem mass spectrometry (LC-MS/MS), monitored the dynamic changes in the transcription of genes encoding major JH metabolic enzymes (CYP15A1, FAMET, JHAMT and JHE) using RT-qPCR, and analysed the transcriptome changes in worker larvae under thiamethoxam stress using RNA-seq. Thiamethoxam significantly increased the levels of JH3 in honey bee larvae, but no significant changes in the transcript levels of the four major metabolic enzymes were observed. Thiamethoxam exposure resulted in 140 differentially expressed genes (DEGs). P450 CYP6AS5 was upregulated, and some ion-related, odourant-related and gustatory receptors for sugar taste genes were altered significantly. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that amino acid metabolism and protein digestion and absorption were influenced by thiamethoxam. These changes may do harm to honey bee caste differentiation, foraging behaviour related to sensory perception and nutrient levels of bee colonies. These results represent the first assessment of the effects of thiamethoxam on JH in honey bee larvae and provides a new perspective and molecular basis for the study of JH regulation and thiamethoxam toxicity to honey bees.


Assuntos
Hormônios Juvenis , Espectrometria de Massas em Tandem , Animais , Abelhas/genética , Cromatografia Líquida , Hormônios Juvenis/toxicidade , Larva/genética , Tiametoxam
8.
J Cell Mol Med ; 24(5): 3229-3241, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31989761

RESUMO

The heterogeneity in prognoses and chemotherapeutic responses of colon cancer patients with similar clinical features emphasized the necessity for new biomarkers that help to improve the survival prediction and tailor therapies more rationally and precisely. In the present study, we established a stroma-related lncRNA signature (SLS) based on 52 lncRNAs to comprehensively predict clinical outcome. The SLS model could not only distinguish patients with different recurrence and mortality risks through univariate analysis, but also served as an independent factor for relapse-free and overall survival. Compared with the conventionally used TNM stage system, the SLS model clearly possessed higher predictive accuracy. Moreover, the SLS model also effectively screened chemotherapy-responsive patients, as only patients in the low-SLS group could benefit from adjuvant chemotherapy. The following cell infiltration and competing endogenous RNA (ceRNA) network functional analyses further confirmed the association between the SLS model and stromal activation-related biological processes. Additionally, this study also identified three phenotypically distinct colon cancer subtypes that varied in clinical outcome and chemotherapy benefits. In conclusion, our SLS model may be a significant determinant of survival and chemotherapeutic decision-making in colon cancer and may have a strong clinical transformation value.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias do Colo/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , RNA Longo não Codificante/genética , Quimioterapia Adjuvante/efeitos adversos , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Estadiamento de Neoplasias , Prognóstico , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Células Estromais/patologia , Transcriptoma , Microambiente Tumoral/efeitos dos fármacos
9.
Cancer Immunol Immunother ; 68(3): 433-442, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30564892

RESUMO

Tumour-infiltrating immune cells are a source of important prognostic information for patients with resectable colon cancer. We developed a novel immune model based on systematic assessments of the immune landscape inferred from bulk tumor transcriptomes of stage I-III colon cancer patients. The "Cell type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT)" algorithm was used to estimate the fraction of 22 immune cell types from six microarray public datasets. The random forest method and least absolute shrinkage and selection operator model were then used to establish immunoscores for diagnosis and prognosis. By comparing immune cell compositions in samples of 870 colon cancer patients and 70 normal controls, we constructed a diagnostic model, designated the diagnostic immune risk score (dIRS), that showed high specificity and sensitivity in both the training [area under the curve (AUC) = 0.98, p < 0.001] and validation (AUC 0.96, p < 0.001) sets. We also established a prognostic immune risk score (pIRS) that was found to be an independent prognostic factor for relapse-free survival in every series (training: HR 2.23; validation: HR 1.65; entire: HR 2.01; p < 0.001 for all), which showed better prognostic value than TNM stage. In addition, integration of the pIRS with clinical characteristics in a composite nomogram showed improved accuracy of relapse risk prediction, providing a higher net benefit than TNM stage, with well-fitted calibration curves. The proposed dIRS and pIRS models represent promising novel signatures for the diagnosis and prognosis prediction of colon cancer.


Assuntos
Neoplasias do Colo/imunologia , Linfócitos do Interstício Tumoral/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/mortalidade , Neoplasias do Colo/patologia , Feminino , Humanos , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Nomogramas , Prognóstico
10.
J Sep Sci ; 42(19): 3141-3151, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31376226

RESUMO

A simple and efficient multiresidue method using dispersive solid phase extraction and liquid chromatography coupled with tandem mass spectrometry was developed for the targeted analysis of indaziflam and its five metabolites (indaziflam-diaminotriazine, indaziflam-carboxylic acid, indaziflam-triazine indanone, indaziflam-hydroxyethyl, and indaziflam-olefin) in pitaya samples (including roots, plants, flowers, peels, pulp, and whole fruit). The analytes were extracted with acetonitrile, and the extracts were purified using multiwalled carbon nanotubes. The method was validated using pitaya samples spiked at 0.5, 5, and 50 µg/kg, and the average recoveries varied from 61.1 to 103.7% with relative standard deviations lower than 12.7% (n = 5). This method exhibited sufficient linearity within the concentration range of 0.1-100 µg/L. The limits of detection and quantification were in the ranges of 0.001-0.1 and 0.003-0.3 µg/kg, respectively. The method was successfully applied to analyze pitaya samples in Nanning, and no indaziflam or its metabolites were detected in the samples analyzed.


Assuntos
Cactaceae/química , Indenos/análise , Extração em Fase Sólida , Triazinas/análise , Cromatografia Líquida de Alta Pressão , Frutas/química , Frutas/metabolismo , Indenos/metabolismo , Espectrometria de Massas em Tandem , Triazinas/metabolismo
11.
Bull Environ Contam Toxicol ; 100(6): 815-820, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29564484

RESUMO

This work investigated drinking water contamination by 11 commonly used herbicides in sugarcane production areas in Guangxi, China. The work developed an analytical method for determination of these herbicides in environmental waters. This work studied herbicide residues in drinking water in Guangxi, China. The maximum residues and percent of detects were: (0.091 µg/L, 29.2%, atrazine), (0.018 µg/L, 8.3%, ametryne), (0.188 µg/L, 8.3%, aetolaehlor), (0.139 µg/L, 4%, simazine), (0.585 µg/L, 62.5%, atrazine), (0.311 µg/L, 33.3%, acetochlor), (0.341 µg/L, 58.3%, ametryne), (1.312 µg/L, 29.2%, metolachlor), (0.088 µg/L, 4.2%, alachlor), (0.127 µg/L, 14.3%, atrazine), and (0.453 µg/L, 7.1%, metolachlor), respectively. The results demonstrated that agricultural herbicides were detected in all water samples, including tap, surface and groundwater samples. Since the residues are generally below the safe limits established by the government authorities, the monitored 11 herbicides do not significantly affect the quality of the human environment. This work will provide scientific understanding of pesticide residues in drinking water standards in terms of its consistency with precautionary human health and environmental safety.


Assuntos
Água Potável/análise , Herbicidas/análise , Saccharum , Poluentes Químicos da Água/análise , Agricultura , China , Monitoramento Ambiental/métodos , Água Subterrânea/análise , Humanos , Resíduos de Praguicidas/análise , Recursos Hídricos , Abastecimento de Água/normas
12.
Pestic Biochem Physiol ; 143: 214-223, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29183595

RESUMO

Halosulfuron-methyl (HSM) is a safe, selective and effective sulfonylurea herbicide (SU) for the control of sedge and broadleaf weeds in sugarcane, corn, tomato, and other crops. The primary site of action is acetolactate synthase (ALS), a key enzyme of branched chain amino acids (BCAAs) synthesis. In addition to ALS inhibition, BCAAs deficiencies and oxidative damage may be involved in toxic effects of SUs. However, secondary targets of HSM relevant to plant physiological responses are unclear. In the present study, comparative growth inhibition and peroxidization injury between sensitive and tolerance crops were observed at biochemical and physiological levels suggesting involvement of H2O2, ethylene, salicylic acid (SA) in the oxidative stress responses to HSM. HSM caused accumulation of H2O2, stimulated photorespiration and consequent accumulation of SA that worsened the peroxidization injury to the sensitive C3 plant soybean (Glycine max). The growth inhibition at low concentrations of HSM could be lessened by supplementary BCAAs, reactive oxygen species scavengers or ethylene inducers, whereas the oxidation damage at high concentrations of HSM could not be reversed and ultimately lead to plant death. H2O2 at a low level stimulated the antioxidase system including glutathione S-transferase activities in the HSM-tolerant C4 maize (Zea mays), which contributes to HSM tolerance. H2O2 plays an important role on HSM stress responses in both HSM-sensitive and HSM-tolerant soybean and maize.


Assuntos
Glycine max/efeitos dos fármacos , Herbicidas/toxicidade , Compostos de Sulfonilureia/toxicidade , Zea mays/efeitos dos fármacos , Acetolactato Sintase/metabolismo , Aminoácidos/metabolismo , Clorofila/metabolismo , Etilenos/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Superóxido Dismutase/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
13.
Bull Environ Contam Toxicol ; 96(2): 242-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26508428

RESUMO

There is increasing concern about the enantioselective effects of chiral herbicides. To study the enantioselective toxicity of the chiral herbicide imazamox on maize, maize seedlings (Zhengda 619, Zea mays L.) were exposed to imazamox racemate and enantiomers in hydroponic experiments. The results showed that imazamox enantiomers selectively affected maize. The effective concentration of Rac-, S- and R-imazamox that caused 50 % inhibition after 5 days treatments (EC50,5d) were 0.4212, 1.2142 and 0.2460 mg L(-1), respectively, for maize root length; 0.0002, 0.1005, 0.0032 mg L(-1), respectively, for maize root fresh weight; 0.7114, 1.4056 and 0.4530 mg L(-1), respectively, for maize shoot height; 0.6220, 1.5418, 0.2286 mg L(-1), respectively, for maize shoot fresh weight; and 0.1100, 0.3306, 0.0307 mg L(-1), respectively, for the total chlorophyll content of leaves. The root morphological parameters and root activity reflected the toxicity effects in the order R-imazamox > Rac-imazamox > S-imazamox. Maize roots were more sensitive to imazamox than maize shoots. The chiral herbicide imazamox poses enantioselective phytotoxicity on maize seedlings: the order of toxicity is R-imazamox > Rac-imazamox > S-imazamox.


Assuntos
Herbicidas/toxicidade , Imidazóis/toxicidade , Zea mays/efeitos dos fármacos , Herbicidas/química , Imidazóis/química , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Plântula/efeitos dos fármacos , Estereoisomerismo
14.
J Econ Entomol ; 117(1): 156-166, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37978042

RESUMO

Insecticides have been known to reduce the predation efficacy of natural enemies. However, the mechanism of the sublethal effect of insecticides on the functional response of predators remains unclear. This study investigated the sublethal effects of the broad-spectrum insecticide chlorpyrifos on the predatory bug Eocanthecona furcellata (Wolff), which is a potential biological control agent against pests in integrated pest management (IPM) programs. After exposure to a sublethal concentration of chlorpyrifos, the predation capacity and the maximum predatory number of E. furcellata increased by 11.27 and 15.26%, respectively, with prey handling time decreased by 15.07%, and the searching efficiency increased by 5.88-12.61%. Additionally, the intraspecific interference effect was enhanced. Glutathione S-transferase (GST) activity was significantly decreased after 12- to 60-h treatment. At 12 h after treatment, the expression levels of GST gene (GST3), acetylcholinesterase gene (AChE), and cytochrome P450 monooxygenasegene (cyp6B1) were significantly up-regulated by 1.47-, 1.48-, and 2.05-fold, respectively, while GST gene (GST1) was significantly down-regulated by 16.67-fold. These results indicated that a sublethal chlorpyrifos concentration inhibited the GST activity and stimulated the predatory behavior of E. furcellata. The results will advance our understanding of the toxicological mechanism of predatory stink bug responses to insecticides and predict chlorpyrifos' effects on predators in an IPM program.


Assuntos
Clorpirifos , Hemípteros , Heterópteros , Inseticidas , Animais , Clorpirifos/toxicidade , Inseticidas/farmacologia , Comportamento Predatório , Acetilcolinesterase/farmacologia , Heterópteros/fisiologia
15.
Heliyon ; 10(1): e22775, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163210

RESUMO

Recent findings have suggested that solute carrier (SLC) transporters play an important role in tumor development and progression, and alterations in the expression of individual SLC genes are critical for fulfilling the heightened metabolic requirements of cancerous cells. However, the global influence of the co-expression pattern of SLC transporters on the clinical stratification and characteristics of the tumor microenvironment (TME) remains unexplored. In this study, we identified five SLC gene subtypes based on transcriptome co-expression patterns of 187 SLC transporters by consensus clustering analysis. These subtypes, which were characterized by distinct TME and biological characteristics, were successfully employed for prognostic and chemotherapy response prediction in colon cancer patients, as well as demonstrated associations with immunotherapy benefits. Then, we generated an SLC score model comprising 113 genes to quantify SLC gene co-expression patterns and validated it as an independent prognostic factor and drug response predictor in several independent colon cancer cohorts. Patients with a high SLC score possessed distinct characteristics of copy number variation, genomic mutations, DNA methylation, and indicated an SLC-S2 subtype, which was characterized by strong stromal cell infiltration, stromal pathway activation, poor prognosis, and low predicted fluorouracil and immunotherapeutic responses. Furthermore, the analysis of the Cancer Therapeutics Response Portal database revealed that inhibitors targeting PI3K catalytic subunits could serve as promising chemosensitizing agents for individuals exhibiting high SLC scores. In conclusion, the co-expression patterns of SLC transporters aided the disease classification, and the SLC score proved to be a reliable tool for distinguishing SLC gene subtypes and guiding precise treatment in patients with colon cancer.

16.
Acta Biomater ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38871203

RESUMO

Psoriasis is a chronic skin inflammation influenced by dysregulated skin microbiota, with the role of microbiota in psoriasis gaining increasing prominence. Bacterial extracellular vesicles (bEVs) serve as crucial regulators in the interaction between hosts and microbiota. However, the mechanism underlying the therapeutic potential of bEVs from commensal bacteria in psoriasis remains unclear. Here, we investigated the therapeutic role of Cutibacterium acnes (C. acnes)-derived extracellular vesicles (CA-EVs) in psoriasis treatment. To prolong the active duration of CA-EVs, we encapsulated them in gelatin methacrylate (GelMA) to fabricate hydrogel microspheres (CA-EVs@GHM) with sustained release properties. As GelMA degraded, CA-EVs were gradually released, maintaining a high concentration in mouse skin even 96 h post-treatment. In human keratinocyte cells (HaCaT), CA-EVs@GHM enhanced resistance to Staphylococcus aureus (S. aureus), promoted proliferation and migration of HaCaT cells exposed to S. aureus, and significantly reduced the expression of inflammatory genes such as interleukin (IL)-6 and C-X-C motif chemokine ligand 8 (CXCL8). In vivo, CA-EVs@GHM, more potent than CA-EVs alone, markedly attenuated proinflammatory gene expression, including tumor necrosis factor (TNF), Il6, Il17a, Il22 and Il23a in imiquimod (IMQ)-induced psoriasis-like mice, and restored skin barrier function. 16S rRNA sequencing revealed that CA-EVs@GHM might provide therapeutic effects against psoriasis by restoring microbiota diversity on the back skin of mice, reducing Staphylococcus colonization, and augmenting lipid metabolism. Furthermore, flow cytometry analysis showed that CA-EVs@GHM prevented the conversion of type 2 innate lymphoid cells (ILC2) to type 3 innate lymphoid cells (ILC3) in psoriasis-like mouse skin, reducing the pathogenic ILC3 population and suppressing the secretion of IL-17 and IL-22. In summary, our findings demonstrate that the long-term sustained release of CA-EVs alleviated psoriasis symptoms by controlling the transformation of innate lymphoid cells (ILCs) subgroups and restoring skin microbiota homeostasis, thus offering a promising therapy for psoriasis treatment. STATEMENT OF SIGNIFICANCE: Cutibacterium acnes, which is reduced in psoriasis skin, has been reported to promote skin homeostasis by regulating immune balance. Compared to live bacteria, bacterial extracellular vesicles (bEVs) are less prone to toxicity and safety concerns. bEVs play a pivotal role in maintaining bacterial homeostasis and modulating the immune system. However,bEVs without sustained release materials are unable to function continuously in chronic diseases. Therefore, we utilized hydrogel microspheres to encapsulate Cutibacterium acnes (C. acnes)-derived extracellular vesicles (CA-EVs), enabling long term sustained release. Our findings indicate that, CA-EVs loaded gelatin methacrylate hydrogel microspheres (CA-EVs@GHM) showed superior therapeutic effects in treating psoriasis compared to CA-EVs. CA-EVs@GHM exhibited a more significant regulation of pathological type 3 innate lymphoid cells (ILC3) and skin microbiota, providing a promising approach for microbiota-derived extracellular vesicle therapy in the treatment of skin inflammation.

17.
Cell Metab ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38897198

RESUMO

Immune checkpoint blockade has led to breakthroughs in the treatment of advanced gastric cancer. However, the prominent heterogeneity in gastric cancer, notably the heterogeneity of the tumor microenvironment, highlights the idea that the antitumor response is a reflection of multifactorial interactions. Through transcriptomic analysis and dynamic plasma sample analysis, we identified a metabolic "face-off" mechanism within the tumor microenvironment, as shown by the dual prognostic significance of nicotinamide metabolism. Specifically, macrophages and fibroblasts expressing the rate-limiting enzymes nicotinamide phosphoribosyltransferase and nicotinamide N-methyltransferase, respectively, regulate the nicotinamide/1-methylnicotinamide ratio and CD8+ T cell function. Mechanistically, nicotinamide N-methyltransferase is transcriptionally activated by the NOTCH pathway transcription factor RBP-J and is further inhibited by macrophage-derived extracellular vesicles containing nicotinamide phosphoribosyltransferase via the SIRT1/NICD axis. Manipulating nicotinamide metabolism through autologous injection of extracellular vesicles restored CD8+ T cell cytotoxicity and the anti-PD-1 response in gastric cancer.

18.
Pest Manag Sci ; 79(6): 2172-2181, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36730167

RESUMO

BACKGROUND: Fruit flies are important economic pests of fruits, vegetables, and nuts all over the world. In this study, a permanent ecological trap, which was created by the ovicidal effect of phytogenic hydrogen cyanide (HCN) liberated from passion fruits due to oviposition by fruit flies and can be used in the pest management, were determined. RESULTS: Observation of fruit fly eggs in Passiflora within the passion fruit cultivation region in southern China, from Aug 2019 to Oct 2020 showed that the exotic Passiflora attracted the native fruit flies to oviposit, but the eggs could not hatch. Using classical staging to categorize embryonic development and fumigation assays, we show that oviposition by fruit fly on passion fruits, release HCN from the cyanogenic mesocarp. Exposure of the eggs to HCN causes arrest of embryonic development and finally the death of eggs. CONCLUSION: Our results reveal that the life cycle of fruit fly in Passiflora is interrupted at the egg stage. Consequently, we predict that this ecological trap may be permanent. Extensive cultivation of the Passiflora vine as a dead-end trap crop may be an effective avenue to reduce populations of fruit fly pests. © 2023 Society of Chemical Industry.


Assuntos
Passiflora , Animais , Feminino , Frutas , Drosophila , Oviposição , China
19.
J Agric Food Chem ; 71(12): 4802-4809, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36921065

RESUMO

Small molecular organic acids (SMOAs) in root exudates are critical for plant-microbe interaction, especially under environmental stresses. However, the dominant organic acids driving the process and promoting the colonization are unclear. Here, using a target metabolomics, 20 main SMOAs of rice root exudates were identified and analyzed in control and 10 mg/L thiamethoxam-treated groups. The composition of these SMOAs differed significantly between the two treatments. Among which, malic acid, citric acid, succinic acid, and proline induced a chemotactic response, swimming ability, and biofilm formation of Enterobacter cloacae TMX-6 in a dose-dependent manner. The maximal chemotactic response of TMX-6 was induced by proline at 10 mg/L, and a strong chemotactic response was even observed at 0.01 mg/L. The recruitment assay confirmed that the addition of these four compounds promoted the colonization of TMX-6. The results provide insight for directional regulation of plant-microbe interactions for beneficial outcomes.


Assuntos
Oryza , Plântula , Enterobacter cloacae , Compostos Orgânicos , Ácidos , Exsudatos e Transudatos , Prolina , Raízes de Plantas
20.
J Invest Dermatol ; 143(8): 1579-1590.e5, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36842525

RESUMO

RNA methylation normally inhibits the self-recognition and immunogenicity of RNA. As such, it is likely an important inhibitor of cancer immune recognition in the tumor microenvironment, but how N6-methyladenosine (m6A) affects prognosis and treatment response remains unknown. In eight independent melanoma cohorts (1,564 patients), the modification patterns of 21 m6A gene signatures were systematically correlated with the immune cell infiltration of melanoma tumor microenvironment. m6A modification patterns for each patient were quantified using the principal component analysis method, yielding an m6Ascore that reflects the abundance of m6A RNA modifications. Two different m6A modification patterns were observed in patients with melanoma, separated into high and low m6Ascores that correlated with survival and treatment response. Low m6Ascores were characterized by an immune-inflamed phenotype, with 61.1% 5-year survival. High m6Ascores were characterized by an immune-excluded phenotype, with 52.2% 5-year survival. Importantly, lower m6Ascores correlated with more sensitive anti-PD-1 and anti-CTLA4 treatment responses, with 90% of patients with low m6Ascore responding, whereas 10% of those with high m6Ascore nonresponding (in cohort GSE63557). At single-cell and spatial transcriptome resolution, m6Ascore reflects melanoma malignant progression, immune exhaustion, and resistance to immune checkpoint blockade therapy. Hence, the m6Ascore correlates to an important facet of tumor immune escape as a tool for personalized medicine to guide immunotherapy in patients with melanoma.


Assuntos
Melanoma , Humanos , Metilação , Melanoma/genética , Melanoma/terapia , Imunoterapia , RNA/genética , Adenosina , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA