Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 16(11): 9558-9568, 2024 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-38829778

RESUMO

Osteoarthritis (OA) is one of the most important causes of global disability, and dysfunction of chondrocytes is an important risk factor. The treatment of OA is still a challenge. Orexin-A is a hypothalamic peptide, and its effects in OA are unknown. In this study, we found that exposure to interleukin-1ß (IL-1ß) reduced the expression of orexin-2R, the receptor of orexin-A in TC-28a2 chondrocytes. Importantly, the senescence-associated ß-galactosidase (SA-ß-gal) staining assay demonstrated that orexin-A treatment ameliorates IL-1ß-induced cellular senescence. Importantly, the presence of IL-1ß significantly reduced the telomerase activity of TC-28a2 chondrocytes, which was rescued by orexin-A. We also found that orexin-A prevented IL-1ß-induced increase in the levels of Acetyl-p53 and the expression of p21. It is shown that orexin-A mitigates IL-1ß-induced reduction of sirtuin 3 (SIRT3). Silencing of SIRT3 abolished the protective effects of orexin-A against IL-1ß-induced cellular senescence. These results imply that orexin-A might serve as a promising therapeutic agent for OA.


Assuntos
Senescência Celular , Condrócitos , Interleucina-1beta , Orexinas , Senescência Celular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Orexinas/farmacologia , Orexinas/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacologia , Osteoartrite/metabolismo , Osteoartrite/tratamento farmacológico , Humanos , Sirtuína 3/metabolismo , Sirtuína 3/genética , Animais , Proteína Supressora de Tumor p53/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Receptores de Orexina/metabolismo , Receptores de Orexina/genética , Linhagem Celular
2.
J Orthop Surg Res ; 19(1): 373, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915104

RESUMO

PURPOSE: The objective of this study was to provide a comprehensive review of the existing literature regarding the treatment of osteochondral lesions of the talus (OLT) using autologous matrix-induced chondrogenesis (AMIC), while also discussing the mid-long term functional outcomes, complications, and surgical failure rate. METHODS: We searched Embase, PubMed, and Web of Science for studies on OLT treated with AMIC with an average follow-up of at least 2 years. Publication information, patient data, functional scores, surgical failure rate, and complications were extracted. RESULTS: A total of 15 studies were screened and included, with 12 case series selected for meta-analysis and 3 non-randomized controlled studies chosen for descriptive analysis. The improvements in the Visual Analog Scale (VAS), the American Orthopaedic Foot & Ankle Society (AOFAS) ankle-hindfoot, and Tegner scores at the last follow-up were (SMD = - 2.825, 95% CI - 3.343 to - 2.306, P < 0.001), (SMD = 2.73, 95% CI 1.60 to 3.86, P < 0.001), (SMD = 0.85, 95% CI 0.5 to 1.2, P < 0.001) respectively compared to preoperative values. The surgery failure rate was 11% (95% CI 8-15%), with a total of 12 patients experiencing complications. CONCLUSION: The use of AMIC demonstrates a positive impact on pain management, functional improvement, and mobility enhancement in patients with OLT. It is worth noting that the choice of stent for AMIC, patient age, and OLT size can influence the ultimate clinical outcomes. This study provides evidences supporting the safety and efficacy of AMIC as a viable treatment option in real-world medical practice.


Assuntos
Condrogênese , Tálus , Transplante Autólogo , Humanos , Tálus/cirurgia , Condrogênese/fisiologia , Transplante Autólogo/métodos , Resultado do Tratamento , Fatores de Tempo , Cartilagem Articular/cirurgia
3.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(3): 373-379, 2024 Mar 15.
Artigo em Zh | MEDLINE | ID: mdl-38500434

RESUMO

Objective: To provide a comprehensive overview of the surgical treatments of osteochondral lesion of talus (OLT) and offer valuable insights for clinical practice. Methods: The advantages and limitations of surgical treatments for OLT were comprehensively summarized through an extensive review of domestic and abroad relevant literature in recent years. Results: Currently, there exist numerous surgical treatments for the OLT, all of which can yield favorable outcomes. However, each method possesses its own set of merits and demerits. The short-term effectiveness of bone marrow stimulation in treating primary OLT with a diameter less than 15 mm is evident, but its long-term effectiveness diminishes over time. Autologous osteochondral transplantation (AOT) and osteochondral allograft transplantation (OAT) are suitable for OLT with large defects and subchondral bone cysts. However, incomplete anatomical matching between the donor and recipient bones may results in the formation of new subchondral bone cysts, while AOT also presents potential complications at the donor site. In contrast to AOT and OAT, particulated juvenile cartilage allograft transplantation obviates the need for additional osteotomy. Furthermore, juvenile cartilage exhibits enhanced potential in delivering active chondrocytes to the site of cartilage defect, surpassing that of adult cartilage in tissue repair efficacy. Cell transplantation has demonstrated satisfactory effectiveness; however, it is associated with challenges such as the requirement for secondary surgery and high costs. Autologous matrix-induced chondrogenesis technology has shown promising effectiveness in the treatment of primary and non-primary OLT and OLT with large defect and subchondral bone cysts. However, there is a scarcity of relevant studies, most of which exhibit low quality. Adjuvant therapy utilizing biological agents represents a novel approach to treating OLT; nevertheless, due to insufficient support from high-quality studies, it has not exhibited significant advantages over traditional treatment methods. Furthermore, its long-term effectiveness remain unclear. Conclusion: The optimal choice of surgical treatment for OLT is contingent not only upon the characteristics such as nature, size, and shape but also takes into consideration factors like advancements in medical technology, patient acceptance, economic status, and other pertinent aspects to deliver personalized treatment.


Assuntos
Cistos Ósseos , Cartilagem Articular , Fraturas Intra-Articulares , Tálus , Adulto , Humanos , Tálus/cirurgia , Cartilagem/transplante , Condrócitos , Transplante Autólogo , Transplante Ósseo/métodos , Resultado do Tratamento , Cartilagem Articular/cirurgia , Estudos Retrospectivos , Imageamento por Ressonância Magnética
4.
Orthop Surg ; 16(7): 1695-1709, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38747083

RESUMO

OBJECTIVE: The current investigation sought to utilize finite element analysis to replicate the biomechanical effects of different fixation methods, with the objective of establishing a theoretical framework for the optimal choice of modalities in managing Pauwels type III femoral neck fractures. METHODS: The Pauwels type III fracture configuration, characterized by angles of 70°, was simulated in conjunction with six distinct internal fixation methods, including cannulated compression screw (CCS), dynamic hip screw (DHS), DHS with de-rotational screw (DS), CCS with medial buttress plate (MBP), proximal femoral nail anti-rotation (PFNA), and femoral neck system (FNS). These models were developed and refined using Geomagic and SolidWorks software. Subsequently, finite element analysis was conducted utilizing Ansys software, incorporating axial loading, torsional loading, yield loading and cyclic loading. RESULTS: Under axial loading conditions, the peak stress values for internal fixation and the femur were found to be highest for CCS (454.4; 215.4 MPa) and CCS + MBP (797.2; 284.2 MPa), respectively. The corresponding maximum and minimum displacements for internal fixation were recorded as 6.65 mm for CCS and 6.44 mm for CCS + MBP. When subjected to torsional loading, the peak stress values for internal fixation were highest for CCS + MBP (153.6 MPa) and DHS + DS (72.8 MPa), while for the femur, the maximum and minimum peak stress values were observed for CCS + MBP (119.3 MPa) and FNS (17.6 MPa), respectively. Furthermore, the maximum and minimum displacements for internal fixation were measured as 0.249 mm for CCS + MBP and 0.205 mm for PFNA. Additionally, all six internal fixation models showed excellent performance in terms of yield load and fatigue life. CONCLUSION: CCS + MBP had the best initial mechanical stability in treatment for Pauwels type III fracture. However, the MBP was found to be more susceptible to shear stress, potentially increasing the risk of plate breakage. Furthermore, the DHS + DS exhibited superior biomechanical stability compared to CCS, DHS, and PFNA, thereby offering a more conducive environment for fracture healing. Additionally, it appeared that FNS represented a promising treatment strategy, warranting further validation in future studies.


Assuntos
Placas Ósseas , Parafusos Ósseos , Fraturas do Colo Femoral , Análise de Elementos Finitos , Fixação Interna de Fraturas , Humanos , Fixação Interna de Fraturas/métodos , Fraturas do Colo Femoral/cirurgia , Fenômenos Biomecânicos , Suporte de Carga , Pinos Ortopédicos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA