Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(41): e2221653120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37788309

RESUMO

Fatty acid oxidation (FAO) fuels many cancers. However, knowledge of pathways that drive FAO in cancer remains unclear. Here, we revealed that valosin-containing protein (VCP) upregulates FAO to promote colorectal cancer growth. Mechanistically, nuclear VCP binds to histone deacetylase 1 (HDAC1) and facilitates its degradation, thus promoting the transcription of FAO genes, including the rate-limiting enzyme carnitine palmitoyltransferase 1A (CPT1A). FAO is an alternative fuel for cancer cells in environments exhibiting limited glucose availability. We observed that a VCP inhibitor blocked the upregulation of FAO activity and CPT1A expression triggered by metformin in colorectal cancer (CRC) cells. Combined VCP inhibitor and metformin prove more effective than either agent alone in culture and in vivo. Our study illustrates the molecular mechanism underlying the regulation of FAO by nuclear VCP and demonstrates the potential therapeutic utility of VCP inhibitor and metformin combination treatment for colorectal cancer.


Assuntos
Neoplasias Colorretais , Metformina , Humanos , Proteína com Valosina/genética , Proteína com Valosina/metabolismo , Processos Neoplásicos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Ácidos Graxos/metabolismo , Metformina/farmacologia , Carnitina O-Palmitoiltransferase/metabolismo , Oxirredução
2.
Cell Rep ; 42(11): 113318, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37865914

RESUMO

Immune checkpoint blockade therapies are still ineffective for most patients with colorectal cancer (CRC). Immunogenic cell death (ICD) enables the release of key immunostimulatory signals to drive efficient anti-tumor immunity, which could be used to potentiate the effects of immune checkpoint inhibitors. Here, we showed that inhibition of valosin-containing protein (VCP) elicits ICD in CRC. Meanwhile, VCP inhibitor upregulates PD-L1 expression and compromises anti-tumor immunity in vivo. Mechanistically, VCP transcriptionally regulates PD-L1 expression in a JAK1-dependent manner. Combining VCP inhibitor with anti-PD1 remodels tumor immune microenvironment and reduces tumor growth in mouse models of CRC. Addition of oncolytic virus further augments the therapeutic activity of the combination regimen. Our study shows the molecular mechanism for regulating PD-L1 expression by VCP and suggests that inhibition of VCP has the potential to increase the efficacy of immunotherapy in CRC.


Assuntos
Neoplasias Colorretais , Vírus Oncolíticos , Animais , Camundongos , Humanos , Proteína com Valosina , Antígeno B7-H1 , Imunoterapia , Neoplasias Colorretais/tratamento farmacológico , Microambiente Tumoral , Linhagem Celular Tumoral
3.
Nat Commun ; 14(1): 6781, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880243

RESUMO

IDH1 mutations frequently occur early in human glioma. While IDH1 mutation has been shown to promote gliomagenesis via DNA and histone methylation, little is known regarding its regulation in antiviral immunity. Here, we discover that IDH1 mutation inhibits virus-induced interferon (IFN) antiviral responses in glioma cells. Mechanistically, D2HG produced by mutant IDH1 enhances the binding of DNMT1 to IRF3/7 promoters such that IRF3/7 are downregulated, leading to impaired type I IFN response in glioma cells, which enhances the susceptibility of gliomas to viral infection. Furthermore, we identify DNMT1 as a potential biomarker predicting which IDH1mut gliomas are most likely to respond to oncolytic virus. Finally, both D2HG and ectopic mutant IDH1 can potentiate the replication and oncolytic efficacy of VSVΔ51 in female mouse models. These findings reveal a pivotal role for IDH1 mutation in regulating antiviral response and demonstrate that IDH1 mutation confers sensitivity to oncolytic virotherapy.


Assuntos
Neoplasias Encefálicas , Glioma , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Feminino , Humanos , Camundongos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Glioma/genética , Glioma/terapia , Glioma/metabolismo , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Metilação , Mutação , Vírus Oncolíticos/genética , Vírus Oncolíticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA