Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gastroenterology ; 163(5): 1252-1266.e2, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35850192

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) incidence is rising worldwide, and most patients present with an unresectable disease at initial diagnosis. Measurement of carbohydrate antigen 19-9 (CA19-9) levels lacks adequate sensitivity and specificity for early detection; hence, there is an unmet need to develop alternate molecular diagnostic biomarkers for PDAC. Emerging evidence suggests that tumor-derived exosomal cargo, particularly micro RNAs (miRNAs), offer an attractive platform for the development of cancer-specific biomarkers. Herein, genomewide profiling in blood specimens was performed to develop an exosome-based transcriptomic signature for noninvasive and early detection of PDAC. METHODS: Small RNA sequencing was undertaken in a cohort of 44 patients with an early-stage PDAC and 57 nondisease controls. Using machine-learning algorithms, a panel of cell-free (cf) and exosomal (exo) miRNAs were prioritized that discriminated patients with PDAC from control subjects. Subsequently, the performance of the biomarkers was trained and validated in independent cohorts (n = 191) using quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays. RESULTS: The sequencing analysis initially identified a panel of 30 overexpressed miRNAs in PDAC. Subsequently using qRT-PCR assays, the panel was reduced to 13 markers (5 cf- and 8 exo-miRNAs), which successfully identified patients with all stages of PDAC (area under the curve [AUC] = 0.98 training cohort; AUC = 0.93 validation cohort); but more importantly, was equally robust for the identification of early-stage PDAC (stages I and II; AUC = 0.93). Furthermore, this transcriptomic signature successfully identified CA19-9 negative cases (<37 U/mL; AUC = 0.96), when analyzed in combination with CA19-9 levels, significantly improved the overall diagnostic accuracy (AUC = 0.99 vs AUC = 0.86 for CA19-9 alone). CONCLUSIONS: In this study, an exosome-based liquid biopsy signature for the noninvasive and robust detection of patients with PDAC was developed.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Exossomos , MicroRNAs , Neoplasias Pancreáticas , Humanos , Antígeno CA-19-9 , Exossomos/genética , Exossomos/patologia , Transcriptoma , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Biomarcadores Tumorais/genética , Estudos de Coortes , MicroRNAs/genética , Carboidratos , Neoplasias Pancreáticas
2.
Cytogenet Genome Res ; 163(3-4): 178-186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37369178

RESUMO

In a nuclear or radiological incident, first responders must quickly and accurately measure radiation exposure among civilians as medical countermeasures are radiation dose-dependent and time-sensitive. Although several approaches have been explored to measure absorbed radiation dose, there is an important need to develop point-of-care (POC) bioassay devices that can be used immediately to triage thousands of individuals potentially exposed to radiation. Here we present a proof-of-concept study showing the use of a paper-based vertical flow immunoassay (VFI) to detect radiation dosimetry genes. Using labeled primers during amplification and a multiplex membrane, our results showed that the nucleic acid VFI can simultaneously detect two biodosimetry genes, CDKN1A and DDB2, as well as one housekeeping gene MRPS5. The assay demonstrated good linearity and precision with an inter- and intra-assay coefficient of variance <20% and <10%, respectively. Moreover, the assay showed its ability to discriminate non-irradiated controls (0 Gy) from irradiated samples (1 + 2 Gy) with an overall sensitivity of 62.5% and specificity of 100% (AUC = 0.8672, 95% CI: 0.723-1.000; p = 0.004). Interestingly, the gene combination also showed a dose-dependent response for 0, 1, and 2 Gy, similar to data obtained by real-time PCR benchmark. These preliminary results suggest that a VFI platform can be used to detect simultaneously multiple genes that can be then quantified, thus offering a new approach for a POC biodosimetry assay that could be rapidly deployed on-site to test a large population and help triage and medical management after radiological event.


Assuntos
Sistemas Automatizados de Assistência Junto ao Leito , Radiometria , Humanos , Genes Essenciais , Imunoensaio
3.
Int J Mol Sci ; 24(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37240034

RESUMO

Abnormal uterine bleeding is a common benign gynecological complaint and is also the most common symptom of endometrial cancer (EC). Although many microRNAs have been reported in endometrial carcinoma, most of them were identified from tumor tissues obtained at surgery or from cell lines cultured in laboratories. The objective of this study was to develop a method to detect EC-specific microRNA biomarkers from liquid biopsy samples to improve the early diagnosis of EC in women. Endometrial fluid samples were collected during patient-scheduled in-office visits or in the operating room prior to surgery using the same technique performed for saline infusion sonohysterography (SIS). The total RNA was extracted from the endometrial fluid specimens, followed by quantification, reverse transcription, and real-time PCR arrays. The study was conducted in two phases: exploratory phase I and validation phase II. In total, endometrial fluid samples from 82 patients were collected and processed, with 60 matched non-cancer versus endometrial carcinoma patients used in phase I and 22 in phase II. The 14 microRNA biomarkers, out of 84 miRNA candidates, with the greatest variation in expression from phase I, were selected to enter phase II validation and statistical analysis. Among them, three microRNAs had a consistent and substantial fold-change in upregulation (miR-429, miR-183-5p, and miR-146a-5p). Furthermore, four miRNAs (miR-378c, miR-4705, miR-1321, and miR-362-3p) were uniquely detected. This research elucidated the feasibility of the collection, quantification, and detection of miRNA from endometrial fluid with a minimally invasive procedure performed during a patient in-office visit. The screening of a larger set of clinical samples was necessary to validate these early detection biomarkers for endometrial cancer.


Assuntos
Neoplasias do Endométrio , MicroRNAs , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores Tumorais/genética , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Endométrio/metabolismo , Transcrição Reversa , Biomarcadores
4.
Mol Cell Proteomics ; 19(10): 1688-1705, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32709677

RESUMO

Ventilator-associated pneumonia (VAP) is a common hospital-acquired infection, leading to high morbidity and mortality. Currently, bronchoalveolar lavage (BAL) is used in hospitals for VAP diagnosis and guiding treatment options. Although BAL collection procedures are invasive, alternatives such as endotracheal aspirates (ETA) may be of diagnostic value, however, their use has not been thoroughly explored. Longitudinal ETA and BAL were collected from 16 intubated patients up to 15 days, of which 11 developed VAP. We conducted a comprehensive LC-MS/MS based proteome and metabolome characterization of longitudinal ETA and BAL to detect host and pathogen responses to VAP infection. We discovered a diverse ETA proteome of the upper airways reflective of a rich and dynamic host-microbe interface. Prior to VAP diagnosis by microbial cultures from BAL, patient ETA presented characteristic signatures of reactive oxygen species and neutrophil degranulation, indicative of neutrophil mediated pathogen processing as a key host response to the VAP infection. Along with an increase in amino acids, this is suggestive of extracellular membrane degradation resulting from proteolytic activity of neutrophil proteases. The metaproteome approach successfully allowed simultaneous detection of pathogen peptides in patients' ETA, which may have potential use in diagnosis. Our findings suggest that ETA may facilitate early mechanistic insights into host-pathogen interactions associated with VAP infection and therefore provide its diagnosis and treatment.


Assuntos
Perfilação da Expressão Gênica , Imunidade Inata/genética , Pneumonia Associada à Ventilação Mecânica/genética , Pneumonia Associada à Ventilação Mecânica/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Líquido da Lavagem Broncoalveolar , Estudos de Coortes , Feminino , Regulação da Expressão Gênica , Humanos , Intubação Intratraqueal , Masculino , Metabolômica , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Peptídeos/química , Filogenia , Proteoma/metabolismo , Proteômica
5.
Anal Chem ; 93(27): 9337-9344, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33989499

RESUMO

Yersinia pestis is a Gram-negative bacterium that is the causative agent of plague and is widely recognized as a potential biological weapon. Due to the high fatality rate of plague when diagnosis is delayed, the development of rapid, sensitive, specific, and cost-effective methods is needed for its diagnosis. The Y. pestis low calcium response V (LcrV) protein has been identified as a potential microbial biomarker for the diagnosis of plague. In this paper, we present a highly sensitive, paper-based, vertical flow immunoassay (VFI) prototype for the detection of LcrV and the diagnosis of plague. An antigen-capture assay using monoclonal antibodies is employed to capture and detect the LcrV protein, using a colorimetric approach. In addition, the effect of miniaturizing the VFI device is explored based on two different sizes of VFI platforms, denoted as "large VFI" and "mini VFI." Also, a comparative analysis is performed between the VFI platform and a lateral flow immunoassay (LFI) platform to exhibit the improved assay sensitivity suitable for point-of-care (POC) diagnostics. The analytical sensitivity or limit of detection (LOD) in the mini VFI is approximately 0.025 ng/mL, that is, 10 times better than that of the large VFI platform or 80 times over a standard lateral flow configuration. The low LOD of the LcrV VFI appears to be highly suitable for testing clinical samples and potentially diagnosing plague at earlier time points. In addition, optimization of the gold nanoparticle (AuNP) concentration, nanomaterial plasmonic properties, and flow velocity analysis could improve the performance of the VFI. Furthermore, we developed automated image analysis software that shows potential for integrating the diagnostic system into a smartphone. These methods and findings demonstrate that the VFI platform is a highly sensitive device for detecting the LcrV and potentially many other biomarkers.


Assuntos
Nanopartículas Metálicas , Peste , Yersinia pestis , Anticorpos Antibacterianos , Antígenos de Bactérias , Ouro , Humanos , Imunoensaio , Peste/diagnóstico
6.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830229

RESUMO

The decellularization of plant-based biomaterials to generate tissue-engineered substitutes or in vitro cellular models has significantly increased in recent years. These vegetal tissues can be sourced from plant leaves and stems or fruits and vegetables, making them a low-cost, accessible, and sustainable resource from which to generate three-dimensional scaffolds. Each construct is distinct, representing a wide range of architectural and mechanical properties as well as innate vasculature networks. Based on the rapid rise in interest, this review aims to detail the current state of the art and presents the future challenges and perspectives of these unique biomaterials. First, we consider the different existing decellularization techniques, including chemical, detergent-free, enzymatic, and supercritical fluid approaches that are used to generate such scaffolds and examine how these protocols can be selected based on plant cellularity. We next examine strategies for cell seeding onto the plant-derived constructs and the importance of the different functionalization methods used to assist in cell adhesion and promote cell viability. Finally, we discuss how their structural features, such as inherent vasculature, porosity, morphology, and mechanical properties (i.e., stiffness, elasticity, etc.) position plant-based scaffolds as a unique biomaterial and drive their use for specific downstream applications. The main challenges in the field are presented throughout the discussion, and future directions are proposed to help improve the development and use of vegetal constructs in biomedical research.


Assuntos
Materiais Biocompatíveis/química , Celulose/química , Matriz Extracelular/química , Folhas de Planta/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/farmacologia , Fenômenos Biomecânicos , Adesão Celular , Sobrevivência Celular , Celulose/farmacologia , Detergentes/química , Módulo de Elasticidade , Células Eucarióticas/citologia , Células Eucarióticas/efeitos dos fármacos , Células Eucarióticas/fisiologia , Humanos , Células Vegetais/química , Folhas de Planta/anatomia & histologia , Caules de Planta/anatomia & histologia , Caules de Planta/química , Plantas/anatomia & histologia , Plantas/química , Solventes/química
7.
J Proteome Res ; 18(8): 3020-3031, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31090424

RESUMO

The modern application of mass spectrometry-based metabolomics to the field of radiation assessment and biodosimetry has allowed for the development of prompt biomarker screenings for radiation exposure. Our previous work on radiation assessment, in easily accessible biofluids (such as urine, blood, saliva), has revealed unique metabolic perturbations in response to radiation quality, dose, and dose rate. Nevertheless, the employment of swift injury assessment in the case of a radiological disaster still remains a challenge as current sample processing can be time consuming and cause sample degradation. To address these concerns, we report a metabolomics workflow using a mass spectrometry-compatible fabric phase sorptive extraction (FPSE) technique. FPSE employs a matrix coated with sol-gel poly(caprolactone-b-dimethylsiloxane-b-caprolactone) that binds both polar and nonpolar metabolites in whole blood, eliminating serum processing steps. We confirm that the FPSE preparation technique combined with liquid chromatography-mass spectrometry can distinguish radiation exposure markers such as taurine, carnitine, arachidonic acid, α-linolenic acid, and oleic acid found 24 h after 8 Gy irradiation. We also note the effect of different membrane fibers on both metabolite extraction efficiency and the temporal stabilization of metabolites in whole blood at room temperature. These findings suggest that the FPSE approach could work in future technology to triage irradiated individuals accurately, via biomarker screening, by providing a novel method to stabilize biofluids between collection and sample analysis.


Assuntos
Biomarcadores/sangue , Metaboloma/efeitos da radiação , Metabolômica/métodos , Exposição à Radiação/efeitos adversos , Cromatografia Líquida , Humanos , Espectrometria de Massas/normas , Metaboloma/genética , Radiação Ionizante , Radiometria/efeitos adversos
8.
Gynecol Oncol ; 138(1): 190-200, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25957158

RESUMO

The human microbiome is the collection of microorganisms in the body that exist in a mutualistic relationship with the host. Recent studies indicate that perturbations in the microbiome may be implicated in a number of diseases, including cancer. More specifically, changes in the gut and vaginal microbiomes may be associated with a variety of gynecologic cancers, including cervical cancer, uterine cancer, and ovarian cancer. Current research and gaps in knowledge regarding the association between the gut and vaginal microbiomes and the development, progression, and treatment of gynecologic cancers are reviewed here. In addition, the potential use of probiotics to manage symptoms of these gynecologic cancers is discussed. A better understanding of how the microbiome composition is altered at these sites and its interaction with the host may aid in prevention, optimization of current therapies, development of new therapeutic agents and/or dosing regimens, and possibly limit the side effects associated with cancer treatment.


Assuntos
Trato Gastrointestinal/microbiologia , Neoplasias dos Genitais Femininos/microbiologia , Vagina/microbiologia , Feminino , Humanos , Microbiota
9.
Biomed Microdevices ; 16(6): 905-14, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25106501

RESUMO

We report a microfluidic device and measurement method to perform real-time PCR (or qPCR) in a miniaturized configuration for on-chip implementation using reaction volumes of less than 20 µL. The qPCR bioreactor is designed as a module to be embedded in an automated sample-in/profile-out system for rapid DNA biometrics or human identification. The PCR mixture is excited with a 505 nm diode-pumped solid-state laser (DPSSL) and the fluorescence build-up is measured using optical fibers directly embedded to the sidewalls of the microfluidic qPCR bioreactor. We discuss manufacturing and operating parameters necessary to adjust the internal surface conditions and temperature profiles of the bioreactor and to optimize the yield and quality of the PCR reaction for the amplification of 62 bp hTERT intron fragments using the commercial Quantifiler® kit (Life Technologies, Carlsbad, CA) commonly accepted for genotyping analysis. We designed a microfluidic device suitable for continuously processing a specimen by efficiently mixing the reagents from the kit to a set volume of DNA template on chip. Our approach relies on a calibration curve for the specific device using control DNA. We successfully applied this method to determine the concentration of genomic DNA extracted from a buccal swab on separate microfluidic devices which are operated upstream the qPCR device and perform buccal swab lysis and buccal DNA extraction. A precise correlation between the amount determined on chip and that obtained using a commercial cycler is demonstrated.


Assuntos
Técnicas de Genotipagem , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Reação em Cadeia da Polimerase em Tempo Real , DNA/química , DNA/genética , DNA/isolamento & purificação , Feminino , Técnicas de Genotipagem/instrumentação , Técnicas de Genotipagem/métodos , Humanos , Lasers Semicondutores , Masculino , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Mucosa Bucal , Reação em Cadeia da Polimerase em Tempo Real/instrumentação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Telomerase/genética
10.
Micromachines (Basel) ; 15(4)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38675332

RESUMO

A high porosity micropore arrayed parylene membrane is a promising device that is used to capture circulating and exfoliated tumor cells (CTCs and ETCs) for liquid biopsy applications. However, its fabrication still requires either expensive equipment or an expensive process. Here, we report on the fabrication of high porosity (>40%) micropore arrayed parylene membranes through a simple reactive ion etching (RIE) that uses photoresist as the etching mask. Vertical sidewalls were observed in etched parylene pores despite the sloped photoresist mask sidewalls, which was found to be due to the simultaneous high DC-bias RIE induced photoresist melting and substrate pedestal formation. A theoretical model has been derived to illustrate the dependence of the maximum membrane thickness on the final pore-to-pore spacing, and it is consistent with the experimental data. A simple, yet accurate, low number (<50) cell counting method was demonstrated through counting cells directly inside a pipette tip under phase-contrast microscope. Membranes as thin as 3 µm showed utility for low number tumor cell capture, with an efficiency of 87-92%.

11.
Phys Chem Chem Phys ; 15(31): 12805-14, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23636584

RESUMO

We report an on-chip gradient generator that has been designed, modelled, fabricated, and characterized to facilitate temporal tuning of several unique gradients in parallel for multiple applications. This design allows for steady state programming of the intensities across multiple orders of magnitude while producing exponential, linear, and logarithmic gradient profiles. The magnitude of the gradients is controlled through regulating the ratio of the two on-chip flow inlets without the need for valves or other active mixers. On-chip binding of biotin by a fluorescent streptavidin complex creates a diffusive barrier that regulates access to the gradient inlets, providing a second orthogonal mechanism for regulating the microgradient intensities. The device is also characterized using an on-chip enzymatic reaction to produce an array of tuneable product concentrations within the various microchannels.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Desenho de Equipamento
12.
Biosens Bioelectron ; 219: 114796, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257115

RESUMO

This paper presents simple, fast, and sensitive detection of multiple biothreat agents by paper-based vertical flow colorimetric sandwich immunoassay for detection of Yersinia pestis (LcrV and F1) and Francisella tularensis (lipopolysaccharide; LPS) antigens using a vertical flow immunoassay (VFI) prototype with portable syringe pump and a new membrane holder. The capture antibody (cAb) printing onto nitrocellulose membrane and gold-labelled detection antibody (dAb) were optimized to enhance the assay sensitivity and specificity. Even though the paper pore size was relaxed from previous 0.1 µm to the current 0.45 µm for serum samples, detection limits as low as 0.050 ng/mL for LcrV and F1, and 0.100 ng/mL for FtLPS have been achieved in buffer and similarly in diluted serum (with LcrV and F1 LODs remained the same and LPS LOD reduced to 0.250 ng/mL). These were 40, 80, and 50X (20X for LPS in serum) better than those from lateral flow configuration. Furthermore, the comparison of multiplex format demonstrated low cross-reactivity and equal sensitivity to that of the singleplex assay. The optimized VFI platform thus provides a portable and rapid on-site monitoring system for multiplex biothreat detection with the potential for high sensitivity, specificity, reproducibility, and multiplexing capability, supporting its utility in remote and resource-limited settings.

13.
Electrophoresis ; 33(16): 2604-11, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22899270

RESUMO

We report the design and performance validation of microfluidic separation technologies for human identification using a disposable plastic device suitable for integration into an automated rapid DNA analysis system. A fabrication process for a 15-cm long hot-embossed plastic microfluidic devices with a smooth semielliptical cross section out of cyclic olefin copolymer is presented. We propose a mixed polymer solution of 95% w/v hydroxyethylcellulose and 5% w/v polyvinylpyrrolidone for a final polymer concentration of 2.5 or 3.0% to be used as coating and sieving matrix for DNA separation. This formulation allows preparing the microchip without pretreatment in a single-loading step and provides high-resolution separation (≈1.2 bp for fragments <200 bp), which is superior to existing commercial matrices under the same conditions. The hot-embossed device performance is characterized and compared to injection-molded devices made out of cyclic olefin copolymer based on their respective injector geometry, channel shape, and surface charges. Each device design is assessed by fluorescence videomicroscopy to evaluate the formation of injection plugs, then by comparing electropherograms for the separation of a DNA size standard relevant to human identification.


Assuntos
DNA/análise , Eletroforese Capilar/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Povidona/química , DNA/isolamento & purificação , Eletroforese Capilar/métodos , Desenho de Equipamento , Humanos , Cinética , Espectrometria de Fluorescência
14.
Analyst ; 137(23): 5510-9, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22970426

RESUMO

This study reports the design, prototyping, and assay development of multiplexed polymerase chain reaction (PCR) on a plastic microfluidic device. Amplification of 17 DNA loci is carried out directly on-chip as part of a system for continuous workflow processing from sample preparation (SP) to capillary electrophoresis (CE). For enhanced performance of on-chip PCR amplification, improved control systems have been developed making use of customized Peltier assemblies, valve actuators, software, and amplification chemistry protocols. Multiple enhancements to the microfluidic chip design have been enacted to improve the reliability of sample delivery through the various on-chip modules. This work has been enabled by the encapsulation of PCR reagents into a solid phase material through an optimized Solid Phase Encapsulating Assay Mix (SPEAM) bead-based hydrogel fabrication process. SPEAM bead technology is reliably coupled with precise microfluidic metering and dispensing for efficient amplification and subsequent DNA short tandem repeat (STR) fragment analysis. This provides a means of on-chip reagent storage suitable for microfluidic automation, with the long shelf-life necessary for point-of-care (POC) or field deployable applications. This paper reports the first high quality 17-plex forensic STR amplification from a reference sample in a microfluidic chip with preloaded solid phase reagents, that is designed for integration with up and downstream processing.


Assuntos
DNA/análise , Técnicas Analíticas Microfluídicas/instrumentação , Reação em Cadeia da Polimerase Multiplex/métodos , Ciências Forenses , Humanos , Repetições de Microssatélites , Sistemas Automatizados de Assistência Junto ao Leito
15.
Radiother Oncol ; 176: 187-198, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36228760

RESUMO

While the cellular interactions and biochemical signaling has been investigated for long and showed to play a major role in the cell's fate, it is now also evident that mechanical forces continuously applied to the cells in their microenvironment are as important for tissue homeostasis. Mechanical cues are emerging as key regulators of cellular drug response and we aimed to demonstrate in this review that such effects should also be considered vital for the cellular response to radiation. In order to explore the mechanobiology of the radiation response, we reviewed the main mechanoreceptors and transducers, including integrin-mediated adhesion, YAP/TAZ pathways, Wnt/ß-catenin signaling, ion channels and G protein-coupled receptors and showed their implication in the modulation of cellular radiosensitivity. We then discussed the current studies that investigated a direct effect of mechanical stress, including extracellular matrix stiffness, shear stress and mechanical strain, on radiation response of cancer and normal cells and showed through preliminary results that such stress effectively can alter cell response after irradiation. However, we also highlighted the limitations of these studies and emphasized some of the contradictory data, demonstrating that the effect of mechanical cues could involve complex interactions and potential crosstalk with numerous cellular processes also affected by irradiation. Overall, mechanical forces alter radiation response and although additional studies are required to deeply understand the underlying mechanisms, these effects should not be neglected in radiation research as they could reveal new fundamental knowledge for predicting radiosensitivity or understanding resistance to radiotherapy.


Assuntos
Matriz Extracelular , Mecanotransdução Celular , Humanos , Mecanotransdução Celular/fisiologia , Matriz Extracelular/metabolismo , Transdução de Sinais , Comunicação Celular
16.
Prog Mol Biol Transl Sci ; 187(1): 41-91, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35094781

RESUMO

The high failure rate in drug development is often attributed to the lack of accurate pre-clinical models that may lead to false discoveries and inconclusive data when the compounds are eventually tested in clinical phase. With the evolution of cell culture technologies, drug testing systems have widely improved, and today, with the emergence of microfluidics devices, drug screening seems to be at the dawn of an important revolution. An organ-on-chip allows the culture of living cells in continuously perfused microchambers to reproduce physiological functions of a particular tissue or organ. The advantages of such systems are not only their ability to recapitulate the complex biochemical interactions between different human cell types but also to incorporate physical forces, including shear stress and mechanical stretching or compression. To improve this model, and to reproduce the absorption, distribution, metabolism, and elimination process of an exogenous compound, organ-on-chips can even be linked fluidically to mimic physiological interactions between different organs, leading to the development of body-on-chips. Although these technologies are still at a young age and need to address a certain number of limitations, they already demonstrated their relevance to study the effect of drugs or toxins on organs, displaying a similar response to what is observed in vivo. The purpose of this review is to present the evolution from organ-on-chip to body-on-chip, examine their current use for drug testing and discuss their advantages and future challenges they will face in order to become an essential pillar of pharmaceutical research.


Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica , Desenvolvimento de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Humanos , Testes de Toxicidade
17.
PLoS One ; 17(5): e0268508, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35594269

RESUMO

Biological materials can be shipped off-site for diagnostic, therapeutic and research purposes. They usually are kept in certain environments for their final application during transportation. However, active reagent handling during transportation from a collection site to a laboratory or biorepository has not been reported yet. In this paper, we show the application of a micro-controlled centrifugal microfluidic system inside a shipping container that can add reagent to an actively cultured human blood sample during transportation to ensure a rapid biodosimetry of cytokinesis-block micronucleus (CBMN) assay. The newly demonstrated concept could have a significant impact on rapid biodosimetry triage for medical countermeasure in a radiological disaster. It also opens a new capability in accelerated sample processing during transportation for biomedical and healthcare applications.


Assuntos
Desastres , Radiometria , Citocinese , Humanos , Indicadores e Reagentes , Testes para Micronúcleos
18.
ACS Appl Bio Mater ; 5(12): 5682-5692, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36368008

RESUMO

Recently, decellularized plant biomaterials have been explored for their use as tissue engineered substitutes. Herein, we expanded upon the investigation of the mechanical properties of these materials to explore their elasticity as many anatomical areas of the body require biomechanical dynamism. We first constructed a device to secure the scaffold and induce a strain within the physiological range of the normal human adult lung during breathing (12-20 movements/min; 10-20% elongation). Results showed that decellularized spinach leaves can support cyclic strain for 24 h and displayed heterogeneous local strain values (7.76-15.88%) as well as a Poisson's ratio (0.12) similar to that of mammalian lungs (10.67-19.67%; 0.01), as opposed to an incompressible homogeneous standard polymer (such as PDMS (10.85-12.71%; 0.4)). Imaging and mechanical testing showed that the vegetal scaffold exhibited strain hardening but maintained its structural architecture and water retention capacity, suggesting an unaltered porosity. Interestingly, we also showed that cells seeded on the scaffold can also sense the mechanical strain as demonstrated by a nuclear reorientation perpendicular to strain direction (63.3° compared to 41.2° for nonstretched cells), a nuclear location of YAP and increased expression of YAP target genes, a high cytoplasmic calcium level, and an elevated expression level of collagen genes (COL1A1, COL3A1, COL4A1, and COL6A) with an increased collagen secretion at the protein level. Taken together, these data demonstrated that decellularized plant leaf tissues have an inherent elastic property similar to that found in the mammalian system to which cells can sense and respond.


Assuntos
Materiais Biocompatíveis , Spinacia oleracea , Animais , Humanos , Spinacia oleracea/metabolismo , Colágeno/metabolismo , Elasticidade , Engenharia Tecidual , Mamíferos/metabolismo
19.
ACS Omega ; 7(36): 32262-32271, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36120062

RESUMO

Antibody microarrays have proven useful in immunoassay-based point-of-care diagnostics for infectious diseases. Noncontact piezoelectric inkjet printing has advantages to print antibody microarrays on nitrocellulose substrates for this application due to its compatibility with sensitive solutions and substrates, simple droplet control, and potential for high-capacity printing. However, there remain real-world challenges in printing such microarrays, which motivated this study. The effects of three concentrations of capture antibody (cAb) reagents and nozzle hydrostatic pressures were chosen to investigate three responses: the number of printed membrane disks, dispensing performance, and microarray quality. Printing conditions were found to be most ideal with 5 mg/mL cAb and a nozzle hydrostatic pressure near zero, which produced 130 membrane disks in a single print versus the 10 membrane disks per print before optimization. These results serve to inform efficient printing of antibody microarrays on nitrocellulose membranes for rapid immunoassay-based detection of infectious diseases and beyond.

20.
Int J Radiat Biol ; 98(5): 843-854, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34606416

RESUMO

PURPOSE: In a nuclear or radiological event, an early diagnostic or prognostic tool is needed to distinguish unexposed from low- and highly exposed individuals with the latter requiring early and intensive medical care. Radiation-induced gene expression (GE) changes observed within hours and days after irradiation have shown potential to serve as biomarkers for either dose reconstruction (retrospective dosimetry) or the prediction of consecutively occurring acute or chronic health effects. The advantage of GE markers lies in their capability for early (1-3 days after irradiation), high-throughput, and point-of-care (POC) diagnosis required for the prediction of the acute radiation syndrome (ARS). CONCLUSIONS: As a key session of the ConRad conference in 2021, experts from different institutions were invited to provide state-of-the-art information on a range of topics including: (1) Biodosimetry: What are the current efforts to enhance the applicability of this method to perform retrospective biodosimetry? (2) Effect prediction: Can we apply radiation-induced GE changes for prediction of acute health effects as an approach, complementary to and integrating retrospective dose estimation? (3) High-throughput and point-of-care diagnostics: What are the current developments to make the GE approach applicable as a high-throughput as well as a POC diagnostic platform? (4) Low level radiation: What is the lowest dose range where GE can be used for biodosimetry purposes? (5) Methodological considerations: Different aspects of radiation-induced GE related to more detailed analysis of exons, transcripts and next-generation sequencing (NGS) were reported.


Assuntos
Síndrome Aguda da Radiação , Radiometria , Síndrome Aguda da Radiação/genética , Biomarcadores , Expressão Gênica , Humanos , Radiometria/métodos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA