Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Cell ; 167(5): 1215-1228.e25, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27839866

RESUMO

The last steps in mRNA export and remodeling are performed by the Nup82 complex, a large conserved assembly at the cytoplasmic face of the nuclear pore complex (NPC). By integrating diverse structural data, we have determined the molecular architecture of the native Nup82 complex at subnanometer precision. The complex consists of two compositionally identical multiprotein subunits that adopt different configurations. The Nup82 complex fits into the NPC through the outer ring Nup84 complex. Our map shows that this entire 14-MDa Nup82-Nup84 complex assembly positions the cytoplasmic mRNA export factor docking sites and messenger ribonucleoprotein (mRNP) remodeling machinery right over the NPC's central channel rather than on distal cytoplasmic filaments, as previously supposed. We suggest that this configuration efficiently captures and remodels exporting mRNP particles immediately upon reaching the cytoplasmic side of the NPC.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/química , Poro Nuclear/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Leveduras/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas Fúngicas , Complexo de Proteínas Formadoras de Poros Nucleares/ultraestrutura , RNA Mensageiro , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/ultraestrutura
2.
Mol Cell ; 82(20): 3856-3871.e6, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36220102

RESUMO

To determine which transcripts should reach the cytoplasm for translation, eukaryotic cells have established mechanisms to regulate selective mRNA export through the nuclear pore complex (NPC). The nuclear basket, a substructure of the NPC protruding into the nucleoplasm, is thought to function as a stable platform where mRNA-protein complexes (mRNPs) are rearranged and undergo quality control prior to export, ensuring that only mature mRNAs reach the cytoplasm. Here, we use proteomic, genetic, live-cell, and single-molecule resolution microscopy approaches in budding yeast to demonstrate that basket formation is dependent on RNA polymerase II transcription and subsequent mRNP processing. We further show that while all NPCs can bind Mlp1, baskets assemble only on a subset of nucleoplasmic NPCs, and these basket-containing NPCs associate a distinct protein and RNA interactome. Taken together, our data point toward NPC heterogeneity and an RNA-dependent mechanism for functionalization of NPCs in budding yeast through nuclear basket assembly.


Assuntos
Poro Nuclear , Saccharomycetales , Poro Nuclear/genética , Poro Nuclear/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteômica , Transporte Ativo do Núcleo Celular/fisiologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo
3.
Cell ; 153(5): 1080-93, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23706744

RESUMO

The rate of cell-cycle progression must be tuned in response to nutrient levels to ensure that sufficient materials are synthesized to generate viable daughters. We report that accumulation of the yeast M phase B-cyclin CLB2 mRNA depends on assembly and activation of the heterogeneous nuclear RNA-binding protein (hnRNP) arginine methyltransferase Hmt1, which is promoted by the kinase Dbf2 and countered by the PP2A phosphatase Pph22. Activated Hmt1 methylates hnRNPs, which in turn stabilize CLB2 transcripts. Dbf2 activation of Hmt1 is highly cooperative, producing a sharp increase in CLB2, whereas Pph22 dephosphorylation is graded such that small changes in PP2A activity can cause large shifts in Dbf2-mediated Hmt1 activity. Starvation and rapamycin inhibition of TOR activate Pph22, causing a depletion of CLB2 and delay of M phase. We propose a general model wherein changes to Pph22 activity modulate cyclin mRNA stability to tune cell-cycle progression to environmental conditions.


Assuntos
Ciclina B/genética , Estabilidade de RNA , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Divisão Celular , Núcleo Celular/metabolismo , Fenômenos Fisiológicos Celulares , Exorribonucleases/metabolismo , Dados de Sequência Molecular , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Ribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
4.
Mol Cell ; 72(4): 727-738.e5, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30415950

RESUMO

mRNAs form ribonucleoprotein complexes (mRNPs) by association with proteins that are crucial for mRNA metabolism. While the mRNP proteome has been well characterized, little is known about mRNP organization. Using a single-molecule approach, we show that mRNA conformation changes depending on its cellular localization and translational state. Compared to nuclear mRNPs and lncRNPs, association with ribosomes decompacts individual mRNAs, while pharmacologically dissociating ribosomes or sequestering them into stress granules leads to increased compaction. Moreover, translating mRNAs rarely show co-localized 5' and 3' ends, indicating either that mRNAs are not translated in a closed-loop configuration, or that mRNA circularization is transient, suggesting that a stable closed-loop conformation is not a universal state for all translating mRNAs.


Assuntos
Precursores de RNA/fisiologia , Ribonucleoproteínas/genética , Ribonucleoproteínas/fisiologia , Éxons , Expressão Gênica/fisiologia , Células HEK293 , Humanos , Biossíntese de Proteínas/fisiologia , Precursores de RNA/genética , Splicing de RNA , Estabilidade de RNA , RNA Longo não Codificante , RNA Mensageiro/genética , RNA Mensageiro/ultraestrutura , Ribossomos , Imagem Individual de Molécula/métodos , Análise Espacial
5.
Genome Res ; 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948369

RESUMO

The preconceptual, intrauterine, and early life environments can have a profound and long-lasting impact on the developmental trajectories and health outcomes of the offspring. Given the relatively low success rates of assisted reproductive technologies (ART; ∼25%), additives and adjuvants, such as glucocorticoids, are used to improve the success rate. Considering the dynamic developmental events that occur during this window, these exposures may alter blastocyst formation at a molecular level, and as such, affect not only the viability of the embryo and the ability of the blastocyst to implant, but also the developmental trajectory of the first three cell lineages, ultimately influencing the physiology of the embryo. In this study, we present a comprehensive single-cell transcriptome, methylome, and small RNA atlas in the day 7 human embryo. We show that, despite no change in morphology and developmental features, preimplantation glucocorticoid exposure reprograms the molecular profile of the TE lineage, and these changes are associated with an altered metabolic and inflammatory response. Our data also suggest that glucocorticoids can precociously mature the TE sublineages, supported by the presence of extravillous trophoblast markers in the polar sublineage and presence of X Chromosome dosage compensation. Further, we have elucidated that epigenetic regulation-DNA methylation and microRNAs (miRNAs)-likely underlies the transcriptional changes observed. This study suggests that exposures to exogenous compounds during preimplantation may unintentionally reprogram the human embryo, possibly leading to suboptimal development and longer-term health outcomes.

6.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33547245

RESUMO

While biomolecular condensates have emerged as an important biological phenomenon, mechanisms regulating their composition and the ways that viruses hijack these mechanisms remain unclear. The mosquito-borne alphaviruses cause a range of diseases from rashes and arthritis to encephalitis, and no licensed drugs are available for treatment or vaccines for prevention. The alphavirus virulence factor nonstructural protein 3 (nsP3) suppresses the formation of stress granules (SGs)-a class of cytoplasmic condensates enriched with translation initiation factors and formed during the early stage of infection. nsP3 has a conserved N-terminal macrodomain that hydrolyzes ADP-ribose from ADP-ribosylated proteins and a C-terminal hypervariable domain that binds the essential SG component G3BP1. Here, we show that macrodomain hydrolase activity reduces the ADP-ribosylation of G3BP1, disassembles virus-induced SGs, and suppresses SG formation. Expression of nsP3 results in the formation of a distinct class of condensates that lack translation initiation factors but contain G3BP1 and other SG-associated RNA-binding proteins. Expression of ADP-ribosylhydrolase-deficient nsP3 results in condensates that retain translation initiation factors as well as RNA-binding proteins, similar to SGs. Therefore, our data reveal that ADP-ribosylation controls the composition of biomolecular condensates, specifically the localization of translation initiation factors, during alphavirus infection.


Assuntos
Alphavirus/genética , DNA Helicases/genética , N-Glicosil Hidrolases/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas não Estruturais Virais/genética , Alphavirus/patogenicidade , Animais , Artrite/virologia , Culicidae/virologia , Encefalite/virologia , Exantema/virologia , Regulação Viral da Expressão Gênica/genética , Células HeLa , Humanos , Proteínas de Ligação a RNA/genética
7.
J Virol ; 92(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29643234

RESUMO

Lymphocytic choriomeningitis mammarenavirus (LCMV) is an enveloped, negative-strand RNA virus that causes serious disease in humans but establishes an asymptomatic, lifelong infection in reservoir rodents. Different models have been proposed to describe how arenaviruses regulate the replication and transcription of their bisegmented, single-stranded RNA genomes, particularly during persistent infection. However, these models were based largely on viral RNA profiling data derived from entire populations of cells. To better understand LCMV replication and transcription at the single-cell level, we established a high-throughput, single-molecule fluorescence in situ hybridization (smFISH) image acquisition and analysis pipeline and examined viral RNA species at discrete time points from virus entry through the late stages of persistent infection in vitro We observed the transcription of viral nucleoprotein and polymerase mRNAs from the incoming S and L segment genomic RNAs, respectively, within 1 h of infection, whereas the transcription of glycoprotein mRNA from the S segment antigenome required ∼4 to 6 h. This confirms the temporal separation of viral gene expression expected due to the ambisense coding strategy of arenaviruses and also suggests that antigenomic RNA contained in virions is not transcriptionally active upon entry. Viral replication and transcription peaked at 36 h postinfection, followed by a progressive loss of viral RNAs over the next several days. During persistence, the majority of cells showed repeating cyclical waves of viral transcription and replication followed by the clearance of viral RNA. Thus, our data support a model of LCMV persistence whereby infected cells can spontaneously clear infection and become reinfected by viral reservoir cells that remain in the population.IMPORTANCE Arenaviruses are human pathogens that can establish asymptomatic, lifelong infections in their rodent reservoirs. Several models have been proposed to explain how arenavirus spread is restricted within host rodents, including the periodic accumulation and loss of replication-competent, but transcriptionally incompetent, viral genomes. A limitation of previous studies was the inability to enumerate viral RNA species at the single-cell level. We developed a high-throughput, smFISH assay and used it to quantitate lymphocytic choriomeningitis mammarenavirus (LCMV) replicative and transcriptional RNA species in individual cells at distinct time points following infection. Our findings support a model whereby productively infected cells can clear infection, including viral RNAs and antigen, and later be reinfected. This information improves our understanding of the timing and possible regulation of LCMV genome replication and transcription during infection. Importantly, the smFISH assay and data analysis pipeline developed here is easily adaptable to other RNA viruses.


Assuntos
Hibridização in Situ Fluorescente/métodos , Vírus da Coriomeningite Linfocítica/genética , RNA Viral/genética , Células A549 , Linhagem Celular , Genoma Viral/genética , Humanos , Sondas RNA/genética , Coloração e Rotulagem/métodos , Replicação Viral/genética
8.
Nucleic Acids Res ; 45(6): 3017-3030, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-27932455

RESUMO

Enhancers are intergenic DNA elements that regulate the transcription of target genes in response to signaling pathways by interacting with promoters over large genomic distances. Recent studies have revealed that enhancers are bi-directionally transcribed into enhancer RNAs (eRNAs). Using single-molecule fluorescence in situ hybridization (smFISH), we investigated the eRNA-mediated regulation of transcription during estrogen induction in MCF-7 cells. We demonstrate that eRNAs are localized exclusively in the nucleus and are induced with similar kinetics as target mRNAs. However, eRNAs are mostly nascent at enhancers and their steady-state levels remain lower than those of their cognate mRNAs. Surprisingly, at the single-allele level, eRNAs are rarely co-expressed with their target loci, demonstrating that active gene transcription does not require the continuous transcription of eRNAs or their accumulation at enhancers. When co-expressed, sub-diffraction distance measurements between nascent mRNA and eRNA signals reveal that co-transcription of eRNAs and mRNAs rarely occurs within closed enhancer-promoter loops. Lastly, basal eRNA transcription at enhancers, but not E2-induced transcription, is maintained upon depletion of MLL1 and ERα, suggesting some degree of chromatin accessibility prior to signal-dependent activation of transcription. Together, our findings suggest that eRNA accumulation at enhancer-promoter loops is not required to sustain target gene transcription.


Assuntos
Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , RNA não Traduzido/biossíntese , Transcrição Gênica , Estradiol/farmacologia , Receptor alfa de Estrogênio/fisiologia , Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/genética , Histona-Lisina N-Metiltransferase/fisiologia , Humanos , Células MCF-7 , Modelos Moleculares , Proteína de Leucina Linfoide-Mieloide/fisiologia , RNA Mensageiro/biossíntese , RNA não Traduzido/fisiologia , Receptores Purinérgicos P2Y2/biossíntese , Receptores Purinérgicos P2Y2/genética , Análise de Célula Única
9.
Nucleic Acids Res ; 45(21): 12509-12528, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29069457

RESUMO

To counteract the breakdown of genome integrity, eukaryotic cells have developed a network of surveillance pathways to prevent and resolve DNA damage. Recent data has recognized the importance of RNA binding proteins (RBPs) in DNA damage repair (DDR) pathways. Here, we describe Nol12 as a multifunctional RBP with roles in RNA metabolism and genome maintenance. Nol12 is found in different subcellular compartments-nucleoli, where it associates with ribosomal RNA and is required for efficient separation of large and small subunit precursors at site 2; the nucleoplasm, where it co-localizes with the RNA/DNA helicase Dhx9 and paraspeckles; as well as GW/P-bodies in the cytoplasm. Loss of Nol12 results in the inability of cells to recover from DNA stress and a rapid p53-independent ATR-Chk1-mediated apoptotic response. Nol12 co-localizes with DNA repair proteins in vivo including Dhx9, as well as with TOPBP1 at sites of replication stalls, suggesting a role for Nol12 in the resolution of DNA stress and maintenance of genome integrity. Identification of a complex Nol12 interactome, which includes NONO, Dhx9, DNA-PK and Stau1, further supports the protein's diverse functions in RNA metabolism and DNA maintenance, establishing Nol12 as a multifunctional RBP essential for genome integrity.


Assuntos
DNA/metabolismo , Proteínas Nucleares/metabolismo , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Reparo do DNA , Humanos , Proteínas Nucleares/química , Domínios Proteicos , Proteínas de Ligação a RNA/química
10.
Adv Exp Med Biol ; 1203: 247-284, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31811637

RESUMO

Cells are complex assemblies of molecules organized into organelles and membraneless compartments, each playing important roles in ensuring cellular homeostasis. The different steps of the gene expression pathway take place within these various cellular compartments, and studying gene regulation and RNA metabolism requires incorporating the spatial as well as temporal separation and progression of these processes. Microscopy has been a valuable tool to study RNA metabolism, as it allows the study of biomolecules in the context of intact individual cells, embryos or tissues, preserving cellular context often lost in experimental approaches that require the collection and lysis of cells in large numbers to obtain sufficient material for different types of assays. Indeed, from the first detection of RNAs and ribosomes in cells to today's ability to study the behaviour of single RNA molecules in living cells, or the expression profile and localization of hundreds of mRNA simultaneously in cells, constant effort in developing tools for microscopy has extensively contributed to our understanding of gene regulation. In this chapter, we will describe the role various microscopy approaches have played in shaping our current understanding of mRNA metabolism and outline how continuous development of new approaches might help in finding answers to outstanding questions or help to look at old dogmas through a new lens.


Assuntos
Precursores de RNA , RNA Mensageiro , Animais , Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Imagem Molecular , RNA Mensageiro/metabolismo
11.
Proc Natl Acad Sci U S A ; 112(13): E1587-93, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25770220

RESUMO

Naive CD4 T cells differentiate into several effector lineages, which generate a stronger and more rapid response to previously encountered immunological challenges. Although effector function is a key feature of adaptive immunity, the molecular basis of this process is poorly understood. Here, we investigated the spatiotemporal regulation of cytokine gene expression in resting and restimulated effector T helper 1 (Th1) cells. We found that the Lymphotoxin (LT)/TNF alleles, which encode TNF-α, were closely juxtaposed shortly after T-cell receptor (TCR) engagement, when transcription factors are limiting. Allelic pairing required a nuclear myosin, myosin VI, which is rapidly recruited to the LT/TNF locus upon restimulation. Furthermore, transcription was paused at the TNF locus and other related genes in resting Th1 cells and released in a myosin VI-dependent manner following activation. We propose that homologous pairing and myosin VI-mediated transcriptional pause release account for the rapid and efficient expression of genes induced by an external stimulus.


Assuntos
Cadeias Pesadas de Miosina/fisiologia , Células Th1/metabolismo , Transcrição Gênica , Alelos , Animais , Núcleo Celular/metabolismo , Citocinas/metabolismo , Hibridização in Situ Fluorescente , Linfotoxina-alfa/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cadeias Pesadas de Miosina/genética , RNA Polimerase II/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/genética
12.
J Gen Virol ; 98(10): 2454-2460, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28949905

RESUMO

We report a fluorescence in situ hybridization (FISH) assay that allows the visualization of lymphocytic choriomeningitis mammarenavirus (LCMV) genomic RNAs in individual cells. We show that viral S segment genomic and antigenomic RNA, along with viral nucleoprotein, colocalize in subcellular structures we presume to be viral replication factories. These viral RNA structures are highly dynamic during acute infection, with the many small foci seen early coalescing into larger perinuclear foci later in infection. These late-forming perinuclear viral RNA aggregates are located near the cellular microtubule organizing centre and colocalize with the early endosomal marker Rab5c and the viral glycoprotein in a proportion of infected cells. We propose that the virus is using the surface of a cellular membrane-bound organelle as a site for the pre-assembly of viral components, including genomic RNA and viral glycoprotein, prior to their transport to the plasma membrane, where new particles will bud.

13.
Methods ; 98: 104-114, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26784711

RESUMO

Regulation of mRNA and protein expression occurs at many levels, initiated at transcription and followed by mRNA processing, export, localization, translation and mRNA degradation. The ability to study mRNAs in living cells has become a critical tool to study and analyze how the various steps of the gene expression pathway are carried out. Here we describe a detailed protocol for real time fluorescent RNA imaging using the PP7 bacteriophage coat protein, which allows mRNA detection with high spatial and temporal resolution in the yeast Saccharomyces cerevisiae, and can be applied to study various stages of mRNA metabolism. We describe the different parameters required for quantitative single molecule imaging in yeast, including strategies for genomic integration, expression of a PP7 coat protein GFP fusion protein, microscope setup and analysis strategies. We illustrate the method's use by analyzing the behavior of nuclear mRNA in yeast and the role of the nuclear basket in mRNA export.


Assuntos
Regulação Fúngica da Expressão Gênica , RNA Fúngico/química , RNA Mensageiro/química , Saccharomyces cerevisiae/ultraestrutura , Imagem Individual de Molécula/métodos , Coloração e Rotulagem/métodos , Transporte Ativo do Núcleo Celular , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência/métodos , Biossíntese de Proteínas , Estabilidade de RNA , Transporte de RNA , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
14.
Mol Cell ; 36(5): 768-81, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-20005841

RESUMO

Ribosomal processing requires a series of endo- and exonucleolytic steps for the production of mature ribosomes, of which most have been described. To ensure ribosome synthesis, 3' end formation of rRNA uses multiple nucleases acting in parallel; however, a similar parallel mechanism had not been described for 5' end maturation. Here, we identify Rrp17p as a previously unidentified 5'-3' exonuclease essential for ribosome biogenesis, functioning with Rat1p in a parallel processing pathway analogous to that of 3' end formation. Rrp17p is required for efficient exonuclease digestion of the mature 5' ends of 5.8S(S) and 25S rRNAs, contains a catalytic domain close to its N terminus, and is highly conserved among higher eukaryotes, being a member of a family of exonucleases. We show that Rrp17p binds late pre-60S ribosomes, accompanying them from the nucleolus to the nuclear periphery, and provide evidence for physical and functional links between late 60S subunit processing and export.


Assuntos
Exonucleases/fisiologia , Proteínas de Membrana/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/metabolismo , Ribossomos/metabolismo , Sequência de Aminoácidos , Exonucleases/genética , Exonucleases/metabolismo , Exorribonucleases/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
15.
Nat Methods ; 10(2): 119-21, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23263691

RESUMO

Live-cell imaging of mRNA yields important insights into gene expression, but it has generally been limited to the labeling of one RNA species and has never been used to count single mRNAs over time in yeast. We demonstrate a two-color imaging system with single-molecule resolution using MS2 and PP7 RNA labeling. We use this methodology to measure intrinsic noise in mRNA levels and RNA polymerase II kinetics at a single gene.


Assuntos
Hibridização in Situ Fluorescente/métodos , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/genética , Expressão Gênica , Levivirus/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
16.
Biochim Biophys Acta ; 1819(6): 494-506, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22387213

RESUMO

The evolutionary 'decision' to store genetic information away from the place of protein synthesis, in a separate compartment, has forced eukaryotic cells to establish a system to transport mRNAs from the nucleus to the cytoplasm for translation. To ensure export to be fast and efficient, cells have evolved a complex molecular interplay that is tightly regulated. Over the last few decades, many of the individual players in this process have been described, starting with the composition of the nuclear pore complex to proteins that modulate co-transcriptional events required to prepare an mRNP for export to the cytoplasm. How the interplay between all the factors and processes results in the efficient and selective export of mRNAs from the nucleus and how the export process itself is executed within cells, however, is still not fully understood. Recent advances in using proteomic and single molecule microscopy approaches have provided important insights into the process and its kinetics. This review summarizes these recent advances and how they led to the current view on how cells orchestrate the export of mRNAs. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Núcleo Celular , Transporte de RNA , RNA Mensageiro , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Humanos , Cinética , Poro Nuclear/genética , Poro Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Transporte de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
RNA ; 17(1): 134-44, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21036941

RESUMO

The biogenesis of a localization-competent mRNP begins in the nucleus. It is thought that the coordinated action of nuclear and cytoplasmic components of the localization machinery is required for the efficient export and subsequent subcellular localization of these mRNAs in the cytoplasm. Using quantitative poly(A)(+) and transcript-specific fluorescent in situ hybridization, we analyzed different nonessential nucleoporins and nuclear pore-associated proteins for their potential role in mRNA export and localization. We found that Nup60p, a nuclear pore protein located on the nucleoplasmic side of the nuclear pore complex, was required for the mRNA localization pathway. In a Δnup60 background, localized mRNAs were preferentially retained within the nucleus compared to nonlocalized transcripts. However, the export block was only partial and some transcripts could still reach the cytoplasm. Importantly, downstream processes were also affected. Localization of ASH1 and IST2 mRNAs to the bud was impaired in the Δnup60 background, suggesting that the assembly of a localization competent mRNP ("locasome") was inhibited when NUP60 was deleted. These results demonstrate transcript specificity of a nuclear mRNA retention defect and identify a specific nucleoporin as a functional component of the localization pathway in budding yeast.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Núcleo Celular/genética , Deleção de Genes , Hibridização in Situ Fluorescente , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Poli A/genética , Poli A/metabolismo , Transporte de RNA , RNA Fúngico/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica
18.
Proc Natl Acad Sci U S A ; 107(15): 6946-51, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20335538

RESUMO

Oscillations in patterns of expression of a large fraction of yeast genes are associated with the "metabolic cycle," usually seen only in prestarved, continuous cultures of yeast. We used FISH of mRNA in individual cells to test the hypothesis that these oscillations happen in single cells drawn from unsynchronized cultures growing exponentially in chemostats. Gene-expression data from synchronized cultures were used to predict coincident appearance of mRNAs from pairs of genes in the unsynchronized cells. Quantitative analysis of the FISH results shows that individual unsynchronized cells growing slowly because of glucose limitation or phosphate limitation show the predicted oscillations. We conclude that the yeast metabolic cycle is an intrinsic property of yeast metabolism and does not depend on either synchronization or external limitation of growth by the carbon source.


Assuntos
Divisão Celular , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Fosfatos/metabolismo , Saccharomyces cerevisiae/genética , Metabolismo Energético , Perfilação da Expressão Gênica , Genes Fúngicos , Hibridização in Situ Fluorescente , Modelos Biológicos , Oscilometria , RNA Mensageiro/metabolismo
19.
STAR Protoc ; 4(3): 102359, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327111

RESUMO

Two isoforms of the nuclear pore complex (NPC) have been identified in the yeast S. cerevisiae, which coexist at the periphery of the nucleus and differ by the presence or absence of a nuclear basket. Here, we present a protocol to isolate the two types of NPCs from the same cell extract and dissect their interactomes. We describe steps for powder preparation and magnetic bead conjunction and detail differential affinity purification and outcome evaluation through SDS-PAGE, silver staining, and mass spectrometry analysis. For complete details on the use and execution of this protocol, please refer to Bensidoun et al.1.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Isoformas de Proteínas/metabolismo , Espectrometria de Massas
20.
Nature ; 438(7067): 512-5, 2005 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-16306994

RESUMO

Localization of beta-actin messenger RNA to sites of active actin polymerization modulates cell migration during embryogenesis, differentiation and possibly carcinogenesis. This localization requires the oncofetal protein ZBP1 (Zipcode binding protein 1), which binds to a conserved 54-nucleotide element in the 3'-untranslated region of the beta-actin mRNA known as the 'zipcode'. ZBP1 promotes translocation of the beta-actin transcript to actin-rich protrusions in primary fibroblasts and neurons. It is not known how the ZBP1-RNA complex achieves asymmetric protein sorting by localizing beta-actin mRNA. Here we show that chicken ZBP1 modulates the translation of beta-actin mRNA. ZBP1 associates with the beta-actin transcript in the nucleus and prevents premature translation in the cytoplasm by blocking translation initiation. Translation only occurs when the ZBP1-RNA complex reaches its destination at the periphery of the cell. At the endpoint of mRNA transport, the protein kinase Src promotes translation by phosphorylating a key tyrosine residue in ZBP1 that is required for binding to RNA. These sequential events provide both temporal and spatial control over beta-actin mRNA translation, which is important for cell migration and neurite outgrowth.


Assuntos
Actinas/análise , Actinas/biossíntese , Proteínas Aviárias/metabolismo , Polaridade Celular , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Proteínas de Ligação a RNA/metabolismo , Actinas/genética , Animais , Proteínas Aviárias/genética , Linhagem Celular , Galinhas , Proteínas de Ligação a DNA , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Dados de Sequência Molecular , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA