Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
PLoS Biol ; 17(6): e3000310, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31163031

RESUMO

[This corrects the article DOI: 10.1371/journal.pbio.1000575.].

2.
Bioorg Med Chem Lett ; 30(17): 127403, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738972

RESUMO

High-throughput screening methods have been used to identify two novel series of inhibitors that disrupt progranulin binding to sortilin. Exploration of structure-activity relationships (SAR) resulted in compounds with sufficient potency and physicochemical properties to enable co-crystallization with sortilin. These co-crystal structures supported observed SAR trends and provided guidance for additional avenues for designing compounds with additional interactions within the binding site.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Progranulinas/metabolismo , Bibliotecas de Moléculas Pequenas/química , Proteínas Adaptadoras de Transporte Vesicular/antagonistas & inibidores , Amidas/química , Amidas/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Ensaios de Triagem em Larga Escala , Humanos , Simulação de Dinâmica Molecular , Progranulinas/antagonistas & inibidores , Ligação Proteica , Pirazóis/química , Pirazóis/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Relação Estrutura-Atividade
3.
PLoS Biol ; 9(1): e1000575, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21264353

RESUMO

Obesity is a growing epidemic characterized by excess fat storage in adipocytes. Although lipoprotein receptors play important roles in lipid uptake, their role in controlling food intake and obesity is not known. Here we show that the lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis. Conditional deletion of the Lrp1 gene in the brain resulted in an obese phenotype characterized by increased food intake, decreased energy consumption, and decreased leptin signaling. LRP1 directly binds to leptin and the leptin receptor complex and is required for leptin receptor phosphorylation and Stat3 activation. We further showed that deletion of the Lrp1 gene specifically in the hypothalamus by Cre lentivirus injection is sufficient to trigger accelerated weight gain. Together, our results demonstrate that the lipoprotein receptor LRP1, which is critical in lipid metabolism, also regulates food intake and energy homeostasis in the adult central nervous system.


Assuntos
Encéfalo/metabolismo , Metabolismo Energético , Leptina/fisiologia , Receptores de LDL/deficiência , Proteínas Supressoras de Tumor/deficiência , Proteína Relacionada com Agouti/biossíntese , Proteína Relacionada com Agouti/genética , Animais , Regulação do Apetite , Linhagem Celular , Feminino , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Homeostase , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Hipotálamo/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Masculino , Camundongos , Camundongos Knockout , Neuropeptídeo Y/biossíntese , Neuropeptídeo Y/genética , Obesidade/genética , Obesidade/metabolismo , Receptores de LDL/genética , Proteínas Supressoras de Tumor/genética , Regulação para Cima
4.
Neuron ; 56(1): 66-78, 2007 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-17920016

RESUMO

Mutations in the amyloid precursor protein (APP) cause early-onset Alzheimer's disease (AD), but the only genetic risk factor for late-onset AD is the varepsilon4 allele of apolipoprotein E (apoE), a major cholesterol carrier. Using Cre-lox conditional knockout mice, we demonstrate that lipoprotein receptor LRP1 expression regulates apoE and cholesterol levels within the CNS. We also found that deletion of APP and its homolog APLP2, or components of the gamma-secretase complex, significantly enhanced the expression and function of LRP1, which was reversed by forced expression of the APP intracellular domain (AICD). We further show that AICD, together with Fe65 and Tip60, interacts with the LRP1 promoter and suppresses its transcription. Together, our findings support that the gamma-secretase cleavage of APP plays a central role in regulating apoE and cholesterol metabolism in the CNS via LRP1 and establish a biological linkage between APP and apoE, the two major genetic determinants of AD.


Assuntos
Precursor de Proteína beta-Amiloide/fisiologia , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Receptores de LDL/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/deficiência , Animais , Animais Recém-Nascidos , Linhagem Celular Transformada , Imunoprecipitação da Cromatina , Cricetinae , Citidina Desaminase/metabolismo , Ensaio de Imunoadsorção Enzimática/métodos , Regulação da Expressão Gênica no Desenvolvimento/genética , Histona Acetiltransferases/farmacologia , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Lisina Acetiltransferase 5 , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/farmacologia , Proteínas Nucleares/farmacologia , RNA Mensageiro/biossíntese , Receptores de LDL/deficiência , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Transativadores , Transfecção/métodos , Proteínas Supressoras de Tumor/deficiência
5.
J Lipid Res ; 51(9): 2611-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20453200

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secreted protein that regulates hepatic low-density lipoprotein receptor (LDLR) levels in humans. PCSK9 has also been shown to regulate the levels of additional membrane-bound proteins in vitro, including the very low-density lipoprotein receptor (VLDLR), apolipoprotein E receptor 2 (ApoER2) and the beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1), which are all highly expressed in the CNS and have been implicated in Alzheimer's disease. To better understand the role of PCSK9 in regulating these additional target proteins in vivo, their steady-state levels were measured in the brain of wild-type, PCSK9-deficient, and human PCSK9 overexpressing transgenic mice. We found that while PCSK9 directly bound to recombinant LDLR, VLDLR, and apoER2 protein in vitro, changes in PCSK9 expression did not alter the level of these receptors in the mouse brain. In addition, we found no evidence that PCSK9 regulates BACE1 levels or APP processing in the mouse brain. In conclusion, our results suggest that while PCSK9 plays an important role in regulating circulating LDL cholesterol levels by reducing the number of hepatic LDLRs, it does not appear to modulate the levels of LDLR and other membrane-bound proteins in the adult mouse brain.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Receptores de LDL/metabolismo , Serina Endopeptidases/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/anatomia & histologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Pró-Proteína Convertase 9 , Pró-Proteína Convertases , Ligação Proteica , Serina Endopeptidases/genética
6.
PLoS One ; 14(3): e0213521, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30913220

RESUMO

Huntington's disease (HD) is a monogenic neurodegenerative disorder caused by an expansion of the CAG trinucleotide repeat domain in the huntingtin (HTT) gene, leading to an expanded poly-glutamine (polyQ) stretch in the HTT protein. This mutant HTT (mHTT) protein is highly prone to intracellular aggregation, causing significant damage and cellular loss in the striatal, cortical, and other regions of the brain. Therefore, modulation of mHTT levels in these brain regions in order to reduce intracellular mHTT and aggregate levels represents a direct approach in the development of HD therapeutics. To this end, assays that can be used to detect changes in HTT levels in biological samples are invaluable tools to assess target engagement and guide dose selection in clinical trials. The Meso Scale Discovery (MSD) ELISA-based assay platform is a robust and sensitive method previously employed for the quantification of HTT. However, the currently available MSD assays for HTT are primarily detecting the monomeric soluble form of the protein, but not aggregated species. In this study, we describe the development of novel MSD assays preferentially detecting mHTT in an aggregated form. Recombinant monomeric HTT(1-97)-Q46, which forms aggregates in a time-dependent manner, was used to characterize the ability of each established assay to distinguish between HTT monomers and HTT in a higher assembly state. Further validation of these assays was performed using brain lysates from R6/2, zQ175 knock-in, and BACHD mouse models, to replicate a previously well-characterized age-dependent increase in brain aggregate signals, as well as a significant reduction of aggregate levels in the striatum following mHTT knockdown with a CAG-directed allele-specific zinc-finger repressor protein (ZFP). Lastly, size exclusion chromatography was used to separate and characterize HTT species from brain tissue lysates to demonstrate specificity of the assays for the fractions containing aggregated HTT. In summary, we demonstrate that the newly developed assays preferentially detect aggregated HTT with improved performance in comparison to previous assay technologies. These assays complement the existing MSD platform assays specific for soluble HTT monomers, allowing for a more comprehensive analysis of disease-relevant HTT species in preclinical models of HD.


Assuntos
Bioensaio , Encéfalo/metabolismo , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Peptídeos/metabolismo , Agregação Patológica de Proteínas/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/patologia , Camundongos , Camundongos Transgênicos , Peptídeos/genética , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia
7.
Neurobiol Aging ; 64: 92-106, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29353102

RESUMO

While many preclinical models of Alzheimer's disease (AD) have been reported, none fully recapitulate the disease. In an effort to identify an appropriate preclinical disease model, we characterized age-related changes in 2 higher order species, the African green monkey (AGM) and the rhesus macaque. Gene expression profiles in the dorsolateral prefrontal cortex and the visual cortex showed age-related changes in AGMs that are strikingly reminiscent of AD, whereas aged rhesus were most similar to healthy elderly humans. Biochemically, age-related changes in AGM cerebrospinal fluid levels of tau, phospho-tau, and amyloid beta were consistent with AD. Histologically, aged AGMs displayed pathological hallmarks of the disease, plaques, and 2 AGMs showed evidence of neurofibrillary tangle-like structures. We hypothesized and confirmed that AGMs have age-related cognitive deficits via a prefrontal cortex-dependent cognition test, and that symptomatic treatments that improve cognition in AD patients show efficacy in AGMs. These data suggest that the AGM could represent a novel and improved translational model to assist in the development of therapeutics for AD.


Assuntos
Envelhecimento , Doença de Alzheimer/genética , Chlorocebus aethiops , Cognição/fisiologia , Modelos Animais de Doenças , Envelhecimento/líquido cefalorraquidiano , Envelhecimento/genética , Envelhecimento/patologia , Envelhecimento/psicologia , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Animais , Feminino , Humanos , Masculino , Emaranhados Neurofibrilares/patologia , Córtex Pré-Frontal/fisiopatologia , Proteínas tau/líquido cefalorraquidiano
8.
J Neurosci ; 25(48): 11107-16, 2005 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-16319310

RESUMO

Transgenic overexpression of NMDA NR2B receptors in forebrain regions increased behavioral responses to persistent inflammatory pain. However, it is not known whether inflammation leads to the upregulation of NR2B receptors in these regions. Here, we show that peripheral inflammation increased the expression of NMDA NR2B receptors and NR2B receptor-mediated synaptic currents in the anterior cingulate cortex (ACC). In freely moving mice, the increase in NR2B receptors after inflammation contributed to enhanced NMDA receptor-mediated responses in the ACC. Inhibition of NR2B receptors in the ACC selectively reduced behavioral sensitization related to inflammation. Our results demonstrate that the upregulation of NR2B receptors in the ACC contributes to behavioral sensitization caused by inflammation.


Assuntos
Giro do Cíngulo/metabolismo , Hiperalgesia/etiologia , Inflamação/complicações , Inflamação/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Regulação para Cima , Animais , Comportamento Animal , Potenciais Pós-Sinápticos Excitadores , Adjuvante de Freund , Giro do Cíngulo/fisiopatologia , Hiperalgesia/psicologia , Inflamação/induzido quimicamente , Inflamação/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Nociceptores/fisiopatologia , Sinapses , Transmissão Sináptica
9.
Ann N Y Acad Sci ; 1086: 35-53, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17185504

RESUMO

Amyloid-beta peptide (Abeta) production and accumulation in the brain is a central event in the pathogenesis of Alzheimer's disease (AD). Recent studies have shown that apolipoprotein E (apoE) receptors, members of the low-density lipoprotein receptor (LDLR) family, modulate Abeta production as well as Abeta cellular uptake. Abeta is derived from proteolytic processing of the amyloid precursor protein (APP), which interacts with several members of the LDLR family. Studies from our laboratory have focused on two members of the LDLR family, the LDLR-related protein (LRP) and LRP1B. Our in vitro studies have shown that while LRP's rapid endocytosis facilitates APP endocytic trafficking and processing to Abeta, LRP1B's slow endocytosis inhibits these processes. In addition to modulating APP endocytic trafficking, LRP's rapid endocytosis also facilitates Abeta cellular uptake by binding to Abeta either directly or via LRP ligands such as apoE. Our in vivo studies using transgenic mice have shown that overexpression of LRP in central nervous system (CNS) neurons increases soluble brain Abeta and this increase correlates with deficits in memory. Together our studies demonstrate that members of the LDLR family modulate APP processing and Abeta metabolism by several independent mechanisms. Understanding the pathways that modulate brain Abeta metabolism may enable the rational design of molecular medicine to treat AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Receptores de LDL/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/biossíntese , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Endocitose/fisiologia , Endossomos/metabolismo , Humanos , Proteínas Relacionadas a Receptor de LDL/genética , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Receptores de LDL/genética , Proteínas Supressoras de Tumor/genética
10.
J Med Chem ; 59(7): 3489-98, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27011007

RESUMO

Herein, we describe the development of a functionally selective liver X receptor ß (LXRß) agonist series optimized for Emax selectivity, solubility, and physical properties to allow efficacy and safety studies in vivo. Compound 9 showed central pharmacodynamic effects in rodent models, evidenced by statistically significant increases in apolipoprotein E (apoE) and ATP-binding cassette transporter levels in the brain, along with a greatly improved peripheral lipid safety profile when compared to those of full dual agonists. These findings were replicated by subchronic dosing studies in non-human primates, where cerebrospinal fluid levels of apoE and amyloid-ß peptides were increased concomitantly with an improved peripheral lipid profile relative to that of nonselective compounds. These results suggest that optimization of LXR agonists for Emax selectivity may have the potential to circumvent the adverse lipid-related effects of hepatic LXR activity.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Apolipoproteínas E/líquido cefalorraquidiano , Benzamidas/química , Benzamidas/farmacologia , Receptores Nucleares Órfãos/agonistas , Piperidinas/química , Piperidinas/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cães , Células Hep G2 , Humanos , Lipídeos/análise , Fígado/efeitos dos fármacos , Fígado/metabolismo , Receptores X do Fígado , Locomoção/efeitos dos fármacos , Macaca mulatta , Células Madin Darby de Rim Canino , Camundongos , Camundongos Transgênicos
11.
Rev Neurosci ; 16(2): 123-35, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15959937

RESUMO

The low-density lipoprotein receptor (LDLR)-related protein, LRP, is a unique member of the LDLR family. Frequently referred to as a scavenger receptor, LRP is a large transmembrane endocytic receptor that can bind and internalize many functionally distinct ligands. Besides its role as a cargo-receptor, LRP has also been implicated in many signaling pathways. LRP knockout mice die at early embryonic age, which strongly suggests that LRP's functions are essential for normal development. Within the CNS, LRP is highly expressed in neuronal cell bodies and dendritic processes. In vitro, neurite outgrowth is stimulated by apolipoprotein E (apoE)-containing lipoprotein particles via binding to LRP. ApoE is the major cholesterol transporter in the brain and human carriers of one or two copies of the e4 allele of apoE are at a higher risk of developing Alzheimer's disease (AD). LRP also binds the amyloid precursor protein (APP) and its proteolytic fragment, the amyloid-beta peptide (Abeta), which are major players in the pathogenesis of AD. Finally, LRP has been linked to AD by genetic evidence. In this review we discuss the potential mechanisms by which LRP can affect APP and Abeta metabolism, and therefore contribute to the pathogenesis of AD.


Assuntos
Doença de Alzheimer/metabolismo , Sistema Nervoso Central/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/classificação , Modelos Biológicos
12.
PLoS One ; 9(7): e103187, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25051234

RESUMO

Sporadic or late-onset Alzheimer's disease (AD) is expected to affect 50% of individuals reaching 85 years of age. The most significant genetic risk factor for late-onset AD is the e4 allele of APOE gene encoding apolipoprotein E, a lipid carrier shown to modulate brain amyloid burden. Recent genome-wide association studies have uncovered additional single nucleotide polymorphisms (SNPs) linked to AD susceptibility, including those in the CLU and BIN1 genes encoding for clusterin (CLU) and the bridging integrator 1 (BIN1) proteins, respectively. Because CLU has been implicated in brain amyloid-ß (Aß) clearance in mouse models of amyloid deposition, we sought to investigate whether an AD-linked SNP in the CLU gene altered Aß42 biomarker levels in the cerebrospinal fluid (CSF). Instead, we found that the CLU rs11136000 SNP modified CSF levels of the microtubule-associated protein Tau in AD patients. We also found that an intracellular form of CLU (iCLU) was upregulated in the brain of Tau overexpressing Tg4510 mice, but not in Tg2576 amyloid mouse model. By overexpressing iCLU and Tau in cell culture systems we discovered that iCLU was a Tau-interacting protein and that iCLU associated with brain-specific isoforms of BIN1, also recently identified as a Tau-binding protein. Through expression analysis of CLU and BIN1 variants, we found that CLU and BIN1 interacted via their coiled-coil motifs. In co-immunoprecipitation studies using human brain tissue, we showed that iCLU and the major BIN1 isoform expressed in neurons were associated with modified Tau species found in AD. Finally, we showed that expression of certain coding CLU variants linked to AD risk led to increased levels of iCLU. Together, our findings suggest that iCLU and BIN1 interaction might impact Tau function in neurons and uncover potential new mechanisms underlying the etiology of Tau pathology in AD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Clusterina/metabolismo , Proteínas Nucleares/metabolismo , Mapas de Interação de Proteínas , Proteínas Supressoras de Tumor/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Células Cultivadas , Clusterina/análise , Humanos , Camundongos , Isoformas de Proteínas/análise , Isoformas de Proteínas/metabolismo , Proteínas tau/análise
13.
Behav Brain Res ; 243: 1-5, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23291160

RESUMO

The APOE-ɛ4 allele is associated with increased cognitive decline during normal aging and Alzheimer's disease. However, several studies intriguingly found a beneficial effect on cognition in young adult human APOE-ɛ4 carriers. Here, we show that 3-month old bigenic hAPP-Yac/apoE4-TR mice outperformed their hAPP-Yac/apoE3-TR counterparts on learning and memory performances in the highly hippocampus-dependent, hidden-platform version of the Morris water maze task. The two mouse lines did not differ in a non-spatial visible-platform version of the task. This hAPP-Yac/apoE-TR model may thus provide a useful tool to study the mechanisms involved in the antagonistic pleiotropic effects of APOE-ɛ4 on cognitive functions.


Assuntos
Apolipoproteína E3/genética , Apolipoproteína E4/genética , Comportamento Animal/fisiologia , Memória/fisiologia , Percepção Espacial/fisiologia , Animais , Pleiotropia Genética/genética , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
14.
Neurobiol Aging ; 34(11): 2683-93, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23706647

RESUMO

Mild cognitive impairment (MCI) is a clinical condition that often precedes Alzheimer disease (AD). Compared with apolipoprotein E-ε3 (APOE3), the apolipoprotein E-ε4 (APOE4) allele is associated with an increased risk of developing MCI and spatial navigation impairments. In MCI, the entorhinal cortex (EC), which is the main innervation source of the dentate gyrus, displays partial neuronal loss. We show that bilateral partial EC lesions lead to marked spatial memory deficits and reduced synaptic density in the dentate gyrus of APOE4 mice compared with APOE3 mice. Genotype and lesion status did not affect the performance in non-navigational tasks. Thus, partial EC lesions in APOE4 mice were sufficient to induce severe spatial memory impairments and synaptic loss in the dentate gyrus. In addition, lesioned APOE4 mice showed no evidence of reactional increase in cholinergic terminals density as opposed to APOE3 mice, suggesting that APOE4 interferes with the ability of the cholinergic system to respond to EC input loss. These findings provide a possible mechanism underlying the aggravating effect of APOE4 on the cognitive outcome of MCI patients.


Assuntos
Lesões Encefálicas/complicações , Transtornos Cognitivos/etiologia , Córtex Entorrinal/patologia , Sinapses/patologia , Fatores Etários , Precursor de Proteína beta-Amiloide/genética , Animais , Apolipoproteína E4/genética , Atrofia/etiologia , Atrofia/genética , Lesões Encefálicas/genética , Lesões Encefálicas/patologia , Transtornos Cognitivos/genética , Adaptação à Escuridão/genética , Aminoácidos Excitatórios/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , N-Metilaspartato/toxicidade , Reconhecimento Psicológico/fisiologia , Sinapses/genética , Sinapses/metabolismo
15.
Mol Neurodegener ; 5: 44, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-21034469

RESUMO

BACKGROUND: Apolipoprotein E (apoE) is a major cholesterol transport protein found in association with brain amyloid from Alzheimer's disease (AD) patients and the ε4 allele of apoE is a genetic risk factor for AD. Previous studies have shown that apoE forms a stable complex with amyloid ß (Aß) peptides in vitro and that the state of apoE lipidation influences the fate of brain Aß, i.e., lipid poor apoE promotes Aß aggregation/deposition while fully lipidated apoE favors Aß degradation/clearance. In the brain, apoE levels and apoE lipidation are regulated by the liver X receptors (LXRs). RESULTS: We investigated the hypothesis that increased apoE levels and lipidation induced by LXR agonists facilitates Aß efflux from the brain to the cerebral spinal fluid (CSF). We also examined if the brain expression of major apoE receptors potentially involved in apoE-mediated Aß clearance was altered by LXR agonists. ApoE, cholesterol, Aß40, and Aß42 levels were all significantly elevated in the CSF of rats after only 3 days of treatment with LXR agonists. A significant reduction in soluble brain Aß40 levels was also detected after 6 days of LXR agonist treatment. CONCLUSIONS: Our novel findings suggest that central Aß lowering caused by LXR agonists appears to involve an apoE/cholesterol-mediated transport of Aß to the CSF and that differences between the apoE isoforms in mediating this clearance pathway may explain why individuals carrying one or two copies of APOE ε4 have increased risk for AD.

16.
Mol Neurodegener ; 3: 5, 2008 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-18348724

RESUMO

BACKGROUND: Evidence from biochemical, epidemiological and genetic findings indicates that cholesterol levels are linked to amyloid-beta (Abeta) production and Alzheimer's disease (AD). Oxysterols, which are cholesterol-derived ligands of the liver X receptors (LXRs) and oxysterol binding proteins, strongly regulate the processing of amyloid precursor protein (APP). Although LXRs have been studied extensively, little is known about the biology of oxysterol binding proteins. Oxysterol-binding protein 1 (OSBP1) is a member of a family of sterol-binding proteins with roles in lipid metabolism, regulation of secretory vesicle generation and signal transduction, and it is thought that these proteins may act as sterol sensors to control a variety of sterol-dependent cellular processes. RESULTS: We investigated whether OSBP1 was involved in regulating APP processing and found that overexpression of OSBP1 downregulated the amyloidogenic processing of APP, while OSBP1 knockdown had the opposite effect. In addition, we found that OSBP1 altered the trafficking of APP-Notch2 dimers by causing their accumulation in the Golgi, an effect that could be reversed by treating cells with OSBP1 ligand, 25-hydroxycholesterol. CONCLUSION: These results suggest that OSBP1 could play a role in linking cholesterol metabolism with intracellular APP trafficking and Abeta production, and more importantly indicate that OSBP1 could provide an alternative target for Abeta-directed therapeutic.

17.
J Biol Chem ; 281(47): 36180-6, 2006 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-17012232

RESUMO

The low density lipoprotein receptor-related protein (LRP) is highly expressed in the brain and has been shown to alter the metabolism of amyloid precursor protein and amyloid-beta peptide (Abeta) in vitro. Previously we developed mice that overexpress a functional LRP minireceptor (mLRP2) in their brains and crossed them to the PDAPP mouse model of Alzheimer disease. Overexpression of mLRP2 in 22-month-old PDAPP mice with amyloid plaques increased a pool of carbonate-soluble Abeta in the brain and worsened memory-related behavior. In the current study, we examined the effects of mLRP2 overexpression on 3-month-old PDAPP mice that had not yet developed amyloid plaques. We found significantly higher levels of membrane-associated Abeta42 in the hippocampus of mice that overexpressed mLRP2. Using immunohistochemical methods, we observed significant intraneuronal Abeta42 in the hippocampus and frontal cortex of PDAPP mice, which frequently co-localized with the lysosomal marker LAMP-1. Interestingly, PDAPP mice lacking apolipoprotein E (apoE) had much less intraneuronal Abeta42. We also found that PC12 cells overexpressing mLRP2 cleared Abeta42 and Abeta40 more rapidly from media than PC12 cells transfected with the vector only. Preincubation of apoE3 or apoE4 with Abeta42 increased the rate of Abeta clearance, and this effect was partially blocked by receptor-associated protein. Our results support the hypothesis that LRP binds and endocytoses Abeta42 both directly and via apoE but that endocytosed Abeta42 is not completely degraded and accumulates in intraneuronal lysosomes.


Assuntos
Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/fisiologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/fisiologia , Neurônios/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Animais , Encéfalo/metabolismo , Endocitose , Hipocampo/metabolismo , Humanos , Imuno-Histoquímica , Lisossomos/metabolismo , Camundongos , Camundongos Transgênicos , Células PC12 , Ratos
18.
J Biol Chem ; 280(15): 15464-70, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15705569

RESUMO

The low density lipoprotein receptor-related protein (LRP) is a approximately 600-kDa multifunctional endocytic receptor that is highly expressed in the brain. LRP and its ligands apolipoprotein E, alpha2-macroglobulin, and beta-amyloid precursor protein (APP), are genetically linked to Alzheimer disease and are found in characteristic plaque deposits in brains of patients with Alzheimer disease. To identify which extracellular domains of LRP interact with APP, we used minireceptors of each of the individual LRP ligand binding domains and assessed their ability to bind and degrade a soluble APP fragment. LRP minireceptors containing ligand binding domains II and IV, but not I or III, interacted with APP. To test whether APP trafficking is directly related to the rapid endocytosis of LRP, we generated stable Chinese hamster ovary cell lines expressing either a wild-type LRP minireceptor or its endocytosis mutants. Chinese hamster ovary cells stably expressing wild-type LRP minireceptor had less cell surface APP than pcDNA3 vector-transfected cells, whereas those stably expressing endocytosis-defective LRP minireceptors accumulated APP at the cell surface. We also found that the steady-state levels of the amyloid beta-peptides (Abeta) is dictated by the relative expression levels of APP and LRP, probably reflecting the dual roles of LRP in both Abeta production and clearance. Together, these data establish a relationship between LRP rapid endocytosis and APP trafficking and proteolytic processing to generate Abeta.


Assuntos
Peptídeos beta-Amiloides/química , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Sequência de Aminoácidos , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Células CHO , Linhagem Celular , Cricetinae , Meios de Cultivo Condicionados/farmacologia , DNA Complementar/metabolismo , Endocitose , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Immunoblotting , Imunoprecipitação , Cinética , Dados de Sequência Molecular , Mutação , Transdução de Sinais , Fatores de Tempo , Transfecção
19.
Am J Physiol Cell Physiol ; 284(2): C555-61, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12388112

RESUMO

It is postulated that macrophage-derived foam cells accumulate in the arterial wall because they lose the ability to migrate after excessive ingestion of modified forms of low-density lipoproteins (LDL). To assess changes in locomotor force generating capacity of foam cells, we measured isometric forces in J774A.1 macrophages after cholesterol loading with oxidized (Ox-LDL) or aggregated (Agg-LDL) LDL using a novel magnetic force transducer. Ox-LDL loading reduced the ability of J774A.1 macrophages to generate isometric forces by 50% relative to control cells. Changes in force frequency consistent with reduced motility were detected as well. Agg-LDL loading was also detrimental to J774A.1 motility but to a lesser extent than Ox-LDL. Ox-LDL loading significantly reduced total actin levels and induced changes in the F-actin to G-actin distribution, whereas Agg-LDL loaded cells had significantly increased levels of total actin. These data provide evidence that cholesterol loading and subsequent accumulation decreases macrophage motility by reducing the cells' force generating capacity and that Ox-LDL appears to be more effective than Agg-LDL in disrupting the locomotor machinery.


Assuntos
Actinas/metabolismo , Arteriosclerose/metabolismo , Movimento Celular/fisiologia , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Actinas/efeitos dos fármacos , Animais , Arteriosclerose/fisiopatologia , Relógios Biológicos/efeitos dos fármacos , Relógios Biológicos/fisiologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Colesterol/metabolismo , Células Espumosas/citologia , Células Espumosas/metabolismo , Humanos , Contração Isométrica/efeitos dos fármacos , Contração Isométrica/fisiologia , Lipoproteínas LDL/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Microscopia Confocal , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Estresse Mecânico
20.
J Biol Chem ; 279(28): 29639-46, 2004 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-15126508

RESUMO

The low density lipoprotein (LDL) receptor-related protein 1B (LRP1B) is a newly identified member of the LDL receptor family that shares high homology with the LDL receptor-related protein (LRP). LRP1B was originally described as a putative tumor suppressor in lung cancer cells; however, its expression profile in several regions of adult human brain suggests it may have additional functions in the central nervous system. Since LRP1B has overlapping ligand binding properties with LRP, we investigated whether LRP1B, like LRP, could interact with the beta-amyloid precursor protein (APP) and modulate its processing to amyloid-beta peptides (Abetas). Using an LRP1B minireceptor (mLRP1B4) generated to study the trafficking of LRP1B, we found that mLRP1B4 and APP form an immunoprecipitable complex. Furthermore mLRP1B4 bound and facilitated the degradation of a soluble isoform of APP containing a Kunitz proteinase inhibitor domain but not soluble APP lacking a Kunitz proteinase inhibitor domain. A functional consequence of mLRP1B4 expression was a significant accumulation of APP at the cell surface, which is likely related to the slow endocytosis rate of LRP1B. More importantly, mLRP1B4-expressing cells that accumulated cell surface APP produced less Abeta and secreted more soluble APP. These findings reveal that LRP1B is a novel binding partner of APP that functions to decrease APP processing to Abeta. Consequently LRP1B expression could function to protect against the pathogenesis of Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Receptores de LDL/metabolismo , Adulto , Animais , Encéfalo/metabolismo , Células CHO , Membrana Celular/química , Membrana Celular/metabolismo , Cricetinae , Humanos , Proteínas Relacionadas a Receptor de LDL/genética , Camundongos , Estrutura Terciária de Proteína , Receptores de LDL/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA