Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(3): 810-815, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30591558

RESUMO

Scaffold proteins tether and orient components of a signaling cascade to facilitate signaling. Although much is known about how scaffolds colocalize signaling proteins, it is unclear whether scaffolds promote signal amplification. Here, we used arrestin-3, a scaffold of the ASK1-MKK4/7-JNK3 cascade, as a model to understand signal amplification by a scaffold protein. We found that arrestin-3 exhibited >15-fold higher affinity for inactive JNK3 than for active JNK3, and this change involved a shift in the binding site following JNK3 activation. We used systems biochemistry modeling and Bayesian inference to evaluate how the activation of upstream kinases contributed to JNK3 phosphorylation. Our combined experimental and computational approach suggested that the catalytic phosphorylation rate of JNK3 at Thr-221 by MKK7 is two orders of magnitude faster than the corresponding phosphorylation of Tyr-223 by MKK4 with or without arrestin-3. Finally, we showed that the release of activated JNK3 was critical for signal amplification. Collectively, our data suggest a "conveyor belt" mechanism for signal amplification by scaffold proteins. This mechanism informs on a long-standing mystery for how few upstream kinase molecules activate numerous downstream kinases to amplify signaling.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , beta-Arrestina 2/metabolismo , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase 7/metabolismo , Modelos Biológicos , Fosforilação , Software
2.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35955810

RESUMO

Arrestins were first discovered as suppressors of G protein-mediated signaling by G protein-coupled receptors. It was later demonstrated that arrestins also initiate several signaling branches, including mitogen-activated protein kinase cascades. Arrestin-3-dependent activation of the JNK family can be recapitulated with peptide fragments, which are monofunctional elements distilled from this multi-functional arrestin protein. Here, we use maltose-binding protein fusions of arrestin-3-derived peptides to identify arrestin elements that bind kinases of the ASK1-MKK4/7-JNK3 cascade and the shortest peptide facilitating JNK signaling. We identified a 16-residue arrestin-3-derived peptide expressed as a Venus fusion that leads to activation of JNK3α2 in cells. The strength of the binding to the kinases does not correlate with peptide activity. The ASK1-MKK4/7-JNK3 cascade has been implicated in neuronal apoptosis. While inhibitors of MAP kinases exist, short peptides are the first small molecule tools that can activate MAP kinases.


Assuntos
Arrestina , Proteína Quinase 10 Ativada por Mitógeno , Arrestina/metabolismo , Arrestinas/metabolismo , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia , Fosforilação/fisiologia , Ligação Proteica/fisiologia , beta-Arrestina 2/metabolismo , beta-Arrestinas/metabolismo
3.
Protein Expr Purif ; 132: 34-43, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28082061

RESUMO

Apoptosis signal-regulating kinase I (ASK1) is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates the downstream MAP kinase kinases (MKKs) from two MAP kinase cascades: c-Jun N-terminal kinase (JNK) and p38. The essential physiological functions of ASK1 have attracted extensive attention. However, our understanding of the molecular mechanisms of ASK1, including the activation mechanism of ASK1 and the catalytic mechanism of ASK1-mediated MKK phosphorylation, remain unclear. The lack of purified ASK1 protein has hindered the elucidation of ASK1-initiated signal transduction mechanisms. Here, we report a one-step chromatography method for the expression and purification of functional full-length ASK1 from Escherichia coli. The purified ASK1 demonstrates auto-phosphorylation activity. The kinase activity of auto-phosphorylated ASK1 (pASK1) was also evaluated on two MKK substrates, MKK4 and 7, from the JNK cascades. Our results show that MKK7 can be phosphorylated by pASK1 more effectively than MKK4. The steady-state kinetic analysis demonstrates that MKK7 is a better ASK1 substrate than MKK4. These observations are further confirmed by direct pull-down assays which shows ASK1 binds MKK7 significantly stronger than MKK4. Furthermore, robust phospho-tyrosine signal is observed in MKK4 phosphorylation by pASK1 in addition to the phospho-serine and phospho-threonine. This study provides novel mechanistic and kinetic insights into the ASK1-initiated MAPK signal transduction via highly controlled reconstructed protein systems.


Assuntos
Expressão Gênica , MAP Quinase Quinase Quinase 5 , Ativação Enzimática , Escherichia coli , Humanos , MAP Quinase Quinase 4/química , MAP Quinase Quinase 7/química , MAP Quinase Quinase Quinase 5/biossíntese , MAP Quinase Quinase Quinase 5/química , MAP Quinase Quinase Quinase 5/genética , MAP Quinase Quinase Quinase 5/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
4.
J Biol Chem ; 289(30): 20991-1002, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24867953

RESUMO

The non-visual arrestins, arrestin-2 and arrestin-3, belong to a small family of multifunctional cytosolic proteins. Non-visual arrestins interact with hundreds of G protein-coupled receptors (GPCRs) and regulate GPCR desensitization by binding active phosphorylated GPCRs and uncoupling them from heterotrimeric G proteins. Recently, non-visual arrestins have been shown to mediate G protein-independent signaling by serving as adaptors and scaffolds that assemble multiprotein complexes. By recruiting various partners, including trafficking and signaling proteins, directly to GPCRs, non-visual arrestins connect activated receptors to diverse signaling pathways. To investigate arrestin-mediated signaling, a structural understanding of arrestin activation and interaction with GPCRs is essential. Here we identified global and local conformational changes in the non-visual arrestins upon binding to the model GPCR rhodopsin. To detect conformational changes, pairs of spin labels were introduced into arrestin-2 and arrestin-3, and the interspin distances in the absence and presence of the receptor were measured by double electron electron resonance spectroscopy. Our data indicate that both non-visual arrestins undergo several conformational changes similar to arrestin-1, including the finger loop moving toward the predicted location of the receptor in the complex as well as the C-tail release upon receptor binding. The arrestin-2 results also suggest that there is no clam shell-like closure of the N- and C-domains and that the loop containing residue 136 (homolog of 139 in arrestin-1) has high flexibility in both free and receptor-bound states.


Assuntos
Arrestinas/química , Rodopsina/química , Transdução de Sinais , Arrestinas/genética , Arrestinas/metabolismo , Humanos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Rodopsina/genética , Rodopsina/metabolismo , Marcadores de Spin
5.
Proc Natl Acad Sci U S A ; 109(45): 18407-12, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23091036

RESUMO

Arrestin-1 (visual arrestin) binds to light-activated phosphorylated rhodopsin (P-Rh*) to terminate G-protein signaling. To map conformational changes upon binding to the receptor, pairs of spin labels were introduced in arrestin-1 and double electron-electron resonance was used to monitor interspin distance changes upon P-Rh* binding. The results indicate that the relative position of the N and C domains remains largely unchanged, contrary to expectations of a "clam-shell" model. A loop implicated in P-Rh* binding that connects ß-strands V and VI (the "finger loop," residues 67-79) moves toward the expected location of P-Rh* in the complex, but does not assume a fully extended conformation. A striking and unexpected movement of a loop containing residue 139 away from the adjacent finger loop is observed, which appears to facilitate P-Rh* binding. This change is accompanied by smaller movements of distal loops containing residues 157 and 344 at the tips of the N and C domains, which correspond to "plastic" regions of arrestin-1 that have distinct conformations in monomers of the crystal tetramer. Remarkably, the loops containing residues 139, 157, and 344 appear to have high flexibility in both free arrestin-1 and the P-Rh*complex.


Assuntos
Arrestina/química , Arrestina/metabolismo , Rodopsina/metabolismo , Cristalografia por Raios X , Elétrons , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fosforilação , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Deleção de Sequência , Soluções , Coloração e Rotulagem , Temperatura
6.
J Biol Chem ; 288(40): 28535-47, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23960075

RESUMO

Arrestin-3 was previously shown to bind JNK3α2, MKK4, and ASK1. However, full JNK3α2 activation requires phosphorylation by both MKK4 and MKK7. Using purified proteins we show that arrestin-3 directly interacts with MKK7 and promotes JNK3α2 phosphorylation by both MKK4 and MKK7 in vitro as well as in intact cells. The binding of JNK3α2 promotes an arrestin-3 interaction with MKK4 while reducing its binding to MKK7. Interestingly, the arrestin-3 concentration optimal for scaffolding the MKK7-JNK3α2 module is ∼10-fold higher than for the MKK4-JNK3α2 module. The data provide a mechanistic basis for arrestin-3-dependent activation of JNK3α2. The opposite effects of JNK3α2 on arrestin-3 interactions with MKK4 and MKK7 is the first demonstration that the kinase components in mammalian MAPK cascades regulate each other's interactions with a scaffold protein. The results show how signaling outcomes can be affected by the relative expression of scaffolding proteins and components of signaling cascades that they assemble.


Assuntos
Arrestinas/metabolismo , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase 7/metabolismo , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Animais , Ligação Competitiva , Células COS , Chlorocebus aethiops , Humanos , Camundongos , Fosforilação , Ligação Proteica , Especificidade por Substrato
7.
J Biol Chem ; 288(52): 37332-42, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24257757

RESUMO

Non-visual arrestins scaffold mitogen-activated protein kinase (MAPK) cascades. The c-Jun N-terminal kinases (JNKs) are members of MAPK family. Arrestin-3 has been shown to enhance the activation of JNK3, which is expressed mainly in neurons, heart, and testes, in contrast to ubiquitous JNK1 and JNK2. Although all JNKs are activated by MKK4 and MKK7, both of which bind arrestin-3, the ability of arrestin-3 to facilitate the activation of JNK1 and JNK2 has never been reported. Using purified proteins we found that arrestin-3 directly binds JNK1α1 and JNK2α2, interacting with the latter comparably to JNK3α2. Phosphorylation of purified JNK1α1 and JNK2α2 by MKK4 or MKK7 is increased by arrestin-3. Endogenous arrestin-3 interacted with endogenous JNK1/2 in different cell types. Arrestin-3 also enhanced phosphorylation of endogenous JNK1/2 in intact cells upon expression of upstream kinases ASK1, MKK4, or MKK7. We observed a biphasic effect of arrestin-3 concentrations on phosphorylation of JNK1α1 and JNK2α2 both in vitro and in vivo. Thus, arrestin-3 acts as a scaffold, facilitating JNK1α1 and JNK2α2 phosphorylation by MKK4 and MKK7 via bringing JNKs and their activators together. The data suggest that arrestin-3 modulates the activity of ubiquitous JNK1 and JNK2 in non-neuronal cells, impacting the signaling pathway that regulates their proliferation and survival.


Assuntos
Arrestinas/metabolismo , Proliferação de Células , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Animais , Arrestinas/genética , Células COS , Sobrevivência Celular/fisiologia , Chlorocebus aethiops , Ativação Enzimática/fisiologia , Isoenzimas/genética , Isoenzimas/metabolismo , MAP Quinase Quinase 7/genética , MAP Quinase Quinase 7/metabolismo , MAP Quinase Quinase Quinase 5/genética , MAP Quinase Quinase Quinase 5/metabolismo , Camundongos , Camundongos Knockout , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 9 Ativada por Mitógeno/genética , Fosforilação/fisiologia , Ligação Proteica/fisiologia
8.
Handb Exp Pharmacol ; 219: 259-80, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24292834

RESUMO

The activity of all mitogen-activated protein kinases (MAPKs) is stimulated via phosphorylation by upstream MAPK kinases (MAPKK), which are in their turn activated via phosphorylation by MAPKK kinases (MAPKKKs). The cells ensure the specificity of signaling in these cascades by employing a variety of scaffolding proteins that bind matching MAPKKKs, MAPKKs, and MAPKs. All four vertebrate arrestin subtypes bind JNK3, but only arrestin-3 serves as a scaffold, promoting JNK3 activation in intact cells. Arrestin-3-mediated JNK3 activation does not depend on arrestin-3 interaction with G protein-coupled receptors (GPCRs), as demonstrated by the ability of some arrestin mutants that cannot bind receptors to activate JNK3, whereas certain mutants with enhanced GPCR binding fail to promote JNK3 activation. Recent findings suggest that arrestin-3 directly binds both MAPKKs necessary for JNK activation and facilitates JNK3 phosphorylation at both Thr (by MKK4) and Tyr (by MKK7). JNK3 is expressed in a limited set of cell types, whereas JNK1 and JNK2 isoforms are as ubiquitous as arrestin-3. Recent study showed that arrestin-3 facilitates the activation of JNK1 and JNK2, scaffolding MKK4/7-JNK1/2/3 signaling complexes. In all cases, arrestin-3 acts by bringing the kinases together: JNK phosphorylation shows biphasic dependence on arrestin-3, being enhanced at lower and suppressed at supraoptimal concentrations. Thus, arrestin-3 regulates the activity of multiple JNK isoforms, suggesting that it might play a role in survival and apoptosis of all cell types.


Assuntos
Arrestinas/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Animais , Apoptose/fisiologia , Sobrevivência Celular/fisiologia , Humanos , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Fosforilação/fisiologia , Receptores Acoplados a Proteínas G/metabolismo
9.
Curr Protoc ; 3(9): e832, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37671938

RESUMO

Purified arrestin proteins are necessary for biochemical, biophysical, and structural studies of these versatile regulators of cell signaling. Described herein is a basic protocol for arrestin expression in Escherichia coli and purification of tag-free wild-type and mutant arrestins. The method includes ammonium sulfate precipitation of arrestins from cell lysates, followed by Heparin-Sepharose chromatography. Depending on the arrestin type and/or mutations, the next step is Q-Sepharose or SP-Sepharose chromatography. In many cases, the nonbinding column is used as a filter to bind contaminants without retaining arrestin. In some cases, both chromatographic steps must be performed sequentially to achieve high purity. Purified arrestins can be concentrated up to 10 mg/ml, remain fully functional, and withstand several cycles of freezing and thawing, provided that the overall salt concentration is maintained at or above physiological levels. © 2023 Wiley Periodicals LLC. Basic Protocol: Large-scale expression and purification of arrestins Alternate Protocol: Purification of arrestin-3 and truncated form of arrestin-1-(1-378) Support Protocol: Small-scale test expression of wild-type and mutant arrestins in E. coli.


Assuntos
Arrestina , Escherichia coli , Arrestinas , Sulfato de Amônio , Biofísica
10.
Curr Protoc ; 3(9): e839, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37668419

RESUMO

Only 1 out of 4 mammalian arrestin subtypes, arrestin-3, facilitates the activation of c-Jun N-terminal kinase (JNK) family kinases. Here, we describe two different sets of protocols used for elucidating the mechanisms involved. One is based on reconstitution of signaling modules from the following purified proteins: arrestin-3, MKK4, MKK7, JNK1, JNK2, and JNK3. The main advantage of this method is that it unambiguously establishes which effects are direct because only intended purified proteins are present in these assays. The key drawback is that the upstream-most kinases of these cascades, ASK1 or other MAP3Ks, are not available in purified form, limiting reconstitution to incomplete two-kinase modules. The other approach is used for analyzing the effects of arrestin-3 on JNK activation in intact cells. In this case, signaling modules include ASK1 and/or other MAP3Ks. However, as every cell expresses thousands of different proteins, their possible effects on the readout cannot be excluded. Nonetheless, the combination of in vitro reconstitution from purified proteins and cell-based assays makes it possible to elucidate the mechanisms of arrestin-3-dependent activation of JNK family kinases. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Construction of arrestin-3-scaffolded MKK4/7-JNK1/2/3 signaling modules in vitro using purified proteins Alternate Protocol 1: Characterization of arrestin-3-mediated JNK1/2 activation by MKK4/7 by measurement of JNK1/2 phosphorylation using immunoblotting with anti-phospho-JNK antibody Support Protocol 1: Expression, purification, and activation of GST-MKK4 Support Protocol 2: Expression, purification, and activation of GST-MKK7-His6 Support Protocol 3: Expression, purification, and activation of tagless JNK1Α1 Support Protocol 4: Expression, purification, and activation of tagless JNK2Α2 Basic Protocol 2: Analysis of the role of arrestin-3 in ASK1/MKK4/MKK7-induced JNK activation in intact cells Alternate Protocol 2: Analysis of the role of arrestin-3 in MKK4-induced JNK activation in intact cells Basic Protocol 3: Characterization of the biphasic effect of arrestin-3 on ASK1/MKK7-stimulated JNK phosphorylation in cells.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno , Processamento de Proteína Pós-Traducional , Animais , Fosforilação , beta-Arrestina 2 , Arrestinas , MAP Quinase Quinase 4 , beta-Arrestina 1/genética , Mamíferos
11.
Biochemistry ; 50(48): 10520-9, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22047447

RESUMO

Arrestins make up a small family of proteins with four mammalian members that play key roles in the regulation of multiple G protein-coupled receptor-dependent and -independent signaling pathways. Although arrestins were reported to serve as scaffolds for MAP kinase cascades, promoting the activation of JNK3, ERK1/2, and p38, the molecular mechanisms involved were not elucidated, and even the direct binding of arrestins with MAP kinases was never demonstrated. Here, using purified proteins, we show that both nonvisual arrestins directly bind JNK3α2 and its upstream activator MKK4, and that the affinity of arrestin-3 for these kinases is higher than that of arrestin-2. Reconstitution of the MKK4-JNK3α2 signaling module from pure proteins in the presence of different arrestin-3 concentrations showed that arrestin-3 acts as a "true" scaffold, facilitating JNK3α2 phosphorylation by bringing the two kinases together. Both the level of JNK3α2 phosphorylation by MKK4 and JNK3α2 activity toward its substrate ATF2 increase at low and then decrease at high arrestin-3 levels, yielding a bell-shaped concentration dependence expected with true scaffolds that do not activate the upstream kinase or its substrate. Thus, direct binding of both kinases and true scaffolding is the molecular mechanism of action of arrestin-3 on the MKK4-JNK3α2 signaling module.


Assuntos
Arrestinas/fisiologia , MAP Quinase Quinase 4/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Animais , Arrestinas/metabolismo , Bovinos , Células Cultivadas , Humanos , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 4/metabolismo , Proteína Quinase 10 Ativada por Mitógeno/fisiologia , Fosforilação/fisiologia , Ligação Proteica/fisiologia , Regulação para Cima/fisiologia , beta-Arrestinas
12.
Biochemistry ; 50(18): 3749-63, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21466165

RESUMO

Numerous mutations in E3 ubiquitin ligase parkin were shown to associate with familial Parkinson's disease. Here we show that parkin binds arrestins, versatile regulators of cell signaling. Arrestin-parkin interaction was demonstrated by coimmunoprecipitation of endogenous proteins from brain tissue and shown to be direct using purified proteins. Parkin binding enhances arrestin interactions with another E3 ubiquitin ligase, Mdm2, apparently by shifting arrestin conformational equilibrium to the basal state preferred by Mdm2. Although Mdm2 was reported to ubiquitinate arrestins, parkin-dependent increase in Mdm2 binding dramatically reduces the ubiquitination of both nonvisual arrestins, basal and stimulated by receptor activation, without affecting receptor internalization. Several disease-associated parkin mutations differentially affect the stimulation of Mdm2 binding. All parkin mutants tested effectively suppress arrestin ubiquitination, suggesting that bound parkin shields arrestin lysines targeted by Mdm2. Parkin binding to arrestins along with its effects on arrestin interaction with Mdm2 and ubiquitination is a novel function of this protein with implications for Parkinson's disease pathology.


Assuntos
Arrestina/química , Proteínas Proto-Oncogênicas c-mdm2/química , Ubiquitina-Proteína Ligases/química , Ubiquitina/química , Animais , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Lisina/química , Camundongos , Doença de Parkinson/metabolismo , Ligação Proteica , Coelhos , Espectrometria de Fluorescência/métodos
13.
Biochim Biophys Acta ; 1804(1): 97-105, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19770075

RESUMO

Detailed kinetic studies were performed in order to determine the role of the single cysteine residue in the desulfonation reaction catalyzed by SsuD. Mutation of the conserved cysteine at position 54 in SsuD to either serine or alanine had little effect on FMNH(2) binding. The k(cat)/K(m) value for the C54S SsuD variant increased 3-fold, whereas the k(cat)/K(m) value for C54A SsuD decreased 6-fold relative to wild-type SsuD. An initial fast phase was observed in kinetic traces obtained for the oxidation of flavin at 370 nm when FMNH(2) was mixed against C54S SsuD (k(obs), 111 s(-1)) in oxygenated buffer that was 10-fold faster than wild-type SsuD (k(obs), 12.9 s(-1)). However, there was no initial fast phase observed in similar kinetic traces obtained for C54A SsuD. This initial fast phase was previously assigned to the formation of the C4a-(hydro)peroxyflavin in studies with wild-type SsuD. There was no evidence for the formation of the C4a-(hydro)peroxyflavin with either SsuD variant when octanesulfonate was included in rapid reaction kinetic studies, even at low octanesulfonate concentrations. The absence of any C4a-(hydro)peroxyflavin accumulation correlates with the increased catalytic activity of C54S SsuD. These results suggest that the conservative serine substitution is able to effectively take the place of cysteine in catalysis. Conversely, decreased accumulation of the C4a-(hydro)peroxyflavin intermediate with the C54A SsuD variant may be due to decreased activity. The data described suggest that Cys54 in SsuD may be either directly or indirectly involved in stabilizing the C4a-(hydro)peroxyflavin intermediate formed during catalysis through hydrogen bonding interactions.


Assuntos
Cisteína/genética , Proteínas de Escherichia coli/genética , NADH NADPH Oxirredutases/genética , Alcanossulfonatos/metabolismo , Sítios de Ligação/genética , Catálise , Cisteína/metabolismo , Proteínas de Escherichia coli/metabolismo , Flavinas/metabolismo , Cinética , Oxigenases de Função Mista , NADH NADPH Oxirredutases/metabolismo
14.
J Mol Biol ; 433(4): 166790, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33387531

RESUMO

G protein coupled receptors signal through G proteins or arrestins. A long-standing mystery in the field is why vertebrates have two non-visual arrestins, arrestin-2 and arrestin-3. These isoforms are ~75% identical and 85% similar; each binds numerous receptors, and appear to have many redundant functions, as demonstrated by studies of knockout mice. We previously showed that arrestin-3 can be activated by inositol-hexakisphosphate (IP6). IP6 interacts with the receptor-binding surface of arrestin-3, induces arrestin-3 oligomerization, and this oligomer stabilizes the active conformation of arrestin-3. Here, we compared the impact of IP6 on oligomerization and conformational equilibrium of the highly homologous arrestin-2 and arrestin-3 and found that these two isoforms are regulated differently. In the presence of IP6, arrestin-2 forms "infinite" chains, where each promoter remains in the basal conformation. In contrast, full length and truncated arrestin-3 form trimers and higher-order oligomers in the presence of IP6; we showed previously that trimeric state induces arrestin-3 activation (Chen et al., 2017). Thus, in response to IP6, the two non-visual arrestins oligomerize in different ways in distinct conformations. We identified an insertion of eight residues that is conserved across arrestin-2 homologs, but absent in arrestin-3 that likely accounts for the differences in the IP6 effect. Because IP6 is ubiquitously present in cells, this suggests physiological consequences, including differences in arrestin-2/3 trafficking and JNK3 activation. The functional differences between two non-visual arrestins are in part determined by distinct modes of their oligomerization. The mode of oligomerization might regulate the function of other signaling proteins.


Assuntos
Aminoácidos/química , Arrestinas/química , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Arrestinas/metabolismo , Sítios de Ligação , Humanos , Ácido Fítico/química , Ligação Proteica , Isoformas de Proteínas , Soluções , Análise Espectral
15.
Sci Rep ; 10(1): 5028, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32193420

RESUMO

Loss-of-function mutations in the E3 ubiquitin ligase parkin have been implicated in the death of dopaminergic neurons in the substantia nigra, which is the root cause of dopamine deficit in the striatum in Parkinson's disease. Parkin ubiquitinates proteins on mitochondria that lost membrane potential, promoting the elimination of damaged mitochondria. Neuroprotective activity of parkin has been linked to its critical role in the mitochondria maintenance. Here we report a novel regulatory mechanism: another E3 ubiquitin ligase Mdm2 directly binds parkin and enhances its enzymatic activity in vitro and in intact cells. Mdm2 translocates to damaged mitochondria independently of parkin, enhances parkin-dependent ubiquitination of the outer mitochondria membrane protein mitofusin1. Mdm2 facilitates and its knockdown reduces parkin-dependent mitophagy. Thus, ubiquitously expressed Mdm2 might enhance cytoprotective parkin activity. The data suggest that parkin activation by Mdm2 could be targeted to increase its neuroprotective functions, which has implications for anti-parkinsonian therapy.


Assuntos
Mitofagia/genética , Mitofagia/fisiologia , Fármacos Neuroprotetores , Doença de Parkinson/genética , Proteínas Proto-Oncogênicas c-mdm2/fisiologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Neurônios Dopaminérgicos/patologia , GTP Fosfo-Hidrolases/metabolismo , Células HEK293 , Humanos , Mutação com Perda de Função , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Terapia de Alvo Molecular , Doença de Parkinson/etiologia , Doença de Parkinson/patologia , Doença de Parkinson/terapia , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação
16.
Methods Mol Biol ; 1957: 107-120, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30919350

RESUMO

Nonvisual arrestins (arrestin-2/arrestin-3) interact with hundreds of G protein-coupled receptor (GPCR) subtypes and dozens of non-receptor signaling proteins. Here we describe the methods used to identify the interaction sites of arrestin-binding partners on arrestin-3 and the use of monofunctional individual arrestin-3 elements in cells. Our in vitro pull-down assay with purified proteins demonstrates that relatively few elements in arrestin engage each partner, whereas cell-based functional assays indicate that certain arrestin elements devoid of other functionalities can perform individual functions in living cells.


Assuntos
Arrestina/metabolismo , Bioensaio/métodos , Mapeamento de Interação de Proteínas/métodos , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Proteínas Imobilizadas/metabolismo , Camundongos , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo
17.
Sci Rep ; 6: 21025, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26868142

RESUMO

Three-kinase mitogen-activated protein kinase (MAPK) signaling cascades are present in virtually all eukaryotic cells. MAPK cascades are organized by scaffold proteins, which assemble cognate kinases into productive signaling complexes. Arrestin-3 facilitates JNK activation in cells, and a short 25-residue arrestin-3 peptide was identified as the critical JNK3-binding element. Here we demonstrate that this peptide also binds MKK4, MKK7, and ASK1, which are upstream JNK3-activating kinases. This peptide is sufficient to enhance JNK3 activity in cells. A homologous arrestin-2 peptide, which differs only in four positions, binds MKK4, but not MKK7 or JNK3, and is ineffective in cells at enhancing activation of JNK3. The arrestin-3 peptide is the smallest MAPK scaffold known. This peptide or its mimics can regulate MAPKs, affecting cellular decisions to live or die.


Assuntos
Ativadores de Enzimas , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Peptídeos , beta-Arrestina 1/química , beta-Arrestina 2/química , Animais , Células COS , Chlorocebus aethiops , Ativação Enzimática/efeitos dos fármacos , Ativadores de Enzimas/síntese química , Ativadores de Enzimas/química , Ativadores de Enzimas/farmacologia , Humanos , Proteína Quinase 10 Ativada por Mitógeno/genética , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacologia
18.
Curr Protoc Pharmacol ; 68: 2.12.1-2.12.26, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25737158

RESUMO

Only one out of four mammalian arrestin subtypes, arrestin-3, facilitates the activation of JNK family kinases. Here we describe two different protocols used for elucidating the mechanisms involved. One is based on reconstitution of signaling modules from purified proteins: arrestin-3, MKK4, MKK7, JNK1, JNK2, and JNK3. The main advantage of this method is that it unambiguously establishes which effects are direct because only intended purified proteins are present in these assays. The key drawback is that the upstream-most kinases of these cascades, ASK1 or other MAPKKKs, are not available in purified form, limiting reconstitution to incomplete two-kinase modules. The other approach is used for analyzing the effects of arrestin-3 on JNK activation in intact cells. In this case, signaling modules include ASK1 and/or other MAPKKKs. However, as every cell expresses thousands of different proteins their possible effects on the readout cannot be excluded. Nonetheless, the combination of in vitro reconstitution from purified proteins and cell-based assays makes it possible to elucidate the mechanisms of arrestin-3-dependent activation of JNK family kinases.


Assuntos
Arrestinas/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase 7/isolamento & purificação , MAP Quinase Quinase Quinase 4/isolamento & purificação , Células Cultivadas , Ativação Enzimática , Humanos , Técnicas In Vitro , Fosforilação , Ligação Proteica , Transfecção
19.
Cell Signal ; 26(4): 766-76, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24412749

RESUMO

Although arrestins bind dozens of non-receptor partners, the interaction sites for most signaling proteins remain unknown. Here we report the identification of arrestin-3 elements involved in binding MAP kinase JNK3α2. Using purified JNK3α2 and MBP fusions containing separated arrestin-3 domains and peptides exposed on the non-receptor-binding surface of arrestin-3 we showed that both domains bind JNK3α2 and identified one element on the N-domain and two on the C-domain that directly interact with JNK3α2. Using in vitro competition we confirmed that JNK3α2 engages identified N-domain element and one of the C-domain peptides in the full-length arrestin-3. The 25-amino acid N-domain element has the highest affinity for JNK3α2, suggesting that it is the key site for JNK3α2 docking. The identification of elements involved in protein-protein interactions paves the way to targeted redesign of signaling proteins to modulate cell signaling in desired ways. The tools and methods developed here to elucidate the molecular mechanism of arrestin-3 interactions with JNK3α2 are suitable for mapping of arrestin-3 sites involved in interactions with other partners.


Assuntos
Arrestinas/metabolismo , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Animais , Arrestinas/química , Arrestinas/genética , Sítios de Ligação , Células COS , Chlorocebus aethiops , Humanos , Proteína Quinase 10 Ativada por Mitógeno/química , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Transdução de Sinais
20.
Curr Protoc Pharmacol ; 67: 2.11.1-2.11.19, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25446290

RESUMO

Purified arrestin proteins are necessary for biochemical, biophysical, and crystallographic studies of these versatile regulators of cell signaling. Described herein is a basic protocol for arrestin expression in E. coli and purification of the tag-free wild-type and mutant arrestins. The method includes ammonium sulfate precipitation of arrestins from cell lysates, followed by heparin-Sepharose chromatography. Depending on the arrestin type and/or mutations, the next step is Q-Sepharose or SP-Sepharose chromatography. In many cases the nonbinding column is used as a filter to bind contaminants without retaining arrestin. In some cases both chromatographic steps must be performed sequentially to achieve high purity. Purified arrestins can be concentrated up to 10 mg/ml, remain fully functional, and withstand several cycles of freezing and thawing, provided that overall salt concentration is maintained at or above physiological levels.


Assuntos
Arrestinas/biossíntese , Proteínas de Escherichia coli/biossíntese , Escherichia coli/metabolismo , Arrestinas/isolamento & purificação , Cromatografia em Agarose , Proteínas de Escherichia coli/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA