RESUMO
The Omicron (B.1.1.529) variant of SARS-CoV-2 emerged in November 2021 and is rapidly spreading among the human population1. Although recent reports reveal that the Omicron variant robustly escapes vaccine-associated and therapeutic neutralization antibodies2-10, the pathogenicity of the virus remains unknown. Here we show that the replication of Omicron is substantially attenuated in human Calu3 and Caco2 cells. Further mechanistic investigations reveal that Omicron is inefficient in its use of transmembrane serine protease 2 (TMPRSS2) compared with wild-type SARS-CoV-2 (HKU-001a) and previous variants, which may explain its reduced replication in Calu3 and Caco2 cells. The replication of Omicron is markedly attenuated in both the upper and lower respiratory tracts of infected K18-hACE2 mice compared with that of the wild-type strain and Delta (B.1.617.2) variant, resulting in its substantially ameliorated lung pathology. Compared with wild-type SARS-CoV-2 and the Alpha (B.1.1.7), Beta (1.351) and Delta variants, infection by Omicron causes the lowest reduction in body weight and the lowest mortality rate. Overall, our study demonstrates that the replication and pathogenicity of the Omicron variant of SARS-CoV-2 in mice is attenuated compared with the wild-type strain and other variants.
Assuntos
COVID-19/patologia , COVID-19/virologia , SARS-CoV-2/patogenicidade , Replicação Viral , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/imunologia , Células CACO-2 , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Serina Endopeptidases/metabolismo , VirulênciaRESUMO
Developing an effective Staphylococcus aureus (S. aureus) vaccine has been a challenging endeavor, as demonstrated by numerous failed clinical trials over the years. In this study, we formulated a vaccine containing a highly conserved moonlighting protein, the pyruvate dehydrogenase complex E2 subunit (PDHC), and showed that it induced strong protective immunity against epidemiologically relevant staphylococcal strains in various murine disease models. While antibody responses contributed to bacterial control, they were not essential for protective immunity in the bloodstream infection model. Conversely, vaccine-induced systemic immunity relied on γδ T cells. It has been suggested that prior S. aureus exposure may contribute to the reduction of vaccine efficacy. However, PDHC-induced protective immunity still facilitated bacterial clearance in mice previously exposed to S. aureus. Collectively, our findings indicate that PDHC is a promising serotype-independent vaccine candidate effective against both methicillin-sensitive and methicillin-resistant S. aureus isolates.
Assuntos
Infecções Estafilocócicas , Vacinas Antiestafilocócicas , Staphylococcus aureus , Animais , Infecções Estafilocócicas/prevenção & controle , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Camundongos , Staphylococcus aureus/imunologia , Staphylococcus aureus/enzimologia , Vacinas Antiestafilocócicas/imunologia , Complexo Piruvato Desidrogenase/metabolismo , Complexo Piruvato Desidrogenase/imunologia , Feminino , Anticorpos Antibacterianos/imunologia , Modelos Animais de Doenças , Humanos , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Camundongos Endogâmicos C57BL , Staphylococcus aureus Resistente à Meticilina/imunologia , Piruvato Desidrogenase (Lipoamida)/imunologia , Piruvato Desidrogenase (Lipoamida)/metabolismo , Piruvato Desidrogenase (Lipoamida)/genéticaRESUMO
Interferons (IFNs) are critical for immune defense against pathogens. While type-I and -III IFNs have been reported to inhibit SARS-CoV-2 replication, the antiviral effect and mechanism of type-II IFN against SARS-CoV-2 remain largely unknown. Here, we evaluate the antiviral activity of type-II IFN (IFNγ) using human lung epithelial cells (Calu3) and ex vivo human lung tissues. In this study, we found that IFNγ suppresses SARS-CoV-2 replication in both Calu3 cells and ex vivo human lung tissues. Moreover, IFNγ treatment does not significantly modulate the expression of SARS-CoV-2 entry-related factors and induces a similar level of pro-inflammatory response in human lung tissues when compared with IFNß treatment. Mechanistically, we show that overexpression of indoleamine 2,3-dioxygenase 1 (IDO1), which is most profoundly induced by IFNγ, substantially restricts the replication of ancestral SARS-CoV-2 and the Alpha and Delta variants. Meanwhile, loss-of-function study reveals that IDO1 knockdown restores SARS-CoV-2 replication restricted by IFNγ in Calu3 cells. We further found that the treatment of l-tryptophan, a substrate of IDO1, partially rescues the IFNγ-mediated inhibitory effect on SARS-CoV-2 replication in both Calu3 cells and ex vivo human lung tissues. Collectively, these results suggest that type-II IFN potently inhibits SARS-CoV-2 replication through IDO1-mediated antiviral response.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Replicação Viral , Pulmão , Interferons , Células Epiteliais , Antivirais/farmacologiaRESUMO
Embryonic stem cell (ESC)-derived epitopes can act as therapeutic tumor vaccines against different types of tumors Jin (Adv Healthc Mater 2023). However, these epitopes have poor immunogenicity and stimulate insufficient CD8+ T cell responses, which motivated us to develop a new method to deliver and enhance their effectiveness. Bacterial outer membrane vesicles (OMVs) can serve as immunoadjuvants and act as a delivery vector for tumor antigens. In the current study, we engineered a new OMV platform for the co-delivery of ESC-derived tumor antigens and immune checkpoint inhibitors (PD-L1 antibody). An engineered Staphylococcal Protein A (SpA) was created to non-specifically bind to anti-PD-L1 antibody. SpyCatcher (SpC) and SpA were fused into the cell outer membrane protein OmpA to capture SpyTag-attached peptides and PD-L1 antibody, respectively. The modified OMV was able to efficiently conjugate with ESC-derived TAAs and PD-L1 antibody (SpC-OMVs + SpT-peptides + anti-PD-L1), increasing the residence time of TAAs in the body. The results showed that the combination therapy of ESC-based TAAs and PD-L1 antibody delivered by OMV had significant inhibitory effects in mouse tumor model. Specifically, it was effective in reducing tumor growth by enhancing IFN-γ-CD8+ T cell responses and increasing the number of CD8+ memory cells and antigen-specific T cells. Overall, the new OMV delivery system is a versatile platform that can enhance the immune responses of ESC-based TAA cancer vaccines.
Assuntos
Vacinas Anticâncer , Neoplasias , Animais , Camundongos , Antígeno B7-H1/metabolismo , Neoplasias/terapia , Anticorpos , Antígenos de Neoplasias , Proteínas de Membrana , Imunidade , Peptídeos , EpitoposRESUMO
BACKGROUND: Staphylococcus aureus (S. aureus) causes a wide range of infectious diseases in human and animals. The emergence of antibiotic-resistant strains demands novel strategies for prophylactic vaccine development. In this study, live attenuated S. enterica subsp. enterica serotype Typhimurium (S. Typhimurium) vaccine against S. aureus infection was developed, in which Salmonella Pathogenesis Island-1 Type 3 Secretion System (SPI-1 T3SS) was employed to deliver SaEsxA and SaEsxB, two of ESAT-6-like (Early Secreted Antigenic Target-6) virulence factors of S. aureus. METHODS: Antigens SaEsxA and SaEsxB were fused with the N-terminal secretion and translocation domain of SPI-1 effector SipA. And cytosolic delivery of Staphylococcal antigens into macrophages was examined by western blot. BALB/c mice were orally immunized with S. Typhimurium-SaEsxA and S. Typhimurium-SaEsxB vaccines. Antigen-specific humoral and Th1/Th17 immune responses were examined by ELISA and ELISPOT assays 7-9 days after the 2nd booster. For ELISPOT assays, the statistical significance was determined by Student's t test. The vaccine efficacy was evaluated by lethal challenge with two S. aureus clinical isolates Newman strain and USA 300 strain. Statistical significance was determined by Log rank (Mantel-Cox) analysis. And a P value of < 0.05 was considered statistically significant. RESULTS: Oral administration of S. Typhimurium-SaEsxA and S. Typhimurium-SaEsxB vaccines induced antigen-specific humoral and Th1/Th17 immune responses, which increased the survival rate for vaccinated mice when challenged with S. aureus strains. CONCLUSIONS: The newly developed S. Typhimurium-based vaccines delivering SaEsxA and SaEsxB by SPI-1 T3SS could confer protection against S. aureus infection. This study provides evidence that translocation of foreign antigens via Salmonella SPI-1 T3SS into the cytosol of antigen presenting cells (APCs) could induce potent immune responses against pathogens.
Assuntos
Células RAW 264.7/efeitos dos fármacos , Salmonella typhimurium/imunologia , Infecções Estafilocócicas/prevenção & controle , Sistemas de Secreção Tipo III/imunologia , Vacinas Atenuadas/administração & dosagem , Animais , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Fatores de Virulência/imunologiaRESUMO
Staphylococcusaureus is a severe pathogen found in the community and in hospitals. Most notably, methicillin-resistant S. aureus (MRSA) is resistant to almost all antibiotics, which is a growing public health concern. The emergence of drug-resistant strains has prompted the search for alternative treatments such as immunotherapeutic approaches. Previous research showed that S. aureus exploit the immunomodulatory attributes of adenosine to escape host immunity. In this study, we investigated adenosine synthase A (AdsA), an S. aureus cell wall-anchored enzyme as possible targets for immunotherapy. Mice vaccinated with aluminum hydroxide-formulated recombinant AdsA (rAdsA) induced high-titer anti-AdsA antibodies, thereby providing consistent protection in 3 mouse infection models when challenged with 2 S. aureus strains. The importance of anti-AdsA antibody in protection was demonstrated by passive transfer experiments. Moreover, AdsA-specific antisera promote killing S. aureus by immune cells. Altogether, our data demonstrate that the AdsA is a promising target for vaccines and therapeutics development to alleviate severe S. aureus diseases.
Assuntos
Anticorpos Antibacterianos/farmacologia , Proteínas de Bactérias/imunologia , Imunização Passiva , Ligases/imunologia , Infecções Cutâneas Estafilocócicas/terapia , Adenosina/biossíntese , Animais , Antibacterianos/uso terapêutico , Modelos Animais de Doenças , Feminino , Imunoterapia , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , Staphylococcus aureus/enzimologiaRESUMO
BACKGROUND: Clostridium difficile-associated disease (CDAD) constitutes a great majority of hospital diarrhea cases in industrialized countries and is induced by two types of large toxin molecules: toxin A (TcdA) and toxin B (TcdB). Development of immunotherapeutic approaches, either active or passive, has seen a resurgence in recent years. Studies have described vaccine plasmids that express either TcdA and/or TcdB receptor binding domain (RBD). However, the effectiveness of one vector encoding both toxin RBDs against CDAD has not been evaluated. METHODS: In the study, we constructed highly optimized plasmids to express the receptor binding domains of both TcdA and TcdB from a single vector. The DNA vaccine was evaluated in two animal models for its immunogenicity and protective effects. RESULTS: The DNA vaccine induced high levels of serum antibodies to toxin A and/or B and demonstrated neutralizing activity in both in vitro and in vivo systems. In a C. difficile hamster infection model, immunization with the DNA vaccine reduced infection severity and conferred significant protection against a lethal C. difficile strain. CONCLUSIONS: This study has demonstrated a single plasmid encoding the RBD domains of C. difficile TcdA and TcdB as a DNA vaccine that could provide protection from C. difficile disease.
Assuntos
Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Clostridioides difficile/patogenicidade , Enterotoxinas/genética , Vacinas de DNA/imunologia , Animais , Vacinas Bacterianas/genética , Células COS , Clostridioides difficile/genética , Enterocolite Pseudomembranosa/imunologia , Enterocolite Pseudomembranosa/prevenção & controle , Feminino , Mesocricetus , Camundongos Endogâmicos BALB C , Plasmídeos , Vacinas de DNA/genéticaRESUMO
OBJECTIVE: To investigate the risk factors for recurrent wheezing in infants and young children suffering from dust mite allergy after their first wheezing. METHODS: A total of 1 236 infants and young children who experienced a first wheezing episode and were hospitalized between August 2014 and February 2015 were enrolled, among whom 387 were allergic to dust mites. These infants and young children were followed up to 1 year after discharge. A total of 67 infants and young children who experienced 3 or more recurrent wheezing episodes within 1 year were enrolled as the recurrent wheezing group, while 84 infants and young children who did not experience recurrent wheezing during follow-up were enrolled as the control group. Univariate analysis and multivariate logistic stepwise regression analysis were performed to investigate the risk factors for recurrent wheezing in these patients. RESULTS: The univariate analysis showed that the age on admission, wheezing time before admission, Mycoplasma pneumoniae infection rate, and influenza virus infection rate were associated with recurrent wheezing. The multivariate logistic stepwise regression analysis showed that the older age on admission (OR=2.21, P=0.04) and Mycoplasma pneumoniae infection (OR=3.54, P=0.001) were independent risk factors for recurrent wheezing. CONCLUSIONS: Infants and young children who are allergic to dust mites, especially young children, have a significantly increased risk of recurrent wheezing if they are complicated by Mycoplasma pneumoniae infection during the first wheezing episode.
Assuntos
Hipersensibilidade/complicações , Pyroglyphidae/imunologia , Sons Respiratórios/etiologia , Animais , Pré-Escolar , Feminino , Humanos , Lactente , Modelos Logísticos , Masculino , Recidiva , Fatores de RiscoRESUMO
Staphylococcus aureus is a common pathogen found in the community and in hospitals. Most notably, methicillin-resistant S. aureus is resistant to many antibiotics, which is a growing public health concern. The emergence of drug-resistant strains has prompted the search for alternative treatments, such as immunotherapeutic approaches. To date, most clinical trials of vaccines or of passive immunization against S. aureus have ended in failure. In this study, we investigated two ESAT-6-like proteins secreted by S. aureus, S. aureus EsxA (SaEsxA) and SaEsxB, as possible targets for a vaccine. Mice vaccinated with these purified proteins elicited high titers of anti-SaEsxA and anti-SaEsxB antibodies, but these antibodies could not prevent S. aureus infection. On the other hand, recombinant SaEsxA (rSaEsxA) and rSaEsxB could induce Th1- and Th17-biased immune responses in mice. Mice immunized with rSaEsxA and rSaEsxB had significantly improved survival rates when challenged with S. aureus compared with the controls. These findings indicate that SaEsxA and SaEsxB are two promising Th1 and Th17 candidate antigens which could be developed into multivalent and serotype-independent vaccines against S. aureus infection.
Assuntos
Bacteriemia/imunologia , Bacteriemia/prevenção & controle , Proteínas de Bactérias/imunologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Anticorpos Antibacterianos/sangue , Proteínas de Bactérias/genética , Feminino , Camundongos Endogâmicos BALB C , Vacinas Antiestafilocócicas/administração & dosagem , Vacinas Antiestafilocócicas/genética , Análise de Sobrevida , Células Th1/imunologia , Células Th17/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologiaRESUMO
Peripheral nerve injury (PNI) is a common neurological disorder and complete functional recovery is difficult to achieve. In recent years, bone marrow mesenchymal stem cells (BMSCs) have emerged as ideal seed cells for PNI treatment due to their strong differentiation potential and autologous transplantation ability. This review aims to summarize the molecular mechanisms by which BMSCs mediate nerve repair in PNI. The key mechanisms discussed include the differentiation of BMSCs into multiple types of nerve cells to promote repair of nerve injury. BMSCs also create a microenvironment suitable for neuronal survival and regeneration through the secretion of neurotrophic factors, extracellular matrix molecules, and adhesion molecules. Additionally, BMSCs release pro-angiogenic factors to promote the formation of new blood vessels. They modulate cytokine expression and regulate macrophage polarization, leading to immunomodulation. Furthermore, BMSCs synthesize and release proteins related to myelin sheath formation and axonal regeneration, thereby promoting neuronal repair and regeneration. Moreover, this review explores methods of applying BMSCs in PNI treatment, including direct cell transplantation into the injured neural tissue, implantation of BMSCs into nerve conduits providing support, and the application of genetically modified BMSCs, among others. These findings confirm the potential of BMSCs in treating PNI. However, with the development of this field, it is crucial to address issues related to BMSC therapy, including establishing standards for extracting, identifying, and cultivating BMSCs, as well as selecting application methods for BMSCs in PNI such as direct transplantation, tissue engineering, and genetic engineering. Addressing these issues will help translate current preclinical research results into clinical practice, providing new and effective treatment strategies for patients with PNI.
RESUMO
Equid alphaherpesvirus 1 (EHV-1) has been linked to the emergence of neurological disorders, with the horse racing industry experiencing significant impacts from outbreaks of equine herpesvirus myeloencephalopathy (EHM). Building robust immune memory before pathogen exposure enables rapid recognition and elimination, preventing infection. This is crucial for effectively managing EHV-1. Removing neuropathogenic factors and immune evasion genes to develop live attenuated vaccines appears to be a successful strategy for EHV-1 vaccines. We created mutant viruses without ORF38 and ORF37/38 and validated their neuropathogenicity and immunogenicity in hamsters. The ∆ORF38 strain caused brain tissue damage at high doses, whereas the ∆ORF37/38 strain did not. Dexamethasone was used to confirm latent herpesvirus infection and reactivation. Dexamethasone injection increased viral DNA load in the brains of hamsters infected with the parental and ∆ORF38 strains, but not in those infected with the ∆ORF37/38 strain. Immunizing hamsters intranasally with the ∆ORF37/38 strain as a live vaccine produced a stronger immune response compared to the ∆ORF38 strain at the same dose. The hamsters demonstrated effective protection against a lethal challenge with the parental strain. This suggests that the deletion of ORF37/38 may effectively inhibit latent viral infection, reduce the neuropathogenicity of EHV-1, and induce a protective immune response.
Assuntos
Infecções por Herpesviridae , Herpesvirus Equídeo 1 , Vacinas Atenuadas , Animais , Cricetinae , Feminino , Encéfalo/virologia , Encéfalo/patologia , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/imunologia , Herpesvirus Equídeo 1/genética , Herpesvirus Equídeo 1/imunologia , Herpesvirus Equídeo 1/patogenicidade , Doenças dos Cavalos/virologia , Doenças dos Cavalos/prevenção & controle , Doenças dos Cavalos/imunologia , Cavalos , Infecção Latente/imunologia , Infecção Latente/virologia , Mesocricetus , Fases de Leitura Aberta , Deleção de Sequência , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/administração & dosagem , Carga Viral , Proteínas Virais/genética , Proteínas Virais/imunologia , Latência Viral , CoelhosRESUMO
Vaccination-route-dependent adjuvanticity was identified as being associated with the specific features of antigen-carrying nanoparticles (NPs) in the present work. Here, we demonstrated that the mechanical properties and the decomposability of NP adjuvants play key roles in determining the antigen accessibility and thus the overall vaccine efficacy in the immune system when different vaccination routes were employed. We showed that soft nano-vaccines were associated with more efficient antigen uptake when administering subcutaneous (S.C.) vaccination, while the slow decomposition of hard nano-vaccines promoted antigen uptake when intravenous (I.V.) vaccination was employed. In comparison to the clinically used aluminum (Alum) adjuvant, the NP adjuvants were found to stimulate both humoral and cellular immune responses efficiently, irrespective of the vaccination route. For vaccination via S.C. and I.V. alike, the NP-based vaccines show excellent protection for mice from Staphylococcus aureus (S. aureus) infection, and their survival rates are 100% after lethal challenge, being much superior to the clinically used Alum adjuvant.
RESUMO
SARS-CoV-2 JN.1 with an additional L455S mutation on spike when compared with its parental variant BA.2.86 has outcompeted all earlier variants to become the dominant circulating variant. Recent studies investigated the immune resistance of SARS-CoV-2 JN.1 but additional factors are speculated to contribute to its global dominance, which remain elusive until today. Here, we find that SARS-CoV-2 JN.1 has a higher infectivity than BA.2.86 in differentiated primary human nasal epithelial cells (hNECs). Mechanistically, we demonstrate that the gained infectivity of SARS-CoV-2 JN.1 over BA.2.86 associates with increased entry efficiency conferred by L455S and better spike cleavage in hNECs. Structurally, S455 altered the mode of binding of JN.1 spike protein to ACE2 when compared to BA.2.86 spike at ACE2H34, and modified the internal structure of JN.1 spike protein by increasing the number of hydrogen bonds with neighboring residues. These findings indicate that a single mutation (L455S) enhances virus entry in hNECs and increases immune evasiveness, which contribute to the robust transmissibility of SARS-CoV-2 JN.1. We further evaluate the in vitro and in vivo virological characteristics between SARS-CoV-2 BA.2.86/JN.1 and EG.5.1/HK.3, and identify key lineage-specific features of the two Omicron sublineages that contribute to our understanding on Omicron antigenicity, transmissibility, and pathogenicity.
Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Evasão da Resposta Imune , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Evasão da Resposta Imune/genética , COVID-19/virologia , COVID-19/imunologia , Animais , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Internalização do Vírus , Mutação , Camundongos , Mucosa Nasal/virologia , Mucosa Nasal/imunologia , Células Epiteliais/virologia , Células Epiteliais/imunologia , Chlorocebus aethiops , Feminino , Células VeroRESUMO
BACKGROUND: Earlier Omicron subvariants including BA.1, BA.2, and BA.5 emerged in waves, with a subvariant replacing the previous one every few months. More recently, the post-BA.2/5 subvariants have acquired convergent substitutions in spike that facilitated their escape from humoral immunity and gained ACE2 binding capacity. However, the intrinsic pathogenicity and replication fitness of the evaluated post-BA.2/5 subvariants are not fully understood. METHODS: We systemically investigated the replication fitness and intrinsic pathogenicity of representative post-BA.2/5 subvariants (BL.1, BQ.1, BQ.1.1, XBB.1, CH.1.1, and XBB.1.5) in weanling (3-4 weeks), adult (8-10 weeks), and aged (10-12 months) mice. In addition, to better model Omicron replication in the human nasal epithelium, we further investigated the replication capacity of the post-BA.2/5 subvariants in human primary nasal epithelial cells. FINDINGS: We found that the evaluated post-BA.2/5 subvariants are consistently attenuated in mouse lungs but not in nasal turbinates when compared with their ancestral subvariants BA.2/5. Further investigations in primary human nasal epithelial cells revealed a gained replication fitness of XBB.1 and XBB.1.5 when compared to BA.2 and BA.5.2. INTERPRETATION: Our study revealed that the post-BA.2/5 subvariants are attenuated in lungs while increased in replication fitness in the nasal epithelium, indicating rapid adaptation of the circulating Omicron subvariants in the human populations. FUNDING: The full list of funding can be found at the Acknowledgements section.
Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Humanos , Animais , Camundongos , Virulência , Células Epiteliais , Mucosa NasalRESUMO
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) share many cellular and molecular features with cancer cells. Taking advantage of these similarities, stem cells are effective vaccines against cancers in animal models. However, the molecular basis is not well understood, which hinders the development of effective cancer vaccines. Here, prophylactic and therapeutic bladder cancer vaccines composed of allogeneic ESCs and CpG with or without granulocyte macrophage colony stimulating factor are tested. The ESC-based cancer vaccines are able to induce specific antitumor immunity including stimulating cytotoxic CD8+ T cells and memory CD4+ T cells, reducing myeloid-derived suppressor cells, and preventing bladder cancer growth in mouse models. Furthermore, several genes that are overexpressed in both ESCs and tumors are identified. An epitope-based vaccine designed with shared overexpressed proteins induces specific antitumor immunity and reduces bladder cancer growth. Functional epitopes underlying the action of stem cell-based vaccines against bladder cancer are identified and it is confirmed that ESC-based anticancer vaccines have great potential. A systematic approach is provided here to developing novel effective epitope-based cancer vaccines in the future.
Assuntos
Vacinas Anticâncer , Neoplasias da Bexiga Urinária , Camundongos , Animais , Linfócitos T CD8-Positivos , Epitopos , Neoplasias da Bexiga Urinária/terapia , Células-Tronco EmbrionáriasRESUMO
OBJECTIVE: The purpose of this study is to verify the correlation between medium and low radiation doses of the pelvic-bone marrow and the incidence of lymphocytic toxicity during concurrent chemoradiotherapy for cervical cancer. MATERIALS AND METHODS: This research included 117 cervical cancer patients, who received concurrent chemoradiotherapy. Radiotherapy included external-beam radiation therapy and brachytherapy. The dosimetry parameters include the Volume receiving 5 Gy (V5), 10 Gy (V10), 20 Gy (V20), 30 Gy (V30), 40 Gy (V40), 50 Gy (V50), and the mean dose (D mean) of the bone marrow. Lymphocytic toxicity was calculated from lowest lymphocytic count after two cycles of concurrent chemotherapy. RESULTS: During concurrent chemoradiotherapy, the incidence of lymphocytic toxicity is 94.88%. The incidence of grade 3-4 toxicity is 68.38%. Multivariate analysis findings show that the dosimetry parameters V5, V10, V20, and V30 are significantly correlated with lymphocytic toxicity. The patients are divided into small-volume subgroups and large-volume subgroups based on the cutoff values. The relative risk of both grade 1-4 and grade 3-4 lymphocytic toxicity is significantly lower in the small-volume subgroups than in the large-volume subgroups (P < 0.05). Kaplan-Meier analysis shows that the incidence of both grade 1-4 and grade 3-4 lymphocytic toxicity of the small-volume subgroups is significantly lower than that of the large-volume subgroups (P < 0.05). CONCLUSION: There is a significant correlation between a medium and low dose of pelvic-bone-marrow radiation and incidence of lymphocytic toxicity. Reducing the volume of medium and low radiation doses could effectively reduce incidence of lymphocytic toxicity.
Assuntos
Radioterapia de Intensidade Modulada , Neoplasias do Colo do Útero , Feminino , Humanos , Medula Óssea , Radioterapia de Intensidade Modulada/efeitos adversos , Dosagem Radioterapêutica , Neoplasias do Colo do Útero/radioterapia , Quimiorradioterapia/efeitos adversos , Doses de RadiaçãoRESUMO
The rational design of vaccines and antibody-based therapeutics against newly emerging viruses relies on B cell epitopes mainly. To predict the B cell epitopes of a novel virus, several algorithms have been developed. While most existing algorithms are trained on a dataset in which B cell epitopes are classified as 'Positive' or 'Negative'. However, we found that training on such data contaminates the target pattern of specific viruses, leading to inaccurate predictions in some cases. In this paper, we introduce a novel framework for predicting linear B cell epitopes of novel viruses by exclusively using highly similar viruses for training data. We employed kernel regression based on seropositive rates, which are the percentages of seropositive samples among the population, to predict the potential epitopes. To assess our method, we conducted simulations and utilized two real-world datasets. Our method significantly outperformed other existing methods on the testing data of four viruses with seropositive rates. Also, our strategy showed a better prediction in a larger dataset from the IEDB. Thus, a novel framework providing better linear B cell prediction of newly emerging viruses is established, which will benefit the rational design of vaccines and antibody-based therapeutics in the future.
Assuntos
Vacinas , Vírus , Epitopos de Linfócito B , AlgoritmosRESUMO
The overall success of worldwide mass vaccination in limiting the negative effect of the COVID-19 pandemics is inevitable, however, recent SARS-CoV-2 variants of concern, especially Omicron and its sub-lineages, efficiently evade humoral immunity mounted upon vaccination or previous infection. Thus, it is an important question whether these variants, or vaccines against them, induce anti-viral cellular immunity. Here we show that the mRNA vaccine BNT162b2 induces robust protective immunity in K18-hACE2 transgenic B-cell deficient (µMT) mice. We further demonstrate that the protection is attributed to cellular immunity depending on robust IFN-γ production. Viral challenge with SARS-CoV-2 Omicron BA.1 and BA.5.2 sub-variants induce boosted cellular responses in vaccinated µMT mice, which highlights the significance of cellular immunity against the ever-emerging SARS-CoV-2 variants evading antibody-mediated immunity. Our work, by providing evidence that BNT162b2 can induce significant protective immunity in mice that are unable to produce antibodies, thus highlights the importance of cellular immunity in the protection against SARS-CoV-2.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunidade Celular , Animais , Humanos , Camundongos , Anticorpos , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Interferon gama , SARS-CoV-2 , Vacinas contra COVID-19/imunologiaRESUMO
Current COVID-19 vaccines are highly effective against symptomatic disease, but repeated booster doses using vaccines based on the ancestral strain offer limited additional protection against SARS-CoV-2 variants of concern (VOCs). To address this, we used antigenic distance to in silico select optimized booster vaccine seed strains effective against both current and future VOCs. Our model suggests that a SARS-CoV-1-based booster vaccine has the potential to cover a broader range of VOCs. Candidate vaccines including the spike protein from ancestral SARS-CoV-2, Delta, Omicron (BA.1), SARS-CoV-1, or MERS-CoV were experimentally evaluated in mice following two doses of the BNT162b2 vaccine. The SARS-CoV-1-based booster vaccine outperformed other candidates in terms of neutralizing antibody breadth and duration, as well as protective activity against Omicron (BA.2) challenge. This study suggests a unique strategy for selecting booster vaccines based on antigenic distance, which may be useful in designing future booster vaccines as new SARS-CoV-2 variants emerge.
Assuntos
COVID-19 , Animais , Humanos , Camundongos , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinas contra COVID-19 , Vacina BNT162 , Anticorpos Neutralizantes , Anticorpos AntiviraisRESUMO
Successful severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection requires proteolytic cleavage of the viral spike protein. While the role of the host transmembrane protease serine 2 in SARS-CoV-2 infection is widely recognized, the involvement of other proteases capable of facilitating SARS-CoV-2 entry remains incompletely explored. Here, we show that multiple members from the membrane-type matrix metalloproteinase (MT-MMP) and a disintegrin and metalloproteinase families can mediate SARS-CoV-2 entry. Inhibition of MT-MMPs significantly reduces SARS-CoV-2 replication in vitro and in vivo. Mechanistically, we show that MT-MMPs can cleave SARS-CoV-2 spike and angiotensin-converting enzyme 2 and facilitate spike-mediated fusion. We further demonstrate that Omicron BA.1 has an increased efficiency on MT-MMP usage, while an altered efficiency on transmembrane serine protease usage for virus entry compared with that of ancestral SARS-CoV-2. These results reveal additional protease determinants for SARS-CoV-2 infection and enhance our understanding on the biology of coronavirus entry.