Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.556
Filtrar
1.
Immunity ; 56(6): 1410-1428.e8, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37257450

RESUMO

Although host responses to the ancestral SARS-CoV-2 strain are well described, those to the new Omicron variants are less resolved. We profiled the clinical phenomes, transcriptomes, proteomes, metabolomes, and immune repertoires of >1,000 blood cell or plasma specimens from SARS-CoV-2 Omicron patients. Using in-depth integrated multi-omics, we dissected the host response dynamics during multiple disease phases to reveal the molecular and cellular landscapes in the blood. Specifically, we detected enhanced interferon-mediated antiviral signatures of platelets in Omicron-infected patients, and platelets preferentially formed widespread aggregates with leukocytes to modulate immune cell functions. In addition, patients who were re-tested positive for viral RNA showed marked reductions in B cell receptor clones, antibody generation, and neutralizing capacity against Omicron. Finally, we developed a machine learning model that accurately predicted the probability of re-positivity in Omicron patients. Our study may inspire a paradigm shift in studying systemic diseases and emerging public health concerns.


Assuntos
Plaquetas , COVID-19 , Humanos , SARS-CoV-2 , Infecções Irruptivas , Multiômica , Anticorpos Neutralizantes , Anticorpos Antivirais
2.
Proc Natl Acad Sci U S A ; 121(12): e2319582121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483998

RESUMO

The presence of viruses that spread to both plant and fungal populations in nature has posed intriguingly scientific question. We found a negative-strand RNA virus related to members of the family Phenuiviridae, named Valsa mali negative-strand RNA virus 1 (VmNSRV1), which induced strong hypovirulence and was prevalent in a population of the phytopathogenic fungus of apple Valsa canker (Valsa mali) infecting apple orchards in the Shaanxi Province of China. Intriguingly, VmNSRV1 encodes a protein with a viral cell-to-cell movement function in plant tissue. Mechanical leaf inoculation showed that VmNSRV1 could systemically infect plants. Moreover, VmNSRV1 was detected in 24 out of 139 apple trees tested in orchards in Shaanxi Province. Fungal inoculation experiments showed that VmNSRV1 could be bidirectionally transmitted between apple plants and V. mali, and VmNSRV1 infection in plants reduced the development of fungal lesions on leaves. Additionally, the nucleocapsid protein encoded by VmNSRV1 is associated with and rearranged lipid droplets in both fungal and plant cells. VmNSRV1 represents a virus that has adapted and spread to both plant and fungal hosts and shuttles between these two organisms in nature (phyto-mycovirus) and is potential to be utilized for the biocontrol method against plant fungal diseases. This finding presents further insights into the virus evolution and adaptation encompassing both plant and fungal hosts.


Assuntos
Ascomicetos , Micovírus , Malus , Micoses , Vírus de RNA , Ascomicetos/genética , Vírus de RNA/genética , Doenças das Plantas/microbiologia , Malus/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(20): e2320674121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38684007

RESUMO

Identifying and protecting hotspots of endemism and species richness is crucial for mitigating the global biodiversity crisis. However, our understanding of spatial diversity patterns is far from complete, which severely limits our ability to conserve biodiversity hotspots. Here, we report a comprehensive analysis of amphibian species diversity in China, one of the most species-rich countries on Earth. Our study combines 20 y of field surveys with new molecular analyses of 521 described species and also identifies 100 potential cryptic species. We identify 10 hotspots of amphibian diversity in China, each with exceptional species richness and endemism and with exceptional phylogenetic diversity and phylogenetic endemism (based on a new time-calibrated, species-level phylogeny for Chinese amphibians). These 10 hotspots encompass 59.6% of China's described amphibian species, 49.0% of cryptic species, and 55.6% of species endemic to China. Only four of these 10 hotspots correspond to previously recognized biodiversity hotspots. The six new hotspots include the Nanling Mountains and other mountain ranges in South China. Among the 186 species in the six new hotspots, only 9.7% are well covered by protected areas and most (88.2%) are exposed to high human impacts. Five of the six new hotspots are under very high human pressure and are in urgent need of protection. We also find that patterns of richness in cryptic species are significantly related to those in described species but are not identical.


Assuntos
Anfíbios , Biodiversidade , Filogenia , Animais , Anfíbios/classificação , China , Conservação dos Recursos Naturais
4.
Nat Methods ; 20(4): 617-622, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36823329

RESUMO

In deep-tissue multiphoton microscopy, diffusion and scattering of fluorescent photons, rather than ballistic emanation from the focal point, have been a confounding factor. Here we report on a 2.17-g miniature three-photon microscope (m3PM) with a configuration that maximizes fluorescence collection when imaging in highly scattering regimes. We demonstrate its capability by imaging calcium activity throughout the entire cortex and dorsal hippocampal CA1, up to 1.2 mm depth, at a safe laser power. It also enables the detection of sensorimotor behavior-correlated activities of layer 6 neurons in the posterior parietal cortex in freely moving mice during single-pellet reaching tasks. Thus, m3PM-empowered imaging allows the study of neural mechanisms in deep cortex and subcortical structures, like the dorsal hippocampus and dorsal striatum, in freely behaving animals.


Assuntos
Hipocampo , Microscopia de Fluorescência por Excitação Multifotônica , Camundongos , Animais , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Córtex Cerebral , Corantes , Fótons
5.
Plant Cell ; 35(4): 1202-1221, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36544357

RESUMO

Adventitious root (AR) formation plays an important role in vegetatively propagated plants. Cytokinin (CK) inhibits AR formation, but the molecular mechanisms driving this process remain unknown. In this study, we confirmed that CK content is related to AR formation and further revealed that a high auxin/CK ratio was beneficial to AR formation in apple (Malus domestica). A correlation between expression of CK-responsive TEOSINTE BRANCHED1, CYCLOIDEA, and PCF17 (MdTCP17) and AR formation in response to CK was identified, and overexpression of MdTCP17 in transgenic apple inhibited AR formation. Yeast two-hybrid, bimolecular fluorescence complementation, and co-immunoprecipitation assays revealed an interaction between MdTCP17 and WUSCHEL-RELATED HOMEOBOX11 (MdWOX11), and a significant correlation between the expression of MdWOX11 and AR ability. Overexpression of MdWOX11 promoted AR primordium formation in apple, while interference of MdWOX11 inhibited AR primordium production. Moreover, a positive correlation was found between MdWOX11 and LATERAL ORGAN BOUNDARIES DOMAIN29 (MdLBD29) expression, and yeast one-hybrid, dual luciferase reporter, and ChIP-qPCR assays verified the binding of MdWOX11 to the MdLBD29 promoter with a WOX-box element in the binding sequence. Furthermore, MdTCP17 reduced the binding of MdWOX11 and MdLBD29 promoters, and coexpression of MdTCP17 and MdWOX11 reduced MdLBD29 expression. Together, these results explain the function and molecular mechanism of MdTCP17-mediated CK inhibition of AR primordium formation, which could be used to improve apple rootstocks genetically.


Assuntos
Citocininas , Malus , Citocininas/metabolismo , Malus/genética , Malus/metabolismo , Saccharomyces cerevisiae/metabolismo , Raízes de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas/genética
6.
Mol Cell ; 69(3): 412-425.e6, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29395063

RESUMO

Mutations in several general pre-mRNA splicing factors have been linked to myelodysplastic syndromes (MDSs) and solid tumors. These mutations have generally been assumed to cause disease by the resultant splicing defects, but different mutations appear to induce distinct splicing defects, raising the possibility that an alternative common mechanism is involved. Here we report a chain of events triggered by multiple splicing factor mutations, especially high-risk alleles in SRSF2 and U2AF1, including elevated R-loops, replication stress, and activation of the ataxia telangiectasia and Rad3-related protein (ATR)-Chk1 pathway. We further demonstrate that enhanced R-loops, opposite to the expectation from gained RNA binding with mutant SRSF2, result from impaired transcription pause release because the mutant protein loses its ability to extract the RNA polymerase II (Pol II) C-terminal domain (CTD) kinase-the positive transcription elongation factor complex (P-TEFb)-from the 7SK complex. Enhanced R-loops are linked to compromised proliferation of bone-marrow-derived blood progenitors, which can be partially rescued by RNase H overexpression, suggesting a direct contribution of augmented R-loops to the MDS phenotype.


Assuntos
Sequência de Bases/genética , Síndromes Mielodisplásicas/genética , Fatores de Processamento de RNA/genética , Pontos de Checagem do Ciclo Celular/genética , Células HEK293 , Humanos , Mutação , Proteínas Nucleares/genética , Fosfoproteínas/genética , Splicing de RNA/genética , Fatores de Processamento de RNA/metabolismo , Ribonucleoproteínas/genética , Fatores de Processamento de Serina-Arginina/genética , Fator de Processamento U2AF/genética
7.
J Biol Chem ; 300(3): 105735, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336298

RESUMO

One of the independent risk factors for atrial fibrillation is diabetes mellitus (DM); however, the underlying mechanisms causing atrial fibrillation in DM are unknown. The underlying mechanism of Atrogin-1-mediated SK2 degradation and associated signaling pathways are unclear. The aim of this study was to elucidate the relationship among reactive oxygen species (ROS), the NF-κB signaling pathway, and Atrogin-1 protein expression in the atrial myocardia of DM mice. We found that SK2 expression was downregulated comitant with increased ROS generation and enhanced NF-κB signaling activation in the atrial cardiomyocytes of DM mice. These observations were mimicked by exogenously applicating H2O2 and by high glucose culture conditions in HL-1 cells. Inhibition of ROS production by diphenyleneiodonium chloride or silencing of NF-κB by siRNA decreased the protein expression of NF-κB and Atrogin-1 and increased that of SK2 in HL-1 cells with high glucose culture. Moreover, chromatin immunoprecipitation assay demonstrated that NF-κB/p65 directly binds to the promoter of the FBXO32 gene (encoding Atrogin-1), regulating the FBXO32 transcription. Finally, we evaluated the therapeutic effects of curcumin, known as a NF-κB inhibitor, on Atrogin-1 and SK2 expression in DM mice and confirmed that oral administration of curcumin for 4 weeks significantly suppressed Atrogin-1 expression and protected SK2 expression against hyperglycemia. In summary, the results from this study indicated that the ROS/NF-κB signaling pathway participates in Atrogin-1-mediated SK2 regulation in the atria of streptozotocin-induced DM mice.


Assuntos
Diabetes Mellitus Experimental , Átrios do Coração , Proteínas Musculares , NF-kappa B , Espécies Reativas de Oxigênio , Proteínas Ligases SKP Culina F-Box , Transdução de Sinais , Canais de Potássio Ativados por Cálcio de Condutância Baixa , Animais , Camundongos , Fibrilação Atrial/etiologia , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Linhagem Celular , Imunoprecipitação da Cromatina , Curcumina/farmacologia , Curcumina/uso terapêutico , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Átrios do Coração/metabolismo , Átrios do Coração/fisiopatologia , Peróxido de Hidrogênio/farmacologia , Hiperglicemia/genética , Hiperglicemia/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miocárdio , Miócitos Cardíacos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Proteólise , Espécies Reativas de Oxigênio/metabolismo , RNA Interferente Pequeno , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo
8.
J Biol Chem ; 300(3): 105762, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367665

RESUMO

Long non-coding RNAs (LncRNAs) could regulate chemoresistance through sponging microRNAs (miRNAs) and sequestering RNA binding proteins. However, the mechanism of lncRNAs in rituximab resistance in diffuse large B-cell lymphoma (DLBCL) is largely unknown. Here, we investigated the functions and molecular mechanisms of lncRNA CHROMR in DLBCL tumorigenesis and chemoresistance. LncRNA CHROMR is highly expressed in DLBCL tissues and cells. We examined the oncogenic functions of lncRNA CHROMR in DLBCL by a panel of gain-or-loss-of-function assays and in vitro experiments. LncRNA CHROMR suppression promotes CD20 transcription in DLBCL cells and inhibits rituximab resistance. RNA immunoprecipitation, RNA pull-down, and dual luciferase reporter assay reveal that lncRNA CHROMR sponges with miR-27b-3p to regulate mesenchymal-epithelial transition factor (MET) levels and Akt signaling in DLBCL cells. Targeting the lncRNA CHROMR/miR-27b-3p/MET axis reduces DLBCL tumorigenesis. Altogether, these findings provide a new regulatory model, lncRNA CHROMR/miR-27b-3p/MET, which can serve as a potential therapeutic target for DLBCL.


Assuntos
Antineoplásicos Imunológicos , Carcinogênese , Resistencia a Medicamentos Antineoplásicos , Linfoma Difuso de Grandes Células B , MicroRNAs , Proteínas Proto-Oncogênicas c-met , RNA Longo não Codificante , Rituximab , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Rituximab/farmacologia , Rituximab/uso terapêutico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-met/metabolismo
9.
Plant J ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012276

RESUMO

The cutting technique is extensively used in tea breeding, with key emphasis on promoting the growth of adventitious roots (ARs). Despite its importance in tea cultivation, the mechanisms underlying AR development in tea remain unclear. In this study, we demonstrated the essential role of auxins in the initiation and progression of AR and established that the application of exogenous 1-naphthaleneacetic acid-enhanced AR formation in tissue-cultured seedlings and cuttings. Then, we found that the auxin-responsive transcription factor CsSPL9 acted as a negative regulator of AR development by reducing the levels of free indole-3-acetic acid (IAA) in tea plants. Furthermore, we identified CsGH3.4 as a downstream target of CsSPL9, which was activated by direct binding to its promoter. CsGH3.4 also inhibited AR development and maintained low levels of free IAA. Thus, these results revealed the inhibitory effect of the auxin-responsive CsSPL9-CsGH3.4 module on AR development by reducing free IAA levels in tea. These findings have significant theoretical and practical value for enhancing tea breeding practices.

10.
Development ; 149(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35588208

RESUMO

As one of the post-transcriptional regulatory mechanisms, uncoupling of transcription and translation plays an essential role in development and adulthood physiology. However, it remains elusive how thousands of mRNAs get translationally silenced while stability is maintained for hours or even days before translation. In addition to oocytes and neurons, developing spermatids display significant uncoupling of transcription and translation for delayed translation. Therefore, spermiogenesis represents an excellent in vivo model for investigating the mechanism underlying uncoupled transcription and translation. Through full-length poly(A) deep sequencing, we discovered dynamic changes in poly(A) length through deadenylation and re-polyadenylation. Deadenylation appeared to be mediated by microRNAs (miRNAs), and transcripts with shorter poly(A) tails tend to be sequestered into ribonucleoprotein (RNP) granules for translational repression and stabilization. In contrast, re-polyadenylation might allow for translocation of the translationally repressed transcripts from RNP granules to polysomes. Overall, our data suggest that miRNA-dependent poly(A) length control represents a previously unreported mechanism underlying uncoupled translation and transcription in haploid male mouse germ cells.


Assuntos
MicroRNAs , Poli A , Animais , Haploidia , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Poli A/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Espermátides/metabolismo
11.
Hepatology ; 79(2): 307-322, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37140231

RESUMO

BACKGROUND AIMS: Cholangiocarcinoma (CCA) is a highly lethal malignancy originating from the biliary ducts. Current CCA diagnostic and prognostic assessments cannot satisfy the clinical requirement. Bile detection is rarely performed, and herein, we aim to estimate the clinical significance of bile liquid biopsy by assessing bile exosomal concentrations and components. APPROACH RESULTS: Exosomes in bile and sera from CCA, pancreatic cancer, and common bile duct stone were identified and quantified by transmission electronmicroscopy, nanoparticle tracking analysis, and nanoFCM. Exosomal components were assessed by liquid chromatography with tandem mass spectrometry and microRNA sequencing (miRNA-seq). Bile exosomal concentration in different diseases had no significant difference, but miR-182-5p and miR-183-5p were ectopically upregulated in CCA bile exosomes. High miR-182/183-5p in both CCA tissues and bile indicates a poor prognosis. Bile exosomal miR-182/183-5p is secreted by CCA cells and can be absorbed by biliary epithelium or CCA cells. With xenografts in humanized mice, we showed that bile exosomal miR-182/183-5p promotes CCA proliferation, invasion, and epithelial-mesenchymal transition (EMT) by targeting hydroxyprostaglandin dehydrogenase in CCA cells and mast cells (MCs), and increasing prostaglandin E2 generation, which stimulates PTGER1 and increases CCA stemness. In single-cell mRNA-seq, hydroxyprostaglandin dehydrogenase is predominantly expressed in MCs. miR-182/183-5p prompts MC to release VEGF-A release from MC by increasing VEGF-A expression, which facilitates angiogenesis. CONCLUSIONS: CCA cells secret exosomal miR-182/183-5p into bile, which targets hydroxyprostaglandin dehydrogenase in CCA cells and MCs and increases prostaglandin E2 and VEGF-A release. Prostaglandin E2 promotes stemness by activating PTGER1. Our results reveal a type of CCA self-driven progression dependent on bile exosomal miR-182/183-5p and MCs, which is a new interplay pattern of CCA and bile.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , MicroRNAs , Humanos , Animais , Camundongos , Dinoprostona , MicroRNAs/genética , Bile/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Ductos Biliares Intra-Hepáticos/patologia , Hidroxiprostaglandina Desidrogenases/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
12.
Plant Physiol ; 195(1): 580-597, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38366880

RESUMO

Flower bud formation is a critical process that directly determines yield and fruit quality in fruit crops. Floral induction is modulated by the balance between 2 flowering-related proteins, FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1); however, the mechanisms underlying the establishment and maintenance of this dynamic balance remain largely elusive. Here, we showed that in apple (Malus × domestica Borkh.), MdFT1 is predominantly expressed in spur buds and exhibits an increase in expression coinciding with flower induction; in contrast, MdTFL1 exhibited downregulation in apices during flower induction, suggesting that MdTFL1 has a role in floral repression. Interestingly, both the MdFT1 and MdTFL1 transcripts are directly regulated by transcription factor basic HELIX-LOOP-HELIX48 (MdbHLH48), and overexpression of MdbHLH48 in Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) results in accelerated flowering. Binding and activation analyses revealed that MdbHLH48 functions as a positive regulator of MdFT1 and a negative regulator of MdTFL1. Further studies established that both MdFT1 and MdTFL1 interact competitively with MdWRKY6 protein to facilitate and inhibit, respectively, MdWRKY6-mediated transcriptional activation of target gene APPLE FLORICAULA/LFY (AFL1, an apple LEAFY-like gene), ultimately regulating apple flower bud formation. These findings illustrate the fine-tuned regulation of flowering by the MdbHLH48-MdFT1/MdTFL1-MdWRKY6 module and provide insights into flower bud formation in apples.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Malus , Proteínas de Plantas , Malus/genética , Malus/metabolismo , Malus/crescimento & desenvolvimento , Malus/fisiologia , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Plantas Geneticamente Modificadas , Redes Reguladoras de Genes , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Solanum lycopersicum/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
13.
FASEB J ; 38(13): e23737, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38953724

RESUMO

Meningiomas are the most common primary intracranial tumors and account for nearly 30% of all nervous system tumors. Approximately half of meningioma patients exhibit neurofibromin 2 (NF2) gene inactivation. Here, NF2 was shown to interact with the endoplasmic reticulum (ER) calcium (Ca2+) channel inositol 1,4,5-trisphosphate receptor 1 (IP3R1) in IOMM-Lee, a high-grade malignant meningioma cell line, and the F1 subdomain of NF2 plays a critical role in this interaction. Functional assays indicated that NF2 promotes the phosphorylation of IP3R (Ser 1756) and IP3R-mediated endoplasmic reticulum (ER) Ca2+ release by binding to IP3R1, which results in Ca2+-dependent apoptosis. Knockout of NF2 decreased Ca2+ release and promoted resistance to apoptosis, which was rescued by wild-type NF2 overexpression but not by F1 subdomain deletion truncation overexpression. The effects of NF2 defects on the development of tumors were further studied in mouse models. The decreased expression level of NF2 caused by NF2 gene knockout or mutation affects the activity of the IP3R channel, which reduces Ca2+-dependent apoptosis, thereby promoting the development of tumors. We elucidated the interaction patterns of NF2 and IP3R1, revealed the molecular mechanism through which NF2 regulates IP3R1-mediated Ca2+ release, and elucidated the new pathogenic mechanism of meningioma-related NF2 variants. Our study broadens the current understanding of the biological function of NF2 and provides ideas for drug screening of NF2-associated meningioma.


Assuntos
Apoptose , Sinalização do Cálcio , Cálcio , Receptores de Inositol 1,4,5-Trifosfato , Neoplasias Meníngeas , Meningioma , Animais , Humanos , Camundongos , Cálcio/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/genética , Meningioma/metabolismo , Meningioma/patologia , Meningioma/genética , Neurofibromina 2
14.
Mol Cell ; 68(4): 745-757.e5, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29104020

RESUMO

R-loop, a three-stranded RNA/DNA structure, has been linked to induced genome instability and regulated gene expression. To enable precision analysis of R-loops in vivo, we develop an RNase-H-based approach; this reveals predominant R-loop formation near gene promoters with strong G/C skew and propensity to form G-quadruplex in non-template DNA, corroborating with all biochemically established properties of R-loops. Transcription perturbation experiments further indicate that R-loop induction correlates to transcriptional pausing. Interestingly, we note that most mapped R-loops are each linked to a nearby free RNA end; by using a ribozyme to co-transcriptionally cleave nascent RNA, we demonstrate that such a free RNA end coupled with a G/C-skewed sequence is necessary and sufficient to induce R-loop. These findings provide a topological solution for RNA invasion into duplex DNA and suggest an order for R-loop initiation and elongation in an opposite direction to that previously proposed.


Assuntos
DNA/química , Ácidos Nucleicos Heteroduplexes/química , Regiões Promotoras Genéticas/fisiologia , RNA/química , Ribonuclease H/química , Transcrição Gênica , DNA/biossíntese , Células HEK293 , Humanos , Células K562 , Ácidos Nucleicos Heteroduplexes/metabolismo , RNA/biossíntese
15.
Nano Lett ; 24(1): 411-416, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38146896

RESUMO

We elucidate the flexoelectricity of semiconductors in the high strain gradient regime, the underlying mechanism of which is less understood. By using the generalized Bloch theorem, we uncover a strong flexoelectric-like effect in bent thinfilms of Si and Ge due to a high-strain-gradient-induced band gap closure. We show that an unusual type-II band alignment is formed between the compressed and elongated sides of the bent film. Therefore, upon the band gap closure, electrons transfer from the compressed side to the elongated side to reach the thermodynamic equilibrium, leading to a pronounced change of polarization along the film thickness dimension. The obtained transverse flexoelectric coefficients are unexpectedly high with a quadratic dependence on the film thickness. This new mechanism is extendable to other semiconductor materials with moderate energy gaps. Our findings have important implications for the future applications of flexoelectricity in semiconductor materials.

16.
Nano Lett ; 24(7): 2337-2344, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38341874

RESUMO

The interfacial structure holds great promise in suppressing dendrite growth and parasitic reactions of zinc metal in aqueous media. Current advancements prioritize novel component fabrication, yet the local crystal structure significantly impacts the interfacial properties. In addition, there is still a critical need for scalable synthesis methods for expediting the commercialization of aqueous zinc metal batteries (AZMBs). Herein, we propose a scalable concentration-controlled method for realizing crystalline to amorphous transformation of the Zn metal interface with exceptional scalability (>1 m2) and processing consistency (>30 trials). Theoretical and experimental analyses highlight the advantages of amorphous ZnO, which exhibits moderate adsorption energy, strong desolvation ability, and hydrophilicity. Employing the amorphous ZnO-coated zinc metal anode (AZO-Zn) significantly enhances the cycling performance, impressively maintaining 1000 cycles at 100 mA cm-2. The prototype AZO-Zn||MnO2@CNT pouch cell demonstrates a capacity of 15.7 mAh and maintains 91% of its highest capacity over 100 cycles, presenting promising avenues for the future commercialization of AZMBs.

17.
Nano Lett ; 24(13): 4020-4028, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517395

RESUMO

The use of electrolyte additives is an efficient approach to mitigating undesirable side reactions and dendrites. However, the existing electrolyte additives do not effectively regulate both the chaotic diffusion of Zn2+ and the decomposition of H2O simultaneously. Herein, a dual-parasitic method is introduced to address the aforementioned issues by incorporating 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIm]OTf) as cosolvent into the Zn(OTf)2 electrolyte. Specifically, the OTf- anion is parasitic in the solvent sheath of Zn2+ to decrease the number of active H2O. Additionally, the EMIm+ cation can construct an electrostatic shield layer and a hybrid organic/inorganic solid electrolyte interface layer to optimize the deposition behavior of Zn2+. This results in a Zn anode with a reversible cycle life of 3000 h, the longest cycle life of full cells (25,000 cycles), and an extremely high initial capacity (4.5 mA h cm-2), providing a promising electrolyte solution for practical applications of rechargeable aqueous zinc-ion batteries.

18.
Small ; : e2400879, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751069

RESUMO

Misfolding and aggregation of amyloid peptides into ß-structure-rich fibrils represent pivotal pathological features in various neurodegenerative diseases, including Alzheimer's disease (AD), type II diabetes (T2D), and medullary thyroid carcinoma (MTC). The development of effective amyloid detectors and inhibitors for probing and preventing amyloid aggregation is crucial for diagnosing and treating debilitating diseases, yet it poses significant challenges. Here, an aggregation-induced emission (AIE) molecule of ROF2 with multifaceted functionalities as an amyloid probe and a screening tool for amyloid inhibitors using different biophysical, cellular, and worm assays, are reported. As an amyloid probe, ROF2 outperformed ThT, demonstrating its superior sensing capability in monitoring, detecting, and distinguishing amyloid aggregates of different sequences (Amyloid-ß, human islet amyloid polypeptide, or human calcitonin) and sizes (monomers, oligomers, or fibrils). More importantly, the utilization of ROF2 as a screening molecule to identify and repurpose cardiovascular drugs as amyloid inhibitors is introduced. These drugs exhibit potent amyloid inhibition properties, effectively preventing amyloid aggregation and reducing amyloid-induced cytotoxicity both in cells and nematode. The findings present a novel strategy to discovery AIE-based amyloid probes and to be used to repurpose amyloid inhibitors, expanding diagnostic and therapeutic options for neurodegenerative diseases while addressing vascular congestion and amyloid aggregation risks.

19.
Small ; : e2402529, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767079

RESUMO

Unlocking CO2 capture potential remains a complex and challenging endeavor. Here, a blueprint is crafted for optimizing materials through CO2 capture and developing a synergistic hybridization strategy that involves synthesizing CO2-responsive hydrogels by integrating polymeric networks interpenetrated with polyethyleneimine (PEI) chains and inorganic CaCl2. Diverging from conventional CO2 absorbents, which typically serve a singular function in CO2 capture, these hybrid PEAC hydrogels additionally harness its presence to tune their optical and mechanical properties once interacting with CO2. Such synergistic functions entail two significant steps: (i) rapid CO2-fixing through PEI chains to generate abundant carbamic acid and carbamate species and (ii) mineralization via CaCl2 to induce the formation of CaCO3 micro-crystals within the hydrogel matrix. Due to the reversible bonding, the PEAC hydrogels enable the decoupling of CO2 through an acid fumigation treatment or a heating process, achieving dynamic CO2 capture-release cycles up to 8 times. Furthermore, the polyethyleneimine-acrylamide-calcium chloride (PEAC) hydrogel exhibits varying antibacterial attributes and high interfacial adhesive strength, which can be modulated by fine-tuning the compositions of PEI and CaCl2. This versatility underscores the promising potential of PEAC hydrogels, which not only unlocks CO2 capture capabilities but also offers opportunities in diverse biological and biomedical applications.

20.
Small ; 20(28): e2311731, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38321844

RESUMO

Wilderness adventure favored by many enthusiasts often endanger lives due to lacking freshwater or drinking contaminated water. Therefore, compared to the inefficient methods of filtration, steaming, and direct solar heating, it is of great meaningfulness to develop a solar-driven water purification device with efficiency, lightweight, portability, and multi-water-quality purification by taking full advantage of solar-driven interfacial evaporation. Here, a tent-inspired portable solar-driven water purification device consisting of Janus-structured bacterial cellulose aerogel (JBCA) solar evaporator and tent-type condensation recovery device is reported. For the JBCA solar evaporator, it is prepared from biomass bacterial cellulose (BC) as raw material and hydroxylated carbon nanotubes (HCNT) as photothermal material, and the Janus property is achieved by the assistance of hydrophobic and hydrophilic chemical cross-linking. It exhibits lightweight, unibody, high photothermal conversion, efficient evaporation, and multi-water-quality purification capability for representative seawater, urine, and bacterial river water. For the tent-type condensation recovery device, it is based on the prototype of tent and uses flexible ultra-transparent polyvinyl chloride (PVC) film as raw material. Thanks to the rational prototype and material selection, it displays outstanding portability and lightweight through the folding/unfolding method. Therefore, the designed tent-inspired portable solar-driven water purification device demonstrates great potential application in wilderness exploration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA