Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 1, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38167129

RESUMO

Successful oral insulin administration can considerably enhance the quality of life (QOL) of diabetes patients who must frequently take insulin injections. Oral insulin administration, on the other hand, is seriously hampered by gastrointestinal enzymes, wide pH range, mucus and mucosal layers, which limit insulin oral bioavailability to ≤ 2%. Therefore, a large number of technological solutions have been proposed to increase the oral bioavailability of insulin, in which polymeric nanoparticles (PNPs) are highly promising for oral insulin delivery. The recently published research articles chosen for this review are based on applications of PNPs with strong future potential in oral insulin delivery, and do not cover all related work. In this review, we will summarize the controlled release mechanisms of oral insulin delivery, latest oral insulin delivery applications of PNPs nanocarrier, challenges and prospect. This review will serve as a guide to the future investigators who wish to engineer and study PNPs as oral insulin delivery systems.


Assuntos
Insulina , Nanopartículas , Humanos , Sistemas de Liberação de Medicamentos/métodos , Qualidade de Vida , Polímeros , Administração Oral , Portadores de Fármacos
2.
Mikrochim Acta ; 190(10): 414, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37749328

RESUMO

A novel electrochemical method has been developed, based on a covalent organic framework (COF) and reduced graphene oxide (rGO), to detect fentanyl and alfentanil. COF nanomaterials with chrysanthemum morphology obtained by solvothermal reaction contain rich active sites for electrochemical catalytic reaction, thus improving the detection performance of the designed sensor. Reduced graphene oxide improves the sensor's sensitivity due to enhanced electron transfer. Under optimized experimental conditions, the fabricated electrode presents a linear range of 0.02 to 7.26 µM for alfentanil and 0.1 to 6.54 µM for fentanyl, with detection limits of 6.7 nM and 33 nM, respectively. In addition, the sensor possesses excellent selectivity, outstanding reproducibility, and acceptable stability. The proposed sensor is feasible for the reliable monitoring of fentanyl and alfentanil in human serum samples, with acceptable reliability and high potential in real-world applications. Finally, the electrochemical characteristic fingerprint of fentanyl is investigated by studying the electrochemical behavior of alfentanil and fentanyl on the electrode surface.


Assuntos
Técnicas Biossensoriais , Fentanila , Humanos , Alfentanil , Reprodutibilidade dos Testes , Limite de Detecção , Técnicas Biossensoriais/métodos
3.
Int J Mol Sci ; 24(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37373018

RESUMO

The construction of a genetic circuit requires the substitution and redesign of different promoters and terminators. The assembly efficiency of exogenous pathways will also decrease significantly when the number of regulatory elements and genes is increased. We speculated that a novel bifunctional element with promoter and terminator functions could be created via the fusion of a termination signal with a promoter sequence. In this study, the elements from a Saccharomyces cerevisiae promoter and terminator were employed to design a synthetic bifunctional element. The promoter strength of the synthetic element is apparently regulated through a spacer sequence and an upstream activating sequence (UAS) with a ~5-fold increase, and the terminator strength could be finely regulated by the efficiency element, with a ~5-fold increase. Furthermore, the use of a TATA box-like sequence resulted in the adequate execution of both functions of the TATA box and the efficiency element. By regulating the TATA box-like sequence, UAS, and spacer sequence, the strengths of the promoter-like and terminator-like bifunctional elements were optimally fine-tuned with ~8-fold and ~7-fold increases, respectively. The application of bifunctional elements in the lycopene biosynthetic pathway showed an improved pathway assembly efficiency and higher lycopene yield. The designed bifunctional elements effectively simplified pathway construction and can serve as a useful toolbox for yeast synthetic biology.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Licopeno/metabolismo , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
4.
Metab Eng ; 70: 143-154, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35091067

RESUMO

Plant flavonoids are secondary metabolites containing a benzo-γ-pyrone structure, which are widely present in plants and have a variety of physiological and pharmacological activities. However, current flavonoid production from plant extraction or chemical synthesis does not meet the requirements of green and sustainable development. Fortunately, microbial synthesis of flavonoids has shown the potential for large-scale production with the advantages of being controllable and environmentally friendly, and a variety of microorganisms have been developed as microbial cell factories (MCFs) to synthesize plant flavonoids owing to the feasibility of genetic manipulations. However, most of MCFs have not yet been commercialized and industrialized because of the challenges posed by unbalanced metabolic flux among various pathways and conflict between cell growth and production. Here, strategies for coping with the challenges are summarized in terms of enzymes, pathways, metabolic networks, host cells. And combined with protein structure prediction, de novo protein design, artificial intelligence (AI), biocatalytic retrosynthesis, and intelligent stress resistance, it provides new insights for the high efficient production of plant flavonoids and other plant natural products in MCFs.


Assuntos
Flavonoides , Engenharia Metabólica , Inteligência Artificial , Redes e Vias Metabólicas , Plantas/genética , Plantas/metabolismo
5.
Nanotechnology ; 34(4)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36265415

RESUMO

Triethylamine (TEA) exists widely in production and life and is extremely volatile, which seriously endangers human health. It is required to develop high-performance TEA sensors to protect human health. We fabricated Pt-Co3O4/WO3based on our previous work, and the performance was tested against volatile organic compounds. Compared with the previous work, its operating temperature was greatly reduced from 240 °C to 180 °C. The response value of Pt-Co3O4/WO3was increased from 1101 to 1532 for 10 ppm TEA with good selectivity. These results show a significant step toward practical use of the Pt-Co3O4/WO3sensor.

6.
Nanotechnology ; 32(50)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34587592

RESUMO

Trace poisonous and harmful gases in the air have been harming and affecting people's health for a long time. At present, effective and accurate detection of ppb-level harmful gas is still a bottleneck to be overcome. Herein, we report a ppb-level triethylamine (TEA) gas sensor based on p-n heterojunction of Co3O4/WO3, which is prepared with ZIF-67 as the precursor and provides Co3O4deposited tungsten oxide flower-like structure. Due to the introduction of Co3O4and the 3D flower-like structure of WO3, the Co3O4/WO3-2 gas sensor shows excellent gas sensing performance (1101 for 10 ppm at 240 °C), superb selectivity, good long-term stability and linear response for TEA concentration. Moreover, the experimental results indicate that the Co3O4/WO3-2 gas sensor also possesses a good response to 50 ppb TEA, in fact, the theoretical limit of detection is 0.6 ppb. Co3O4not only improves the efficiency of electron separation/transport, but also accelerates the oxidation rate of TEA. This method of synthesizing p-n heterojunction with ZIF as the precursor provides a new idea and method for the preparation of low detection limit gas sensors.

7.
Chembiochem ; 20(18): 2383-2389, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-30974044

RESUMO

The design of improved synthetic components is an important research field in synthetic biology. The terminator, responsible for terminating gene transcription, is a necessary component for yeast gene expression. The efficiency element, the positioning element and the poly(A) site have been identified as the constituent parts necessary for the yeast terminator to perform its function. However, the functions of linker 1 (situated between the efficiency element and the positioning element) and linker 2 [between the positioning element and the poly(A) site] in the terminator are still controversial. Here, we have thus designed and synthesized a yeast synthetic terminator library incorporating random 10 bp linker 1 units. For indirect characterization of the strengths of 266 synthetic terminators with the aid of the enhanced green fluorescent protein (eGFP), their fluorescence intensity (FI) values were determined; they ranged from 2.3648 to 3.5270, thus indicating that the strength of yeast terminator can be finely adjusted by changing the linker 1 sequence. The strength increased with decreasing GC content in linker 1, with a T-rich linker 1 helping to enhance terminator strength further. Reducing the stem length can increase the gene expression in cases of weak and medium-strength terminators but decreases the gene expression of strong terminators. Deletion of linker 2 seems to have a positive effect on weak and medium-strength terminators. Construction of a lycopene biosynthesis pathway with synthetic terminators effectively regulated lycopene synthesis, thus indicating that it is highly feasible to use terminators for fine regulation of gene and pathway expression.


Assuntos
DNA/genética , Expressão Gênica , Regiões Terminadoras Genéticas , Engenharia Celular/métodos , DNA/síntese química , Biblioteca Gênica , Sequências Repetidas Invertidas , Licopeno/metabolismo , Estudo de Prova de Conceito , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
Metab Eng ; 45: 43-50, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29196123

RESUMO

Glycyrrhetinic acid (GA) and its precursor, 11-oxo-ß-amyrin, are typical triterpenoids found in the roots of licorice, a traditional Chinese medicinal herb that exhibits diverse functions and physiological effects. In this study, we developed a novel and highly efficient pathway for the synthesis of GA and 11-oxo-ß-amyrin in Saccharomyces cerevisiae by introducing efficient cytochrome P450s (CYP450s: Uni25647 and CYP72A63) and pairing their reduction systems from legume plants through transcriptome and genome-wide screening and identification. By increasing the copy number of Uni25647 and pairing cytochrome P450 reductases (CPRs) from various plant sources, the titers of 11-oxo-ß-amyrin and GA were increased to 108.1 ± 4.6mg/L and 18.9 ± 2.0mg/L, which were nearly 1422-fold and 946.5-fold higher, respectively, compared with previously reported data. To the best of our knowledge, these are the highest titers reported for GA and 11-oxo-ß-amyrin from S. cerevisiae, indicating an encouraging and promising approach for obtaining increased GA and its related triterpenoids without destroying the licorice plant or the soil ecosystem.


Assuntos
Sistema Enzimático do Citocromo P-450 , Fabaceae/genética , Ácido Glicirretínico/metabolismo , Ácido Oleanólico/análogos & derivados , Proteínas de Plantas , Saccharomyces cerevisiae , Sistema Enzimático do Citocromo P-450/biossíntese , Sistema Enzimático do Citocromo P-450/genética , Fabaceae/enzimologia , Ácido Oleanólico/biossíntese , Ácido Oleanólico/genética , Oxirredução , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
9.
Chembiochem ; 18(24): 2422-2427, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29058813

RESUMO

Terminators in eukaryotes play an important role in regulating the transcription process by influencing mRNA stability, translational efficiency, and localization. Herein, the strengths of 100 natural terminators in Saccharomyces cerevisiae have been characterized by inserting each terminator downstream of the TYS1p-enhanced green fluorescent protein (eGFP) reporter gene and measuring the fluorescent intensity (FI) of eGFP. Within this library, there are 45 strong terminators, 31 moderate terminators, and 24 weak terminators. The strength of these terminators, relative to that of PGK1t standard terminator, ranges from 0.0613 to 1.8002, with a mean relative FI of 0.9945. Mutating the control elements of terminators further suggests that the efficiency element has an important effect on terminator strength. The use of strong terminators will result in an enhanced level of mRNA and protein production; this indicates that gene expression can be directly influenced by terminator selection. Pairing a terminator with an inducible promoter or a strong constitutive promoter has less effect on gene expression; however, pairing with a week promoter will significantly increase the level of gene expression. Through exchange of the reporter genes, it can be demonstrated that the terminator functions as a genetic component and is independent of the coding region. This work demonstrates that the terminator is an important regulatory element and can be considered in applications for the fine-tuning of gene expression and metabolic pathways.


Assuntos
Saccharomyces cerevisiae/genética , Regiões Terminadoras Genéticas/genética , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico
10.
Ecotoxicol Environ Saf ; 122: 178-85, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26241314

RESUMO

In this study, the effect of direct atomization and spraying a ferric chloride (FeCl3) solution to decrease the arsenic concentration and its pollution in Yangzonghai Lake, China, was investigated. Ten ships were used for spraying 6-8t of FeCl3 in the lake every day since October 2009. After spraying, the average concentration of arsenic in Yangzonghai Lake, which has an area of 31 km(2), an average depth of 20 m, and a water storage capacity of 604 million m(3), started to decrease from 0.117 mg L(-1). On 20 September 2010, the lowest arsenic level of 0.021 mg L(-1) was attained, with an arsenic removal rate as high as 82.0%. However, the source of pollution was not eliminated, and local rainfall mainly occurred in September; hence, arsenic concentration from October to December increased to 0.078 mg L(-1). At the beginning of 2011, the As concentration decreased and remained at 0.025-0.028 mg L(-1) from May to September. During the 2 years of FeCl3 treatment, the water quality improved from V Class to II-III Class of the Chinese standards, which remained consistent for 12 months. The total cost for this in situ water treatment was 29 million RMB, which was less than a hundredth of the expected expenditure of 4-7 billion RMB. The treatment method achieved goals such as high arsenic removal rate, easy operation, low cost, and ecological security. In this study, the changing patterns of the concentration of arsenic in Yangzonghai Lake from June 2008 to December 2014 were analyzed, and the following problems were discussed: the stability of iron-arsenic precipitates in the lake, the concentrations of ferric and chloride ions in the lake, the pH of the lake during treatment, the stability of iron-arsenic precipitates in the lakebed sediments, and the variation of phytoplankton species in the lake.


Assuntos
Arsênio/química , Cloretos/química , Recuperação e Remediação Ambiental/métodos , Compostos Férricos/química , Poluentes Químicos da Água/química , Arsênio/análise , China , Lagos , Poluentes Químicos da Água/análise , Poluição da Água/análise , Purificação da Água/métodos
11.
J Environ Sci (China) ; 26(5): 1203-11, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25079652

RESUMO

Removal of noxious dyes is gaining public and technological attention. Herein grafting polymerization was employed to produce a novel adsorbent using acrylic acid and carboxymethyl cellulose for dye removal. Scanning electron microscopy and Fourier-transform infrared spectroscopy verified the adsorbent formed under optimized reaction conditions. The removal ratio of adsorbent to Methyl Orange, Disperse Blue 2BLN and malachite green chloride reached to 84.2%, 79.6% and 99.9%, respectively. The greater agreement between the calculated and experimental results suggested that pseudo second-order kinetic model better represents the kinetic adsorption data. Equilibrium adsorptions of dyes were better explained by the Temkin isotherm. The results implied that this new cellulose-based absorbent had the universality for removal of dyes through the chemical adsorption mechanism.


Assuntos
Acrilatos/química , Carboximetilcelulose Sódica/química , Corantes/química , Poluentes Químicos da Água/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura
12.
Int J Biol Macromol ; : 133805, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38996885

RESUMO

Successful oral insulin administration can considerably enhance the quality of life (QOL) of diabetes patients who must frequently take insulin injections. However, Oral insulin administration is seriously hampered by gastrointestinal enzymes, wide pH range, mucus and mucosal layers, which limit insulin oral bioavailability to ≤2 %. Herein, we developed a simple, inexpensive and safe dual ß-cyclodextrin/dialdehyde glucan-coated keratin nanoparticle (ß-CD-K-IN-DG). The resulted ß-CD-K-IN-DG not only gave the ultra-high insulin loading (encapsulation efficiency (98.52 %)), but also protected insulin from acid and enzymatic degradation. This ß-CD-K-IN-DG had a notable hypoglycemic effect, there was almost 80 % insulin release after 4 h of incubation under hyperglycemic conditions. Ex vivo results confirmed that ß-CD-K-IN-DG possessed high mucus-penetration ability. Transepithelial transport and uptake mechanism studies revealed that bypass transport pathway and endocytosis promoted ß-CD-K-IN-DG entered intestinal epithelial cells, thus increased the bioavailability of insulin (12.27 %). The improved stability of insulin during in vivo transport implied that ß-CD-K-IN-DG might be a potential tool for the effective oral insulin administration.

13.
J Transl Med ; 11: 272, 2013 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-24159927

RESUMO

BACKGROUND: The La-related protein 1 (LARP1) has been found to be a RNA binding protein and was related to spermatogenesis, embryogenesis and cell-cycle progression. The aim of this study was to investigate the prognostic value of LARP1 in hepatocellular carcinoma (HCC). METHODS: LARP1 expression was examined in 15 HCC cell lines and 272 clinical specimens using real-time PCR, immunohistochemistry (IHC) and western blot analysis (WB). LARP1 expression was also studied in 6 paired HCC lesions and the adjacent non-cancerous tissue samples. Statistical analyses were applied to derive association between LARP1 expression scores and clinical characters as well as patient survival. RESULTS: mRNA and protein levels of LARP1 were higher in HCC cell lines and HCC lesions than in normal liver epithelial cells and the paired adjacent noncancerous tissues. LARP1 expression was correlated to survival time, vital status, tumor size and Child-Pugh score. Overall survival analysis showed HCC patients with high LARP1 expression level had lower survival rate (P<0.01). Importantly, this correlation remained significant in patients with early-stage HCC or with normal serum AFP level. CONCLUSIONS: LARP1 protein may represent a promising biomarker for predicting the prognosis of HCC, including in early-stage and AFP-normal patients.


Assuntos
Autoantígenos/fisiologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Ribonucleoproteínas/fisiologia , alfa-Fetoproteínas/metabolismo , Sequência de Bases , Western Blotting , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Primers do DNA , Feminino , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Antígeno SS-B
14.
Biosens Bioelectron ; 226: 115134, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36780720

RESUMO

Ketamine is an organic drug with weak electrochemical activity, which makes it difficult to directly detect by electrochemical methods. Herein, an electrochemical sensor, with excellent detection sensitivity, is proposed for direct detection of ketamine based on a weakly conductive poly-L-cysteine molecularly imprinted membrane. Poly-L-cysteine molecularly imprinted membrane sensor (poly-L-Cys-KT-MIM/GCE) is obtained using L-cysteine as a functional monomer and ketamine as a template molecule based on electropolymerization. The green and highly active cysteine is selected as a functional monomer during electropolymerization, which cannot only achieve specific recognition but also improve detection sensitivity. Furthermore, the oxidation mechanism and fingerprint of ketamine on the electrode surface are established by analyzing the corresponding oxidation products using high/resolution mass spectrometry, which will help to promote the application of electrochemistry in the rapid detection of drugs. Under optimal conditions, the as-designed sensor demonstrated a linear response to ketamine within the range of 5.0 × 10-7 to 2.0 × 10-5 mol L-1 and a detection limit of 1.6 × 10-7 mol L-1. The proposed method exhibited excellent performance from the viewpoints of selectivity, sensitivity and stability. Notably, the sensor rendered excellent reliability and could be used for the detection of target analytes in hair and urine samples with high recovery rates.


Assuntos
Técnicas Biossensoriais , Ketamina , Impressão Molecular , Cisteína , Reprodutibilidade dos Testes , Impressão Molecular/métodos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Limite de Detecção
15.
Gut Microbes ; 15(2): 2276814, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37948152

RESUMO

Low molecular weight (6.5 kDa) Glycyrrhiza polysaccharide (GP) exhibits good immunomodulatory activity, however, the mechanism underlying GP-mediated regulation of immunity and gut microbiota remains unclear. In this study, we aimed to reveal the mechanisms underlying GP-mediated regulation of immunity and gut microbiota using cyclophosphamide (CTX)-induced immunosuppressed and intestinal mucosal injury models. GP reversed CTX-induced intestinal structural damage and increased the number of goblet cells, CD4+, CD8+ T lymphocytes, and mucin content, particularly by maintaining the balance of helper T lymphocyte 1/helper T lymphocyte 2 (Th1/Th2). Moreover, GP alleviated immunosuppression by down-regulating extracellular regulated protein kinases/p38/nuclear factor kappa-Bp50 pathways and increasing short-chain fatty acids level and secretion of cytokines, including interferon-γ, interleukin (IL)-4, IL-2, IL-10, IL-22, and transforming growth factor-ß3 and immunoglobulin (Ig) M, IgG and secretory immunoglobulin A. GP treatment increased the total species and diversity of the gut microbiota. Microbiota analysis showed that GP promoted the proliferation of beneficial bacteria, including Muribaculaceae_unclassified, Alistipes, Lachnospiraceae_NK4A136_group, Ligilactobacillus, and Clostridia_vadinBB60_group, and reduced the abundance of Proteobacteria and CTX-derived bacteria (Clostridiales_unclassified, Candidatus_Arthromitus, Firmicutes_unclassified, and Clostridium). The studies of fecal microbiota transplantation and the pseudo-aseptic model conformed that the gut microbiota is crucial in GP-mediated immunity regulation. GP shows great potential as an immune enhancer and a natural medicine for treating intestinal inflammatory diseases.


Assuntos
Microbioma Gastrointestinal , Glycyrrhiza , Microbioma Gastrointestinal/fisiologia , Peso Molecular , Polissacarídeos/farmacologia , Imunidade
16.
Artigo em Inglês | MEDLINE | ID: mdl-37348645

RESUMO

Plasmalogens (Pls) are vinyl-ether bond-containing glycerophospholipids or glycosyl diradyl glycerols, and are of great importance in the physiological functions and stability of cell membrane. Here, we identified and characterized that the plasmalogen synthase MeHAD from anaerobic Megasphaera elsdenii was responsible for vinyl-ether bond formation. Different from the 2-hydroxyacyl-CoA dehydratase (HAD) family plasmalogen synthase PlsA-PlsR which are encoded by two genes in Clostridium perfringens, the HAD homolog (MeHAD) encoded by a single gene MELS_0169 was found in M. elsdenii. By heterologous expression of the MeHAD gene into a nonplasmalogen-producing Escherichia coli strain, the expressed MeHAD was found to be located in the cell membrane region. Plasmalogens were detected in the recombinant strain using GC-MS and LC-MS, demonstrating that MeHAD was the key enzyme for plasmalogen synthesis. Moreover, the synthesized plasmalogens could enhance the oxidative stress-resistance and osmotic pressure-resistance of the recombinant strain, probably due to the ROS scavenging and decreased membrane permeability by the plasmalogens, respectively. The four-cysteine (Cys125, Cys164, Cys445 and Cys484) site-mutant of MeHAD, which were predicted binding to the [4Fe-4S] cluster, was unable to synthesize plasmalogens, indicating that the cysteines are important for the catalytic activity of MeHAD. Our results revealed the single gene encoded plasmalogen synthase in M. elsdenii and established a recombinant E. coli strain with plasmalogen production potential.


Assuntos
Megasphaera elsdenii , Plasmalogênios , Plasmalogênios/metabolismo , Megasphaera elsdenii/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Éteres
17.
Polymers (Basel) ; 14(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35956731

RESUMO

In recent years, natural polysaccharides have been considered as the ideal candidates for novel drug delivery systems because of their good biocompatibility, biodegradation, low immunogenicity, renewable source and easy modification. These natural polymers are widely used in the designing of nanocarriers, which possess wide applications in therapeutics, diagnostics, delivery and protection of bioactive compounds or drugs. A great deal of studies could be focused on developing polysaccharide nanoparticles and promoting their application in various fields, especially in biomedicine. In this review, a variety of polysaccharide-based nanocarriers were introduced, including nanoliposomes, nanoparticles, nanomicelles, nanoemulsions and nanohydrogels, focusing on the latest research progress of these nanocarriers in the treatment of diabetes and the possible strategies for further study of polysaccharide nanocarriers.

18.
Anal Chim Acta ; 1217: 340025, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35690426

RESUMO

Detection technology for the determination of drugs, such as ketamine (KT), in sewage is of great significance in drug inspection and criminal investigation. Herein, we propose the utilization of ketamine magnetic molecularly imprinted polymers (Fe3O4@MIPs) as a target molecule identification and concentration container coupled with magnetic glassy carbon electrode (mGCE) for KT detection in sewage. Molecular simulations were employed to evaluate the most suitable monomer and ratio of functional monomer to template. Fe3O4@MIPs were prepared using microwave-assisted synthesis and possessed a "shell-core" structure with good recognition ability, superior adsorption capacity and fast kinetics toward KT. Additionally, a novel imprinted electrochemical sensor was constructed based on the magnetism of Fe3O4@MIPs for efficient monitoring of low concentrations of KT. The morphology and properties of Fe3O4@MIPs/mGCE were effectively characterized by element mapping, transmission electron microscopy, cyclic voltammetry and square wave voltammetry. KT detection was performed by square wave voltammetry within the range of 1.0 × 10-12 and 4.0 × 10-4 mol L-1, and the limit of detection was 8.0 × 10-13 mol L-1. Furthermore, Fe3O4@MIPs/mGCE was successfully tested for KT determination in domestic sewage samples.


Assuntos
Ketamina , Nanopartículas de Magnetita , Impressão Molecular , Adsorção , Nanopartículas de Magnetita/química , Micro-Ondas , Esgotos
19.
Front Nutr ; 9: 918240, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782944

RESUMO

Rhodotorula glutinis, as a member of the family Sporidiobolaceae, is of great value in the field of biotechnology. However, the evolutionary relationship of R. glutinis X-20 with Rhodosporidiobolus, Sporobolomyces, and Rhodotorula are not well understood, and its metabolic pathways such as carotenoid biosynthesis are not well resolved. Here, genome sequencing and comparative genome techniques were employed to improve the understanding of R. glutinis X-20. Phytoene desaturase (crtI) and 15-cis-phytoene synthase/lycopene beta-cyclase (crtYB), key enzymes in carotenoid pathway from R. glutinis X-20 were more efficiently expressed in S. cerevisiae INVSc1 than in S. cerevisiae CEN.PK2-1C. High yielding engineered strains were obtained by using synthetic biology technology constructing carotenoid pathway in S. cerevisiae and optimizing the precursor supply after fed-batch fermentation with palmitic acid supplementation. Genome sequencing analysis and metabolite identification has enhanced the understanding of evolutionary relationships and metabolic pathways in R. glutinis X-20, while heterologous construction of carotenoid pathway has facilitated its industrial application.

20.
ACS Appl Mater Interfaces ; 14(50): 55780-55786, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36475592

RESUMO

Bismuth-telluride-based thermoelectric materials have been applied in active room-temperature cooling, but the mediocre ZT value of ∼1.0 limits the thermoelectric (TE) device's conversion efficiency and determines its application. In this work, we show the obviously improved thermoelectric properties of p-type Bi0.5Sb1.5Te3 by the Cu8GeSe6 composite. The addition of Cu8GeSe6 effectively boosts the carrier concentration and thus limits the bipolar thermal conductivity as the temperature is elevated. With the Cu8GeSe6 content of 0.08 wt %, the hole concentration reaches 5.0 × 1019 cm-3 and the corresponding carrier mobility is over 160 cm2 V-1 s-1, resulting in an optimized power factor of over 42 µW cm-1 K-2 at 300 K. Moreover, the Cu8GeSe6 composite introduces multiple phonon-scattering centers by increasing dislocations and element and strain field inhomogeneities, which reduce the thermal conductivity consisting of a lattice contribution and a bipolar contribution to 0.51 W m-1 K-1 at 350 K. As a consequence, the peak ZT of the Bi0.5Sb1.5Te3-0.08 wt % Cu8GeSe6 composite reaches 1.30 at 375 K and the average ZT between 300 and 500 K is improved to 1.13. A thermoelectric module comprised of this composite and commercial Bi2Te2.5Se0.5 exhibits a conversion efficiency of 5.3% with a temperature difference of 250 K, demonstrating the promising applications in low-grade energy recovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA