Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 95(50): 18426-18435, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38051938

RESUMO

Non-small cell lung cancer (NSCLC) accounts for a high proportion of lung cancer cases globally, but early detection remains challenging, and insufficient oxygen supply at tumor sites leads to suboptimal treatment outcomes. Therefore, the development of core-shell Au@Pt-Se nanoprobes (Au@Pt-Se NPs) with peptide chains linked through Pt-Se bonds was designed and synthesized for NSCLC biomarker protein calcium-activated neutral protease 2 (CAPN2) and photothermal therapy (PTT) enhancement. The NP can be specifically cleaved by CAPN2, resulting in fluorescence recovery to realize the detection. The Pt-Se bonds exhibit excellent resistance to biologically abundant thiols such as glutathione, thus avoiding "false-positive" results and enabling precise detection of NSCLC. Additionally, the platinum (Pt) shell possesses catalase-like properties that catalyze the generation of oxygen from endogenous hydrogen peroxide within the tumor, thereby reducing hypoxia-inducible factor-1α (HIF-1α) levels and alleviating the hypoxic environment at the tumor site. The Au@Pt-Se NPs exhibit strong absorption bands, enabling the possibility of PTT in the near-infrared II region (NIR II). This study presents an effective approach for the early detection of NSCLC while also serving as an oxygen supplier to alleviate the hypoxic environment and enhance NIR II PTT.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Carcinoma Pulmonar de Células não Pequenas/terapia , Platina/química , Neoplasias Pulmonares/terapia , Neoplasias/patologia , Oxigênio , Linhagem Celular Tumoral , Nanopartículas/química
2.
PLoS Pathog ; 17(7): e1009769, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34265026

RESUMO

The virulence evolution of multiple infections of parasites from the same species has been modeled widely in evolution theory. However, experimental studies on this topic remain scarce, particularly regarding multiple infections by different parasite species. Here, we characterized the virulence and community dynamics of fungal pathogens on the invasive plant Ageratina adenophora to verify the predictions made by the model. We observed that A. adenophora was highly susceptible to diverse foliar pathogens with mixed vertical and horizontal transmission within leaf spots. The transmission mode mainly determined the pathogen community structure at the leaf spot level. Over time, the pathogen community within a leaf spot showed decreased Shannon diversity; moreover, the vertically transmitted pathogens exhibited decreased virulence to the host A. adenophora, but the horizontally transmitted pathogens exhibited increased virulence to the host. Our results demonstrate that the predictions of classical models for the virulence evolution of multiple infections are still valid in a complex realistic environment and highlight the impact of transmission mode on disease epidemics of foliar fungal pathogens. We also propose that seedborne fungi play an important role in structuring the foliar pathogen community from multiple infections within a leaf spot.


Assuntos
Ageratina/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Micoses/transmissão , Doenças das Plantas , Coinfecção/microbiologia , Coinfecção/transmissão , Transmissão de Doença Infecciosa , Transmissão Vertical de Doenças Infecciosas , Virulência
3.
Appl Environ Microbiol ; 89(10): e0109323, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37815356

RESUMO

Climate change, microbial endophytes, and local plants can affect the establishment and expansion of invasive species, yet no study has been performed to assess these interactions. Using a growth chamber, we integrated the belowground (rhizosphere soils) and aboveground (mixture of mature leaf and leaf litter) microbiota into an experimental framework to evaluate the impacts of four native plants acting as microbial inoculation sources on endophyte assembly and growth of the invasive plant Ageratina adenophora in response to drought stress and temperature change. We found that fungal and bacterial enrichment in the leaves and roots of A. adenophora exhibited distinct patterns in response to climatic factors. Many fungi were enriched in roots in response to high temperature and drought stress; in contrast, many bacteria were enriched in leaves in response to low temperature and drought stress. Inoculation of microbiota from phylogenetically close native plant species (i.e., Asteraceae Artemisia atrovirens) causes the recipient plant A. adenophora (Asteraceae) to enrich dominant microbial species from inoculation sources, which commonly results in a lower dissimilar endophytic microbiota and thus produces more negative growth effects when compared to non-Asteraceae inoculations. Drought, microbial inoculation source, and temperature directly impacted the growth of A. adenophora. Both drought and inoculation also indirectly impacted the growth of A. adenophora by changing the root endophytic fungal assembly. Our data indicate that native plant identity can greatly impact the endophyte assembly and host growth of invasive plants, which is regulated by drought and temperature.IMPORTANCEThere has been increasing interest in the interactions between global changes and plant invasions; however, it remains to quantify the role of microbial endophytes in plant invasion with a consideration of their variation in the root vs leaf of hosts, as well as the linkages between microbial inoculations, such as native plant species, and climatic factors, such as temperature and drought. Our study found that local plants acting as microbial inoculants can impact fungal and bacterial enrichment in the leaves and roots of the invasive plant Ageratina adenophora and thus produce distinct growth effects in response to climatic factors; endophyte-mediated invasion of A. adenophora is expected to operate more effectively under favorable moisture. Our study is important for understanding the interactions between climate change, microbial endophytes, and local plant identity in the establishment and expansion of invasive species.


Assuntos
Ageratina , Asteraceae , Endófitos/fisiologia , Plantas/microbiologia , Ageratina/fisiologia , Espécies Introduzidas , Bactérias , Raízes de Plantas/microbiologia , Microbiologia do Solo
4.
Microb Ecol ; 86(3): 2192-2201, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37166500

RESUMO

To understand the disease-mediated invasion of exotic plants and the potential risk of disease transmission in local ecosystems, it is necessary to characterize population genetic structure and spatio-temporal dynamics of fungal community associated with both invasive and co-occurring plants. In this study, multiple genes were used to characterize the genetic diversity of 165 strains of Colletotrichum gloeosporioides species complex (CGSC) isolated from healthy leaves and symptomatic leaves of invasive plant Ageratina adenophora, as well as symptomatic leaves of its neighbor plants from eleven geographic sites in China. The data showed that these CGSC strains had a high genetic diversity in each geographic site (all Hd > 0.67 and Pi > 0.01). Haplotype diversity and nucleotide diversity varied greatly in individual gene locus: gs had the highest haplotype diversity (Hd = 0.8972), gapdh had the highest nucleotide diversity (Pi = 0.0705), and ITS had the lowest nucleotide diversity (Pi = 0.0074). Haplotypes were not clustered by geographic site, invasive age, or isolation source. AMOVA revealed that the genetic variation was mainly from within-populations, regardless of geographic or isolation origin. Both AMOVA and neutrality tests indicated these CGSC strains occurred gene exchange among geographic populations but did not experience population expansion along with A. adenophora invasion progress. Our data indicated that A. adenophora primarily accumulated these CGSC fungi in the introduced range, suggesting a high frequency of CGSC transmission between A. adenophora and co-occurring neighbor plants. This study is valuable for understanding the disease-mediated plant invasion and the potential risk of disease transmission driven by exotic plants in local ecosystems.


Assuntos
Ageratina , Colletotrichum , Ageratina/genética , Ageratina/microbiologia , Espécies Introduzidas , Ecossistema , Colletotrichum/genética
5.
Curr Microbiol ; 80(4): 129, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36884095

RESUMO

During an investigation of the fungal pathogens associated with the invasive weed Ageratina adenophora from China, some interesting isolates were obtained from healthy leaf, leaf spot, and roots of this weed. Among them, a novel genus Mesophoma, containing two novel species M. speciosa and M. ageratinae, was found. Phylogenetic analysis of the combined, the internal transcribed spacer (ITS), large nuclear subunit ribosomal DNA (LSU), the RNA polymerase II second largest subunit (rpb2), and the partial ß-tubulin (tub2) sequences, showed that M. speciosa and M. ageratinae formed a distinct clade far from all genera previously described in the family Didymellaceae. Combined distinctive morphological characters, including smaller and aseptate conidia when comparing with nearby genera Stagonosporopsis, Boeremia, and Heterphoma, allowed us to describe them as novel species belonging to a novel genus Mesophoma. The full descriptions, illustrations, and a phylogenetic tree showing the position of both M. speciosa and M. ageratinae are provided in this paper. Moreover, the potential for two strains belonging to these two species to be developed into a biocontrol for the spread of the invasive weed Ag. adenophora is also discussed.


Assuntos
Ascomicetos , Filogenia , DNA Fúngico/genética , DNA Ribossômico/genética , Ascomicetos/genética , China
6.
Molecules ; 27(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080331

RESUMO

Endophytes and their elicitors can all be utilized in regulating crop biochemical qualities. However, living endophytes and their derived elicitors are always applied separately; little is known about the similarities and differences of their effects. To increase the efficiency of this system when applied in practice, the present work profiled simultaneously the metabolomes in grape cells exposed to endophytic fungi (EF) and their corresponding fungal extracts (CFE). As expected, grape cells exposed separately to different fungi, or to different fungi derived extracts, each exhibited different modifications of metabolite patterns. The metabolic profiles of certain EF- and CFE-exposed grape cells were also differently influenced to certain degrees, owing to the presence of differentially responding metabolites (DRMs). However, the detected majority proportions of coordinately responding metabolites (CRMs) in both the EF- and the CFE-exposed grape cells, as well as the significantly influenced metabolites (SIMs) which are specific to certain fungal strains, clearly indicate coordinative changes in metabolites in grape cells exposed to EF and CFEs. The coordinative changes in metabolites in EF- and CFE-treated grape cells appeared to be fungal strain-dependent. Notably, several of those fungal strain-specific CRMs and DRMs are metabolites and belong to amino acids, lipids, organic acids, phenolic acids, flavonoids, and others, which are major contributors to the biochemistry and sensory qualities of grapes and wines. This research clarifies the detailed responses of metabolites in grape cells exposed to EF and CFEs. It also demonstrates how endophytes can be selectively used in the form of extracts to produce functions as CRMs of the living fungus with increased eco-safety, or separately applied to the living microbes or elicitors to emphasize those effects related to their specifically initiated SIMs and DRMs.


Assuntos
Vitis , Vinho , Endófitos/metabolismo , Fungos/metabolismo , Metaboloma , Vitis/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-33206031

RESUMO

To determine if Ageratina adenophora can accumulate diverse pathogens from surrounding native plants, we intensively sampled fungal communities, including endophytes, leaf spot pathogens and canopy air fungi, associated with Ag. adenophora as well as native plants in its invasive range. In total, we collected 4542 foliar fungal strains from 10 geographic sites, including 1340 from healthy leaves of Ag. adenophora, 2051 from leaf spots of Ag. adenophora and 1151 from leaf spots of 56 species of native plants and crops. Taxonomically, the common fungal genera included Colletotrichum, Diaporthe, Alternaria, Nemania, Xylaria, Neofusicoccum, Nigrospora, Epicoccum, Gibberella, Pestalotiopsis, Irpex, Schizophyllum and Clonostachys. We also isolated the cultivable fungi from 12 air samples collected from six areas in Yunnan Province, PR China. Among the total of 1255 air fungal isolates, the most common genera were Cladosporium, Trichoderma and Epicoccum. Among them, two new Remotididymella species, Remotididymella ageratinae from leaf spot of Ag. adenophora and Remotididymella anemophila from canopy air of Ag. adenophora were found. The two species showed both asexual and sexual reproductive structures. The conidia of R. ageratinae and R. anemophila are larger than those of R. anthropophila and R. destructiva. The size of ascospores of R. ageratinae and R. anemophila also differ from R. bauhiniae. Phylogenetic analysis of the combined ITS, LSU rRNA, rpb2 and tub2 sequences showed that R. ageratinae and R. anemophila each formed a distinct clade, separated from all species previously described in Remotididymella and confirmed them as new species belonging to Remotididymella. Full descriptions of R. ageratinae and R. anemophila are provided in this study.


Assuntos
Ascomicetos/classificação , Filogenia , Plantas Daninhas/microbiologia , Ascomicetos/isolamento & purificação , Composição de Bases , China , DNA Fúngico/genética , Espécies Introduzidas , Folhas de Planta/microbiologia , Análise de Sequência de DNA
8.
New Phytol ; 227(5): 1493-1504, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32343409

RESUMO

Local pathogens can accumulate as asymptomatic endophytes, making it difficult to detect the impacts of invasive species as propagators of disease in the invaded range. We used the invasive plant Ageratina adenophora to assess such accumulation. We intensively collected foliar fungal endophytes and leaf spot pathogens of A. adenophora and co-occurring neighbours and performed an inoculation experiment to evaluate their pathogenicity and host range. Ageratina adenophora harboured diverse necrotrophic pathogens; its communities of endophytes and leaf spot pathogens were different in composition and shared only a small number of fungal species. In the pathogen communities of local plant hosts, 21% of the operational taxonomic units (OTUs), representing 50% of strains, also occurred as leaf spot pathogens and/or endophytes of A. adenophora. The local pathogen community was more similar to the endophytes than to the pathogens of A. adenophora. The inoculation experiment showed that local pathogens could infect A. adenophora leaves asymptomatically and that local plant hosts were susceptible to both A. adenophora endophytes and pathogens. Ageratina adenophora is a highly competent host for local pathogens, and its asymptomatic latent pathogens are fungi primarily shared with local neighbours. This poses challenges for understanding the long-term ecological consequences of plant invasion.


Assuntos
Ageratina , Endófitos , Fungos , Espécies Introduzidas
9.
Proc Biol Sci ; 286(1917): 20191520, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31822255

RESUMO

Some exotic plants become invasive because they partially release from soil-borne enemies and thus benefit from positive plant-soil feedbacks (PSFs) in the introduced range. However, reports that have focused only on PSFs may exaggerate the invader's competitiveness. Here, we conducted three experiments to characterize plant-soil-foliage feedbacks, including mature leaves (ML), leaf litter (LL), rhizosphere soil (RS) and leaves plus soil (LS), on the early growth stages of the invasive plant Ageratina adenophora. In general, the feedbacks from aboveground (ML, LL) adversely affected A. adenophora by delaying germination time, inhibiting germination rate and reducing seedling growth. The increased invasion history exacerbated the adverse effects of LL and LS feedbacks on seedling growth. These adverse effects were partially contributed by more abundant fungi (e.g. Didymella) or/and more virulent fungi (e.g. Fusarium) developed in the aboveground part of A. adenophora during the invasion. Interestingly, the aboveground adverse effects can be weakened by microbes from RSs. Our novel findings emphasize the important role of aboveground feedbacks in the evaluation of plant invasiveness, and their commonness and significance remain to be explored in other invasive systems.


Assuntos
Ageratina/fisiologia , Espécies Introduzidas , Germinação/fisiologia , Folhas de Planta , Plântula/crescimento & desenvolvimento , Sementes , Solo , Microbiologia do Solo
10.
BMC Microbiol ; 19(1): 158, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31291888

RESUMO

BACKGROUND: Gastrodia elata is a widely distributed achlorophyllous orchid and is highly valued as both medicine and food. Gastrodia elata produces dust-like seeds and relies on mycorrhizal fungi for its germination and growth. In its life cycle, G. elata is considered to switch from a specific single-fungus relationship (Mycena) to another single-fungus relationship (Armillaria). However, no studies have investigated the changes in the plant-fungus relationship during the growth of G. elata in the wild. In this study, high-throughput sequencing was used to characterize the fungal community of tubers in different growth phases as well as the soils surrounding G. elata. RESULTS: The predominant fungi were Basidiomycota (60.44%) and Ascomycota (26.40%), which exhibited changes in abundance and diversity with the growth phases of G. elata. Diverse basidiomycetes in protocorms (phase P) were Hyphodontia, Sistotrema, Tricholoma, Mingxiaea, Russula, and Mycena, but the community changed from a large proportion of Resinicium bicolor (40%) in rice-like tubers (phase M) to an unidentified Agaricales operational taxonomic unit 1(OTU1,98.45%) in propagation vegetation tubers (phase B). The soil fungi primarily included Simocybe, Psathyrella, Conocybe, and Subulicystidium. Three Mycena OTUs obtained in this study were differentially distributed among the growth phases of G. elata, accounting for less than 1.0% of the total reads, and were phylogenetically close to Mycena epipterygia and M. alexandri. CONCLUSIONS: Our data indicated that G. elata interacts with a broad range of fungi beyond the Mycena genus. These fungi changed with the growth phases of G. elata. In addition, these data suggested that the development of the fungal community during the growth of G. elata was more complex than previously assumed and that at least two different fungi could be involved in development before the arrival of Armillaria.


Assuntos
Gastrodia , Interações entre Hospedeiro e Microrganismos , Micobioma/genética , Agaricales/genética , Agaricales/isolamento & purificação , Basidiomycota/genética , Basidiomycota/isolamento & purificação , DNA Espaçador Ribossômico/genética , Gastrodia/crescimento & desenvolvimento , Gastrodia/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Filogenia , Microbiologia do Solo , Simbiose
11.
Small ; 13(15)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28145630

RESUMO

Endometriosis is difficult to treat since the side effects of the current therapeutic method and the high recurrence rate; thus, newer and safer therapeutic approaches are urgently needed. This work investigates the enhanced permeability and retention effect of CdTe quantum dots (QDs) and hollow gold nanospheres (HAuNS) in endometriosis to increase the delivery of HAuNS into lesion cells. The surface of HAuNS is successfully conjugated with a TNYL peptide that has specific affinity for the EphB4 receptor, which is a member of the Eph family of receptor tyrosine kinases. It is found that the EphB4 receptor is overexpressed in endometriosis lesions. The data indicate that both QDs and HAuNS can efficiently accumulate in endometriotic lesions through permeable vessels and the TNYL-conjugated HAuNS (TNYL-HAuNS) accumulate more via the interaction with EphB4. The specific photothermal ablation therapy based on TNYL-HAuNS significantly inhibits the growth of the endometriotic volume and induces the atrophy and degeneration of ectopic endometrium with no detectable toxicity to the normal organs. The level of TNF-α and estradiol also significantly decreases in the endometriotic lesions, indicating that the treatment enables a recovery from hormonal imbalance and inflammatory injury. This work can be a valuable reference for future endometriosis therapy.


Assuntos
Técnicas de Ablação , Endometriose/terapia , Ouro/química , Hipertermia Induzida , Nanosferas/química , Fototerapia , Animais , Compostos de Cádmio/química , Modelos Animais de Doenças , Endometriose/patologia , Feminino , Camundongos , Nanosferas/ultraestrutura , Peptídeos/química , Pontos Quânticos/química , Receptor EphB4/metabolismo , Telúrio/química , Distribuição Tecidual , Resultado do Tratamento
12.
Small ; 12(48): 6753-6766, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27677919

RESUMO

Near-infrared (NIR) laser-controlled gene delivery presents some benefits in gene therapy, inducing enhanced gene transfection efficiency. In this study, a "photothermal transfection" agent is obtained by wrapping poly(ethylenimine)-cholesterol derivatives (PEI-Chol) around single-walled carbon nanotubes (SWNTs). The PEI-Chol modified SWNTs (PCS) are effective in compressing DNA molecules and protecting them from DNaseI degradation. Compared to the complexes formed by PEI with DNA (PEI/DNA), complexes of PCS and DNA that are formed (PCS/DNA) exhibit a little lower toxicity to HEK293 and HeLa cells under the same PEI molecule weight and weight ratios. Notably, caveolae-mediated cellular uptake of PCS/DNA occurs, which results in a safer intracellular transport of the gene due to the decreased lysosomal degradation in comparison with that of PEI/DNA whose internalization mainly depends on clathrin rather than caveolae. Furthermore, unlike PEI/DNA, PCS/DNA exhibits a photothermal conversion ability, which promotes DNA release from PCS under NIR laser irradiation. The NIR laser-mediated photothermal transfection of PCS10K /plasmid TP53 (pTP53) results in more apoptosis and necrosis of HeLa cells in vitro than other groups, and achieves a higher tumor-growth inhibition in vivo than naked pTP53, PEI25K /pTP53, and PCS10K /pTP53 alone. The enhanced transfection efficiency of PCS/DNA can be attributed to more efficient DNA internalization into the tumor cells, promotes detachment of DNA from PCS under the mediation of NIR laser and higher DNA stability in the cells due to caveolae-mediated cellular uptake of the complexes.


Assuntos
Técnicas de Transferência de Genes , Nanotubos de Carbono/química , DNA/genética , Células HEK293 , Células HeLa , Humanos , Plasmídeos/genética , Polietilenoimina/química , Transfecção
13.
Microb Ecol ; 67(2): 402-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24276537

RESUMO

Endophytes may gradually accumulate in the new geographic range of a non-native plant, just as pathogens do. To test this hypothesis, the dynamics of colonization and diversity of foliar fungal endophytes of non-native Ageratina adenophora were investigated. Previous reports showed that the time since the initial introduction (1930s) of A. adenophora into China varied among populations. Endophytes were sampled in three provinces of Southwest China in 21 sites that varied from 20 to 70 years since the introduction of A. adenophora from its native Central America. Endophyte isolation frequencies varied from 1.87% to 60.23% overall in a total of 4,032 leaf fragments. Based on ITS sequence variations, 463 fungal endophytes were distinguished as 112 operational taxonomic units (OTUs) belonging to the Sordariomycetes (77 OTUs, 373 isolates), Dothideomycetes (18 OTUs, 38 isolates), and Agaricomycetes (17 OTUs, 52 strains) classes. Colletotrichum (28.51%), Nemania (14.90%), Phomopsis (13.17%), and Xylaria (4.97%) were the most abundant genera. Both endophyte diversity and overall isolation frequency increased with time since introduction. The genetic differentiation of the fungus Colletotrichum gloeosporioides indicated that the dispersal of endophytes was likely affected by a combination of geographic factors and the invasion history of the host A. adenophora.


Assuntos
Ascomicetos/isolamento & purificação , Asteraceae/microbiologia , Colletotrichum/isolamento & purificação , Endófitos/isolamento & purificação , Espécies Introduzidas , Ascomicetos/classificação , Ascomicetos/crescimento & desenvolvimento , Biodiversidade , China , Colletotrichum/genética , Colletotrichum/crescimento & desenvolvimento , DNA Fúngico/genética , Endófitos/genética , Endófitos/crescimento & desenvolvimento , Variação Genética , Geografia , Filogenia , Folhas de Planta/microbiologia , Simbiose
14.
Eur J Pharm Sci ; 193: 106687, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38176662

RESUMO

Random flaps are widely used in the treatment of injuries, tumors, congenital malformations, and other diseases. However, postoperative skin flaps are prone to ischemic necrosis, leading to surgical failure. Insulin-like growth factor- 1(IGF-1) belongs to the IGF family and exerts its growth-promoting effects in various tissues through autocrine or paracrine mechanisms. Its application in skin flaps and other traumatic diseases is relatively limited. Poly (lactic-co-glycolic acid) (PLGA) is a degradable high-molecular-weight organic compound commonly used in biomaterials. This study prepared IGF-PLGA sustained-release microspheres to explore their impact on the survival rate of flaps both in vitro and in vivo, as well as the mechanisms involved. The research results demonstrate that IGF-PLGA has a good sustained-release effect. At the cellular level, it can promote 3T3 cell proliferation by inhibiting oxidative stress, inhibit apoptosis, and enhance the tube formation ability of human umbilical vein endothelial cells (HUVEC) . At the animal level, it accelerates flap healing by promoting vascularization through the inhibition of oxidative stress. Furthermore, this study reveals the role of IGF-PLGA in activating the Angiopoietin-1(Ang1)/Tie2 signaling pathway in promoting flap vascularization, providing a strong theoretical basis and therapeutic target for the application of IGF-1 in flaps and other traumatic diseases.


Assuntos
Angiopoietina-1 , Fator de Crescimento Insulin-Like I , Animais , Humanos , Angiogênese , Angiopoietina-1/metabolismo , Preparações de Ação Retardada , Células Endoteliais , Fator de Crescimento Insulin-Like I/farmacologia , Microesferas , Estresse Oxidativo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Transdução de Sinais , Receptor TIE-2/efeitos dos fármacos , Receptor TIE-2/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo
15.
J Microbiol Biotechnol ; 34(6): 1249-1259, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38938004

RESUMO

It remains to be determined whether there is a geographical distribution pattern and phylogenetic signals for the Mycena strains with seed germination of the orchid plant Gastrodia elata. This study analyzed the community composition and phylogenetics of 72 Mycena strains associated with G. elata varieties (G. elata. f. glauca and G. elata. f. viridis) using multiple gene fragments (ITS+nLSU+SSU). We found that (1) these diverse Mycena phylogenetically belong to the Basidiospore amyloid group. (2) There is a phylogenetic signal of Mycena for germination of G. elata. Those strains phylogenetically close to M. abramsii, M. polygramma, and an unclassified Mycena had significantly higher germination rates than those to M. citrinomarginata. (3) The Mycena distribution depends on geographic site and G. elata variety. Both unclassified Mycena group 1 and the M. abramsii group were dominant for the two varieties of G. elata; in contrast, the M. citrinomarginata group was dominant in G. elata f. glauca but absent in G. elata f. viridis. Our results indicate that the community composition of numerous Mycena resources in the Zhaotong area varies by geographical location and G. elata variety. Importantly, our results also indicate that Mycena's phylogenetic status is correlated with its germination rate.


Assuntos
Gastrodia , Germinação , Filogenia , Gastrodia/microbiologia , Gastrodia/genética , DNA Fúngico/genética , Sementes/microbiologia , Sementes/crescimento & desenvolvimento , Basidiomycota/genética , Basidiomycota/classificação , Basidiomycota/fisiologia
16.
Food Chem ; 445: 138788, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38394910

RESUMO

Point-of-care testing (POCT) is promising for biodetection in home healthcare due to advantages of simplicity, rapidity, low cost, portability, high sensitivity and accuracy, and object-oriented POCT platform can be developed by nanozyme-based biosensing. However, designing high-performance nanozymes with targeted regulated catalytic activity remains challenging. Herein, advanced PtRhRuCu quaternary alloy nanozymes (QANs) were rationally designed and successfully synthesized. Cu atoms induced mechanisms of hydrogen peroxide (H2O2) activation and d-band center regulation, achieving high enhancement of peroxide (POD)-like activity and inhibition of oxidase (OXD)-like activity. Inspired by this, a smartphone-assisted colorimetric platform integrated with test strips was established for glucose detection of soft drinks, with a detection limit of 0.021 mM and a recovery rate of 97.87 to 103.36 %. This work not only provides a novel path for tuning specific enzyme-like activities of metal nanozymes, but also shows the potential feasibility for rational design of POCT sensors in actual samples.


Assuntos
Cobre , Glucose , Colorimetria , Peróxido de Hidrogênio , Smartphone , Peroxidases
17.
Ecol Evol ; 14(2): e11004, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38389997

RESUMO

Full myco-heterotrophic orchid Gastrodia elata Bl. is widely distributed in Northeast Asia, and previous research has not fully investigated the symbiotic fungal community of its early immature tubers. This study utilized Illumina sequencing to compare symbiotic fungal communities in natural G. elata immature tubers and their habitats. LEfSe (Linear Discriminant Analysis Effect Size) was used to screen for Biomarkers that could explain variations among different fungal communities, and correlation analyses were performed among Biomarkers and other common orchid mycorrhizal fungi. Our results illustrate that the symbiotic fungal communities of immature G. elata tubers cannot be simply interpreted as subsets of the environmental fungal communities because some key members cannot be traced back to the environment. The early growth of G. elata was related to a small group of fungi, such as Sebacina, Thelephora, and Inocybe, which were also common mycorrhizal fungi from other orchids. In addition, Mycena, Auricularia, and Cryptococcus were unique fungal partners of G. elata, and many new species have yet to be discovered. Possible symbiotic Mycena should be M. plumipes and its sibling species in this case. Our results provide insight into the symbiotic partner switch and trophic pattern change during the development and maturation of G. elata.

18.
Elife ; 132024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896455

RESUMO

Microbes strongly affect invasive plant growth. However, how phyllosphere and rhizosphere soil microbes distinctively affect seedling mortality and growth of invaders across ontogeny under varying soil nutrient levels remains unclear. In this study, we used the invader Ageratina adenophora to evaluate these effects. We found that higher proportions of potential pathogens were detected in core microbial taxa in leaf litter than rhizosphere soil and thus leaf inoculation had more adverse effects on seed germination and seedling survival than soil inoculation. Microbial inoculation at different growth stages altered the microbial community and functions of seedlings, and earlier inoculation had a more adverse effect on seedling survival and growth. The soil nutrient level did not affect microbe-mediated seedling growth and the relative abundance of the microbial community and functions involved in seedling growth. The effects of some microbial genera on seedling survival are distinct from those on growth. Moreover, the A. adenophora seedling-killing effects of fungal strains isolated from dead seedlings by non-sterile leaf inoculation exhibited significant phylogenetic signals, by which strains of Allophoma and Alternaria generally caused high seedling mortality. Our study stresses the essential role of A. adenophora litter microbes in population establishment by regulating seedling density and growth.


Assuntos
Ageratina , Folhas de Planta , Rizosfera , Plântula , Microbiologia do Solo , Ageratina/microbiologia , Plântula/microbiologia , Plântula/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Folhas de Planta/crescimento & desenvolvimento , Microbiota , Espécies Introduzidas , Germinação
19.
Cancer Med ; 13(13): e7453, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38986683

RESUMO

OBJECTIVE: The purpose of the study is to construct meaningful nomogram models according to the independent prognostic factor for metastatic pancreatic cancer receiving chemotherapy. METHODS: This study is retrospective and consecutively included 143 patients from January 2013 to June 2021. The receiver operating characteristic (ROC) curve with the area under the curve (AUC) is utilized to determine the optimal cut-off value. The Kaplan-Meier survival analysis, univariate and multivariable Cox regression analysis are exploited to identify the correlation of inflammatory biomarkers and clinicopathological features with survival. R software are run to construct nomograms based on independent risk factors to visualize survival. Nomogram model is examined using calibration curve and decision curve analysis (DCA). RESULTS: The best cut-off values of 966.71, 0.257, and 2.54 for the systemic immunological inflammation index (SII), monocyte-to-lymphocyte ratio (MLR), and neutrophil-to-lymphocyte ratio (NLR) were obtained by ROC analysis. Cox proportional-hazards model revealed that baseline SII, history of drinking and metastasis sites were independent prognostic indices for survival. We established prognostic nomograms for primary endpoints of this study. The nomograms' predictive potential and clinical efficacy have been evaluated by calibration curves and DCA. CONCLUSION: We constructed nomograms based on independent prognostic factors, these models have promising applications in clinical practice to assist clinicians in personalizing the management of patients.


Assuntos
Inflamação , Nomogramas , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/imunologia , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Inflamação/imunologia , Idoso , Prognóstico , Neutrófilos/imunologia , Curva ROC , Estimativa de Kaplan-Meier , Linfócitos/imunologia , Monócitos/imunologia , Metástase Neoplásica , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Modelos de Riscos Proporcionais
20.
Can Urol Assoc J ; 18(3): E73-E79, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38010229

RESUMO

INTRODUCTION: High-dose chemotherapy with autologous stem-cell transplantation (HDC-ASCT) is standard therapy for metastatic germ cell tumors (mGCTs) in patients whose disease progresses during or after conventional chemotherapy. We conducted a retrospective review of HDC-ASCT in relapsed mGCT patients in the province of Alberta, Canada, over the past two decades. METHODS: Patients with mGCTs who received HDC-ASCT at two provincial cancer referral centers from 2000-2018 were identified from institutional databases. Baseline clinical and treatment characteristics were collected, as well as overall survival (OS ) and disease-free survival (DFS). Relevant prognostic variables were analyzed. RESULTS: Forty-three patients were identified. The median age was 28 years (range 19-56). A majority (95%) had non-seminoma histology and testis/retroperitoneal primary (84%). Twenty patients (47%) had poor-risk disease, as per The International Germ Cell Consensus Classification (IGCCC), at start of first-line chemotherapy. HDC-ASCT was used as second-line therapy in 65% of patients, and 58% of ASCT patients received tandem transplants. Median followup after ASCT was 22 months (range 2-181). At last followup, 42% of patients were alive without disease, including 3/7 (43%) of patients with primary mediastinal disease. Two-year and five-year DFS/OS ratios were 44%/65% and 38%/45%, respectively. Median OS and DFS for all patients were 30.0 months (13.3-46.6) and 8.0 months (0.9-15.1), respectively. CONCLUSIONS: We found that HDC-ASCT is an effective salvage therapy in mGCT, consistent with existing literature. Patients appeared to benefit regardless of primary site. Although limited by small sample size, we found a numerical difference in DFS and OS between second- and third-line HDC-ASCT and single vs. tandem ASCT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA