Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 31(7): 11335-11343, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37155771

RESUMO

The photonic graphene in atoms not only has the typical photonic band structures but also exhibits controllable optical properties that are difficult to achieve in the natural graphene. Here, the evolution process of discrete diffraction patterns of a photonic graphene, which is constructed through a three-beam interference, is demonstrated experimentally in a 5S1/2 - 5P3/2 - 5D5/2 85Rb atomic vapor. The input probe beam experiences a periodic refractive index modulation when traveling through the atomic vapor, and the evolution of output patterns with honeycomb, hybrid-hexagonal, and hexagonal geometric profiles is obtained by controlling the experimental parameters of two-photon detuning and the power of the coupling field. Moreover, the Talbot images of such three kinds of periodic structure patterns at different propagating planes are observed experimentally. This work provides an ideal platform to investigate manipulation the propagation of light in artificial photonic lattices with tunable periodically varying refractive index.

2.
Opt Express ; 29(2): 2712-2719, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726462

RESUMO

All-optical devices used to process optical signals without electro-optical conversion plays a vital role in the next generation of optical information processing systems. We demonstrate an efficient all-optical modulator that utilizes a periodic dielectric atomic lattice produced in a gas of 85Rb vapor. Four orders of diffraction patterns are observed when a probe laser is passed through the lattice. The frequency shift of the peak of each diffraction order can be tuned by adjusting the control laser power and two-photon detuning, enabling this device to be used as a multi-channel all-optical modulator. Both theoretical simulations and experimental results demonstrate that this modulator can operate over a frequency band extending from about 0 to 60 MHz. This work may pave the way for studying quantum information processing and quantum networking proposed in atomic ensembles.

3.
Opt Express ; 29(16): 25439-25448, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34614875

RESUMO

Beam splitting of high-order Gaussian (HOG) beams increases the channel capacity and improves the processing speed of the incoming information. Here a novel all-optical tunable multi-port HOG beam splitter under a periodic dielectric atomic structure is proposed and demonstrated. The original HOG beam is replicated in the output beams. A distinguishable five-port output beam is observed in the experiment, which is beneficial for high-speed optical communications. By tuning the optical properties of this periodic dielectric structure, the spatial position and intensity distribution of each output port are precisely controllable. The splitting ratio δ can be finely adjusted in the range 0 - 4.8. This work provides a new approach for multi-port HOG beam splitters and the basis for all-optical communication.

4.
Opt Lett ; 46(17): 4184-4187, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469970

RESUMO

Optical vortex arrays (OVAs) containing multiple vortices have been in demand for multi-channel optical communications and multiple-particle trapping. In this Letter, an OVA with tunable intensity and spatial distribution was implemented all-optically in a two-dimensional (2D) electromagnetically induced atomic lattice (EIL). Such a square lattice is constructed by two orthogonal standing-wave fields in 85Rb vapor, resulting in the periodically modulated susceptibility of the probe beam based on electromagnetically induced transparency (EIT). An OVA with dark-hollow intensity distribution based on 2D EIL was observed in the experiment first. This work thus studied the nonlinear 2D EIL process both theoretically and experimentally, presenting, to the best of our knowledge, a novel method of dynamically obtaining and controlling an OVA and further promoting the construction of all-optical networks with atomic ensembles.

5.
Biomed Eng Online ; 17(1): 71, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29866126

RESUMO

BACKGROUND: Intra-body communication (IBC) is one of the highlights in studies of body area networks. The existing IBC studies mainly focus on human channel characteristics of the physical layer, transceiver design for the application, and the protocol design for the networks. However, there are few safety analysis studies of the IBC electrical signals, especially for the galvanic-coupled type. Besides, the human channel model used in most of the studies is just a multi-layer homocentric cylinder model, which cannot accurately approximate the real human tissue layer. METHODS: In this paper, the empirical arm models were established based on the geometrical information of six subjects. The thickness of each tissue layer and the anisotropy of muscle were also taken into account. Considering the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines, the restrictions taken as the evaluation criteria were the electric field intensity lower than 1.35 × 104 f V/m and the specific absorption rate (SAR) lower than 4 W/kg. The physiological electrode LT-1 was adopted in experiments whose size was 4 × 4 cm and the distance between each center of adjoining electrodes was 6 cm. The electric field intensity and localized SAR were all computed by the finite element method (FEM). The electric field intensity was set as average value of all tissues, while SAR was averaged over 10 g contiguous tissue. The computed data were compared with the 2010 ICNIRP guidelines restrictions in order to address the exposure restrictions of galvanic-coupled IBC electrical signals injected into the body with different amplitudes and frequencies. RESULTS: The input alternating signal was 1 mA current or 1 V voltage with the frequency range from 10 kHz to 1 MHz. When the subject was stimulated by a 1 mA alternating current, the average electric field intensity of all subjects exceeded restrictions when the frequency was lower than 20 kHz. The maximum difference among six subjects was 1.06 V/m at 10 kHz, and the minimum difference was 0.025 V/m at 400 kHz. While the excitation signal was a 1 V alternating voltage, the electric field intensity fell within the exposure restrictions gradually as the frequency increased beyond 50 kHz. The maximum difference among the six subjects was 2.55 V/m at 20 kHz, and the minimum difference was 0.54 V/m at 1 MHz. In addition, differences between the maximum and the minimum values at each frequency also decreased gradually with the frequency increased in both situations of alternating current and voltage. When SAR was introduced as the criteria, none of the subjects exceeded the restrictions with current injected. However, subjects 2, 4, and 6 did not satisfy the restrictions with voltage applied when the signal amplitude was ≥ 3, 6, and 10 V, respectively. The SAR differences for subjects with different frequencies were 0.062-1.3 W/kg of current input, and 0.648-6.096 W/kg of voltage input. CONCLUSION: Based on the empirical arm models established in this paper, we came to conclusion that the frequency of 100-300 kHz which belong to LF (30-300 kHz) according to the ICNIRP guidelines can be considered as the frequency restrictions of the galvanic-coupled IBC signal. This provided more choices for both intensities of current and voltage signals as well. On the other hand, it also makes great convenience for the design of transceiver hardware and artificial intelligence application. With the frequency restrictions settled, the intensity restrictions that the current signal of 1-10 mA and the voltage signal of 1-2 V were accessible. Particularly, in practical application we recommended the use of the current signals for its broad application and lower impact on the human tissue. In addition, it is noteworthy that the coupling structure design of the electrode interface should attract attention.


Assuntos
Eletricidade , Análise de Elementos Finitos
6.
Microorganisms ; 12(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38399698

RESUMO

Soil amendments may enhance crop yield and quality by increasing soil nutrient levels and improving nutrient absorption efficiency, potentially through beneficial microbial interactions. In this work, the effects of amending soil with straw-based carbon substrate (SCS), a novel biochar material, on soil nutrients, soil microbial communities, and maize yield were compared with those of soil amendment with conventional straw. The diversity and abundance of soil bacterial and fungal communities were significantly influenced by both the maize growth period and the treatment used. Regression analysis of microbial community variation indicated that Rhizobiales, Saccharimonadales, and Eurotiales were the bacterial and fungal taxa that exhibited a positive response to SCS amendment during the growth stages of maize. Members of these taxa break down organic matter to release nutrients that promote plant growth and yield. In the seedling and vegetative stages of maize growth, the abundance of Rhizobiales is positively correlated with the total nitrogen (TN) content in the soil. During the tasseling and physiological maturity stages of corn, the abundance of Saccharimonadales and Eurotiales is positively correlated with the content of total carbon (TC), total phosphorus (TP), and available phosphorus (AP) in the soil. The results suggest that specific beneficial microorganisms are recruited at different stages of maize growth to supply the nutrients required at each stage. This targeted recruitment strategy optimizes the availability of nutrients to plants and ultimately leads to higher yields. The identification of these key beneficial microorganisms may provide a theoretical basis for the targeted improvement of crop yield and soil quality. This study demonstrates that SCS amendment enhances soil nutrient content and crop yield compared with conventional straw incorporation and sheds light on the response of soil microorganisms to SCS amendment, providing valuable insights for the future implementation of this material.

7.
Microorganisms ; 12(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38674734

RESUMO

The effects of global warming, population growth, and economic development are increasing the frequency of extreme weather events, such as drought. Among abiotic stresses, drought has the greatest impact on soil biological activity and crop yields. The rhizosphere microbiota, which represents a second gene pool for plants, may help alleviate the effects of drought on crops. In order to investigate the structure and diversity of the bacterial communities on drought stress, this study analyzed the differences in the bacterial communities by high-throughput sequencing and bioinformatical analyses in the rhizosphere of Arabidopsis thaliana under normal and drought conditions. Based on analysis of α and ß diversity, the results showed that drought stress had no significant effect on species diversity between groups, but affected species composition. Difference analysis of the treatments showed that the bacteria with positive responses to drought stress were Burkholderia-Caballeronia-Paraburkholderia (BCP) and Streptomyces. Drought stress reduced the complexity of the rhizosphere bacterial co-occurrence network. Streptomyces was at the core of the network in both the control and drought treatments, whereas the enrichment of BCP under drought conditions was likely due to a decrease in competitors. Functional prediction showed that the core bacteria metabolized a wide range of carbohydrates, such as pentose, glycans, and aromatic compounds. Our results provide a scientific and theoretical basis for the use of rhizosphere microbial communities to alleviate plant drought stress and the further exploration of rhizosphere microbial interactions under drought stress.

8.
Rice (N Y) ; 17(1): 18, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429614

RESUMO

Sulfur (S) is one of the main components of important biomolecules, which has been paid more attention in the anaerobic environment of rice cultivation. In this study, 12 accessions of rice materials, belonging to two Asian rice domestication systems and one African rice domestication system, were used by shotgun metagenomics sequencing to compare the structure and function involved in S cycle of rhizosphere microbiome between wild and cultivated rice. The sulfur cycle functional genes abundances were significantly different between wild and cultivated rice rhizosphere in the processes of sulfate reduction and other sulfur compounds conversion, implicating that wild rice had a stronger mutually-beneficial relationship with rhizosphere microbiome, enhancing sulfur utilization. To assess the effects of sulfate reduction synthetic microbiomes, Comamonadaceae and Rhodospirillaceae, two families containing the genes of two key steps in the dissimilatory sulfate reduction, aprA and dsrA respectively, were isolated from wild rice rhizosphere. Compared with the control group, the dissimilatory sulfate reduction in cultivated rice rhizosphere was significantly improved in the inoculated with different proportions groups. It confirmed that the synthetic microbiome can promote the S-cycling in rice, and suggested that may be feasible to construct the synthetic microbiome step by step based on functional genes to achieve the target functional pathway. In summary, this study reveals the response of rice rhizosphere microbial community structure and function to domestication, and provides a new idea for the construction of synthetic microbiome.

9.
Microorganisms ; 11(10)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37894042

RESUMO

Fusarium root rot (FRR) seriously affects the growth and productivity of A. chinensis. Therefore, protecting A. chinensis from FRR has become an important task, especially for increasing A. chinensis production. The purpose of this study was to screen FRR control strains from the A. chinensis rhizosphere soil. Eighty-four bacterial strains and seven fungal strains were isolated, and five strains were identified with high inhibitory effects against Fusarium oxysporum (FO): Trichoderma harzianum (MH), Bacillus amyloliquefaciens (CJ5, CJ7, and CJ8), and Bacillus subtilis (CJ9). All five strains had high antagonistic effects in vitro. Results showed that MH and CJ5, as biological control agents, had high control potential, with antagonistic rates of 86.01% and 82.78%, respectively. In the pot experiment, the growth levels of roots and stems of A. chinensis seedlings treated with MH+CJ were significantly higher than those of control plants. The total nitrogen, total phosphorus, total potassium, indoleacetic acid, and chlorophyll contents in A. chinensis leaves were also significantly increased. In the biocontrol test, the combined MH + CJ application significantly decreased the malondialdehyde content in A. chinensis roots and significantly increased the polyphenol oxidase, phenylalanine ammonolyase, and peroxidase ability, indicating a high biocontrol effect. In addition, the application of Bacillus spp. and T. harzianum increased the abundance and diversity of the soil fungal population, improved the soil microbial community structure, and significantly increased the abundance of beneficial strains, such as Holtermanniella and Metarhizium. The abundance of Fusarium, Volutella, and other pathogenic strains was significantly reduced, and the biocontrol potential of A. chinensis root rot was increased. Thus, Bacillus spp. and T. harzianum complex bacteria can be considered potential future biocontrol agents for FRR.

10.
Artigo em Inglês | MEDLINE | ID: mdl-29983719

RESUMO

Pulse diagnosis is one of the four diagnostic methods of traditional Chinese medicine. However it suffers from the lack of objective and efficient detection method. We propose a noncontact optical method to detect human wrist pulse, aiming at the precise determination of the temporal and spatial distributions of pulse. The method uses the spatial-carrier digital speckle pattern interferometry (DSPI) to measure the micro/nanoscale skin displacement dynamically. Significant improvements in DSPI measurement have been made to allow the DSPI to detect the comprehensive information of the arterial pulsation at locations of Cun, Guan, and Chi. The experimental results prove that the spatiotemporal distributions of pulse can be obtained by the proposed method. The obtained data can be further used to describe most of the pulse parameters such as rate, rhythm, depth, length, width, and contour.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA