Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 348: 119312, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37857214

RESUMO

Metal oxides play a promising role in the transformation of polyphenols and amino acids involved in naturally occurring humification. The objective of this study was to explore the synergistic interactions between Fe2O3 and O2 in the formation of humic substances under a controlled O2 atmosphere (0%, 21% and 40% O2 levels). The results indicate that an O2 level of 21% with Fe2O3 was optimal for humic acid (HA) production. Hydroxyl radicals (∙OH) formed and promoted the formation of HA in the presence of O2, and O2 improved the enhancing capacity of Fe2O3 by oxidizing Fe(II) to Fe(III). Moreover, the combination of these processes resulted in a synergistic improvement in humification. The evolution of functional groups in HA suggested that O2 promoted the formation of oxygen-containing groups such as lipids, and Fe2O3 was conducive to the formation of dark-coloured polymers during the darkening process of humification. Furthermore, the O2 level of 40% inhibited the formation of HA by reducing the transformation from Fe(III) to Fe(II). The XRD results showed few changes in the composition of Fe2O3 before and after humification, which indicated that Fe2O3 was a catalyst and an oxidant. The heterospectral UV-Vis/FTIR results suggested that ∙OH attacked phenolic rings to form the aromatic ring skeleton of HA and benefit the ring-opening copolymerization of humic precursors. In addition, structural equation modelling demonstrated that dissolved Fe was the key parameter affecting the HA yield. These findings provide new insights into the synergism of O2-mediated ∙OH production associated with metal oxide-facilitated humification.


Assuntos
Substâncias Húmicas , Oxigênio , Substâncias Húmicas/análise , Espécies Reativas de Oxigênio , Radical Hidroxila , Compostos Férricos/química , Fenóis , Óxidos , Compostos Ferrosos
2.
Bioresour Technol ; 393: 130120, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38029803

RESUMO

Phenol-rich wine grape pomace (WGP) improves the conversion of pig manure (PM) into humic acid (HA) during composting. However, the impact of using combinations of Fe2O3 and biochar known to promote compost maturation remains uncertain. This research explored the individual and combined influence of biochar and Fe2O3 during the co-composting of PM and WGP. The findings revealed that Fe2O3 boosts microbial network symbiosis (3233 links), augments the HA yield to 3.38 by promoting polysaccharide C-O stretching, and improves the germination index to 124.82 %. Limited microbial interactions, increased by biochar, resulted in a lower HA yield (2.50). However, the combination weakened the stretching of aromatics and quinones, which contribute to the formation of HA, resulting in reduced the humification to 2.73. In addition, Bacillus and Actinomadura were identified as pivotal factors affecting HA content. This study highlights Fe2O3 and biochar's roles in phenol-rich compost humification, but combined use reduces efficacy.


Assuntos
Carvão Vegetal , Compostagem , Vitis , Animais , Suínos , Solo , Esterco , Substâncias Húmicas/análise , Fenóis , Interações Microbianas , Fenol
3.
J Colloid Interface Sci ; 645: 359-370, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37156144

RESUMO

Although inkjet-printing technology has achieved significant development in preparing scalable and adaptable energy storage devices for portable and micro devices, searching for additive-free and environmentally friendly aqueous inks is a significant challenge. Hence, an aqueous MXene/sodium alginate-Fe2+ hybrid ink (denoted as MXene/SA-Fe) with solution processability and suitable viscosity is prepared for direct inkjet printing microsupercapacitors (MSCs). The SA molecules are adsorbed on the surface of MXene nanosheets to construct three-dimensional (3D) structures, thus effectively alleviating the two notorious problems of oxidation and self-restacking of MXene. Concurrently, Fe2+ ions can compress the ineffective macropore volume and make the 3D structure more compact. Moreover, the hydrogen and covalent bonding formed between the MXene nanosheet, SA, and Fe2+ effectively protects the oxidation of MXene and thus increases its stability. Thus, the MXene/SA-Fe ink endows the inkjet-printed MSC electrode with abundant active sites for ion storage and a highly conductive network for electron transfer. As a demonstration, the MXene/SA-Fe ink is used to direct inkjet-printed MSCs with an electrode spacing of 310 µm, which exhibit remarkable capacitances of 123.8 mF cm-2 (@5 mV s-1), good rate capability, an extraordinary energy density of 8.44 µWh cm-2 at a power density of 33.70 µW cm-2, long-term cycling stability of 91.4 % capacitance retention after 10,000 cycles, and surprising mechanical durability with 90.0 % of its initial capacitance retained after 10,000 bending cycles. Therefore, MXene/SA-Fe inks are expected to create various opportunities for printable electronics.

4.
Bioresour Technol ; 372: 128654, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682475

RESUMO

Based on the semi-continuous anaerobic co-digestion (AcoD) reactor, the effects of biochar addition on the internal environmental changes and gas production characteristics were studied under the condition of biogas slurry recirculation. The results showed that the addition of biochar enhanced the degradation and metabolic pathways of acetate and propionate, thereby reducing the concentrations of volatile fatty acids (VFAs), total ammonia and chemical oxygen demand by 55 %, 41 % and 61 %, respectively. The buffer system formed by the combination of NH4+ and VFAs of C2-C5 was also enhanced, thereby improving the stability of the system. The addition of biochar effectively increased the relative abundance of Bacteroidetes, Chloroflexi, Spirochaetota and Synergistota, and enhanced three methanogenic metabolic pathways. This study provides scientific support for the application of biochar to solve the system inhibition in mixed substrate semi-continuous AcoD process and provides technical support for the stable operation of biogas project.


Assuntos
Biocombustíveis , Esterco , Animais , Suínos , Anaerobiose , Zea mays/metabolismo , Reatores Biológicos , Metano/metabolismo , Ácidos Graxos Voláteis/metabolismo , Digestão
5.
Foods ; 12(14)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37509886

RESUMO

To reduce the usage of petroleum-based plastic products, a lignin-based film material named aminated lignin/Fe(III)/PVA was developed. The mixture of 8 g lignin, 12 mL diethylenetriamine, 200 mL NaOH solution (0.4 mol·L-1), and 8 mL formaldehyde was heated at 85 °C for 4 h; after the aminated lignin was impregnated in the Fe(NO3)3 solution, a mixture of 3 g aminated lignin/Fe(III), 7 g PVA, and 200 mL NaOH solution (pH 8) was heated at 85 °C for 60 min; after 2 mL of glycerin was added, the mixture was spread on a glass plate to obtain the aminated lignin/Fe(III)/PVA film. This film demonstrated hydrophobicity, an UV-blocking function, and a good slow-release performance. Due to the formation of hydrogen bonds between the hydroxyl groups of lignin and PVA, the tensile strength, the elongation at break, and the fracture resistance of the film were 9.1%, 107.8%, and 21.9% higher than that of pure PVA film, respectively. The iron content of aminated lignin/Fe(III)/PVA was 1.06 wt%, which mainly existed in a trivalent form. The aminated lignin/Fe(III)/PVA film has the potential to be used as a food packaging material with anti-ultraviolet light function and can also be developed as other packaging materials, such as seedling bowls, pots for transplanting, and coating films during transport.

6.
Bioresour Technol ; 376: 128856, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36907227

RESUMO

Enhancing the degradation of lignocellulosic structure is essential for the efficient use of corn stover. This study investigated the effects of using urea combined with steam explosion on the enzymatic hydrolysis and ethanol production of corn stover. The results demonstrated that 4.87% urea addition and 1.22 MPa steam pressure were optimal for ethanol production. The highest reducing sugar yield (350.12 mg/g) was increased by 116.42% (p < 0.05), and the corresponding degradation rates of cellulose, hemicellulose, and lignin in pretreated corn stover were increased by 40.26%, 45.89% and 53.71% compared with the untreated corn stover (p < 0.05). Moreover, the maximal sugar alcohol conversion rate was approximately 48.3%, and the ethanol yield reached 66.5%. In addition, the key functional groups in corn stover lignin under combined pretreatment were identified. These findings offer new insights into corn stover pretreatment and can help develop feasible technologies to enhance ethanol production.


Assuntos
Lignina , Vapor , Lignina/química , Zea mays/metabolismo , Etanol/metabolismo , Celulose/metabolismo , Hidrólise
7.
Bioresour Technol ; 384: 129226, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37270147

RESUMO

Copper (Cu) and zinc (Zn) in piglet feed can lead to heavy metals (HMs) accumulation in pig manure (PM). Composting is crucial for recycling biowaste and decreasing HMs bioavailability. This study aimed to investigate the impact of adding wine grape pomace (WGP) on the bioavailability of HMs during PM composting. WGP facilitated the passivation of HMs through Cytophagales and Saccharibacteria_genera_incertae_sedis which promoted the formation of humic acid (HA). Polysaccharide and aliphatic groups in HA dominated the transformation of chemical forms of HMs. Moreover, adding 60% and 40% WGP enhanced the Cu and Zn passivation effects by 47.24% and 25.82%, respectively. Polyphenol conversion rate and core bacteria were identified as key factors in affecting HMs passivation. These results offered new insights into the fate of HMs during PM composting in response to the addition of WGP, which is helpful to practical application of WGP to inactivate HMs for improving compost quality.


Assuntos
Compostagem , Metais Pesados , Vitis , Animais , Suínos , Cobre , Zinco , Substâncias Húmicas , Esterco/microbiologia , Solo , Metais Pesados/análise , Compostos Orgânicos
8.
Bioresour Technol ; 358: 127380, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35644453

RESUMO

The polyphenol humification pathway is essential for soil-forming and compost maturing processes. This study explored the effects of adding different proportions of polyphenol-rich wine grape pomace (WGP) on humification performance and microbial dynamics during pig manure (PM) composting. The results demonstrated that WGP effectively prolonged the duration of the thermophilic period, and improved humification production and compost maturity by enhancing beneficial interactions among microorganisms. Moreover, adding 40% WGP was optimal for nitrogen conservation, and the corresponding germination index (GI) reached 95%. Excitation-emission matrix (EEM) fluorescence spectroscopy analysis suggested that optimizing the WGP content was conducive to the conversion of protein-like substances, which improved the humification of organic matter. In addition, structural equation modelling (SEM) demonstrated that polyphenol content and temperature were the key parameters affecting the humification products. The results showed that WGP holds great promise to improve composting progress and fertilizer quality for biowaste utilization.


Assuntos
Compostagem , Vitis , Animais , Substâncias Húmicas , Esterco , Polifenóis , Solo , Suínos
9.
Artigo em Inglês | MEDLINE | ID: mdl-35897391

RESUMO

Direct-absorption anaerobic reactors can maintain the fermentation process of microorganisms by utilizing solar absorption and scattering media in the biogas reactor to improve the slurry temperature. Direct-absorption heating alone can save the corresponding electric energy and ensure the normal fermentation process of the biogas slurry in the reactor, but there is still the problem of temperature fluctuation. In order to improve the stability of the fermentation process, it is proposed to optimize the design of this kind of reactor by adding paraffin phase change material. This article mainly studies the influence of paraffin phase change material added on the top and side of the reactor in the fermentation process and gives the corresponding design parameters for different climatic conditions, which lays a theoretical reference for the design process of this kind of reactor.


Assuntos
Biocombustíveis , Reatores Biológicos , Anaerobiose , Parafina , Temperatura
10.
Front Bioeng Biotechnol ; 10: 972361, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406214

RESUMO

Since more and more large-scale farms appear in China and changes in fecal sewage source disposal, the production of high-concentration solid manure waste is also increasing, and its conversion and utilization are gaining attention. This study investigated the effect of heat pre-treatment (HPT) on the thermophilic anaerobic digestion (AD) of high-solid manure (HSM). Pig manure (PM) feed with a total solids of 13% was used for the HPT and subsequent anaerobic digestion (AD) test. The HPT was carried out at 60°C, 80°C, and 100°C, respectively, for 15 min after the heating reached the set temperature. The results show that HPT led to PM feed COD solubilization, observing a maximum increase of 24.57% after pretreated at 100°C, and the treated PM feed under this condition received the maximum methane production potential of 264.64 mL·g-1 VS in batch AD test, which was 28.76% higher than that of the untreated group. Another semi-continuous AD test explored the maximum volume biogas production rate (VBPR). It involves two organic loading rates (OLR) of 13.4 and 17.8 g VSadded·L-1·d-1. The continuous test exhibited that all the HPT groups could produce biogas normally when the OLR increased to the high level, while the digester fed with untreated PM showed failure. The maximum VBPR of 4.71 L L-1·d-1 was observed from PM feed after pre-treated at 100°C and running at the high OLR. This reveals that thermal treatment can weaken the impact of a larger volume of feed on the AD system. Energy balance analysis demonstrates that it is necessary to use a heat exchanger to reuse energy in the HPT process to reduce the amount of energy input. In this case, the energy input to energy output (E i /E o ) ranged from 0.34 to 0.55, which was much less than one, suggesting that biogas increment due to heat treatment can reasonably cover the energy consumption of the pre-treatment itself. Thus combining HPT and high-load anaerobic digestion of PM was suitable.

11.
Bioresour Technol ; 320(Pt A): 124332, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33157447

RESUMO

Aerobic hydrolysis of stover before anaerobic digestion is beneficial to improve the biodegradability of corn stover. Aerobic hydrolysis of corn stover at 43 °C was conducted to investigate the effects of hydrolysis time (0 h, 8 h, 16 h, and 24 h) on the degradation of lignocellulose from corn stover and material conversion. Further anaerobic digestion and energy consumption analysis with the digestion temperature of 36 °C were carried out. The accumulation rate of volatile fatty acids began to slow down after 16 h of hydrolysis, and the concentration of acetic acid reached 221.85 mmol/L at 24 h of hydrolysis. The degradation rate of lignocellulose was obviously increased after hydrolysis. When the hydrolysis time was 16 h, it reached the maximum cumulative methane production with 268.75 ml/g VS. In terms of biogas production and energy conversion efficiency, it is more appropriate to choose 16 h as hydrolysis time in biogas engineering.


Assuntos
Biocombustíveis , Metano , Anaerobiose , Hidrólise , Zea mays
12.
J Hazard Mater ; 418: 126355, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34329014

RESUMO

Landfill leachate is produced from garbage decomposition with highly toxic and bio-refractory compounds, which poses serious harm to environmental security and human health. Thus, it is urgent to treat landfill leachate properly. Persulfate (PS) oxidation has attracted extensive attentions in terms of fast reaction speed, non-selectivity to target pollutants and thorough oxidation. In recent years, PS oxidation has been widely adopted for landfill leachate purification. However, the related results have been rarely summarized. In this review, the treatment of landfill leachate by PS oxidation system is discussed systematically including oxidants, activation modes and oxidation mechanisms. In addition, the current situation of PS oxidation system and other coupled systems for landfill leachate treatment is also summarized. Finally, the challenges and future research directions of landfill leachate treatment based on PS oxidation process are proposed. Meaningfully, this review will provide valuable references for the development of landfill leachate treatment process, promoting the application of advanced oxidation technology in landfill leachate treatment.


Assuntos
Resíduos de Alimentos , Poluentes Químicos da Água , Humanos , Oxidantes , Oxirredução , Tecnologia , Poluentes Químicos da Água/análise
13.
Bioresour Technol ; 341: 125826, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34523568

RESUMO

Corn straw (CS) was pretreated by ultrasonic combined aerobic with biogas slurry as medium for anaerobic digestion (AD), that strengthened the degradation efficiency CS, varied in the composition of digestion slurry, thereby the methane production was increased. Central combinatorial design (CCD) test was used to treat CS at ultrasonic power (200, 400, and 600 W), time (10, 20, and 30 min) and AD for 25 days, at 37 ± 1℃. According to data showed that the pH and volatile fatty acids (VFAs) affected methane production directly. With an ultrasonic power 309 W, time 26 min, it reached the maximum content of VFAs with 16.24 g/L, the cumulative methane production achieved the highest with 198.56 mL/g VS, which was 46.73% higher than unpretreated raw material as CK. Ultrasonic-aerobic hydrolysis pretreatment can obtain higher VFAs and methane production content in a short period of time that is great significance to biogas engineering.


Assuntos
Metano , Zea mays , Anaerobiose , Biocombustíveis , Hidrólise , Ultrassom
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA