Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(10): e2303966, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37907423

RESUMO

Multispectral/hyperspectral technologies can easily detect man-made objects in vegetation by subtle spectral differences between the object and vegetation, and powerful reconnaissance increases the demand for camouflage materials closely resembling vegetation spectra. However, previous biomimetic materials have only presented static colors that cannot change color, and camouflage in multiple bands is difficult to achieve. To address this challenge, inspiration is drawn from the color change of foliage, and a color-change model is proposed with active and static pigments embedded in a matrix medium. The color of a composite material is dominated by the colored active pigment, which conceals the color of the static pigments and the color is revealed when the active pigment fades. A color-changing biomimetic material (CCBM) is developed with a solution casting method by adopting microcapsuled thermochromic pigments and chrome titanate yellow pigments as fillers in a base film with polyvinyl alcohol and lithium chloride. A Kubelka-Munk four-flux model is constructed to optimize the component proportions of the CCBM. The material has a reversible color change, closely resembles the foliage spectrum in UV-vis-NIR ranges, and imitates the thermal behavior of natural foliage in the mid-infrared regime. These results provide a novel approach to multispectral and hyperspectral camouflage.

2.
BMC Genomics ; 24(1): 637, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875812

RESUMO

BACKGROUND: Polyadenylation is a crucial process that terminates mRNA molecules at their 3'-ends. It has been observed that alternative polyadenylation (APA) can generate multiple transcripts from a single gene locus, each with different polyadenylation sites (PASs). This leads to the formation of several 3' untranslated regions (UTRs) that vary in length and composition. APA has a significant impact on approximately 60-70% of eukaryotic genes and has far-reaching implications for cell proliferation, differentiation, and tumorigenesis. RESULTS: In this study, we conducted long-read, single-molecule sequencing of mRNA from peanut seeds. Our findings revealed that over half of all peanut genes possess over two PASs, with older developing seeds containing more PASs. This suggesting that the PAS exhibits high tissue specificity and plays a crucial role in peanut seed maturation. For the peanut acetyl-CoA carboxylase A1 (AhACCA1) gene, we discovered four 3' UTRs referred to UTR1-4. RT-PCR analysis showed that UTR1-containing transcripts are predominantly expressed in roots, leaves, and early developing seeds. Transcripts containing UTR2/3 accumulated mainly in roots, flowers, and seeds, while those carrying UTR4 were constitutively expressed. In Nicotiana benthamiana leaves, we transiently expressed all four UTRs, revealing that each UTR impacted protein abundance but not subcellular location. For functional validation, we introduced each UTR into yeast cells and found UTR2 enhanced AhACCA1 expression compared to a yeast transcription terminator, whereas UTR3 did not. Furthermore, we determined ACC gene structures in seven plant species and identified 51 PASs for 15 ACC genes across four plant species, confirming that APA of the ACC gene family is universal phenomenon in plants. CONCLUSION: Our data demonstrate that APA is widespread in peanut seeds and plays vital roles in peanut seed maturation. We have identified four 3' UTRs for AhACCA1 gene, each showing distinct tissue-specific expression patterns. Through subcellular location experiment and yeast transformation test, we have determined that UTR2 has a stronger impact on gene expression regulation compared to the other three UTRs.


Assuntos
Acetil-CoA Carboxilase , Arachis , Arachis/genética , Arachis/metabolismo , Acetil-CoA Carboxilase/genética , Saccharomyces cerevisiae/genética , Regiões 3' não Traduzidas , Poliadenilação , RNA Mensageiro/metabolismo
3.
Exp Aging Res ; : 1-15, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37990880

RESUMO

BACKGROUND: Vitamin D (VD) is a neuroactive steroid involved in many brain functions, such as neurotrophic, neuroimmune control and neurotransmission, which affects the growth and function of the brain. The purpose of this study is to explore the effect of VD on motor and cognitive function of aged mice after sevoflurane anesthesia. METHOD: We established sevoflurane anesthesia model and VD(-) and VD(+) mice model. The VD concentration of mice in each group was determined by enzyme-linked immunosorbent assay (ELISA). An open-field test was used to evaluate the mice's capacity for movement and exploration. A Y-maze test was used to gauge the mice's short-term memory. The primary purpose of the water-maze experiment was to examine mice's long-term spatial memory. RESULTS: The ELISA results showed that the model was successfully constructed. In the open-field test, VD increased the exercise distance of mice (P < .05). In the Y-maze experiment, VD improved short-term memory impairment in mice (P < .05). In the water-maze test, VD increased the activity time and platform crossing number of mice in the target quadrant. (P < .05). CONCLUSION: Sevoflurane anesthesia caused cognitive dysfunction in aged mice, including reduced learning ability, memory loss, lower motor and exploratory abilities and depression, and VD deficiency aggravated these impairments. By supplementing with VD, learning ability and long-term memory were enhanced, motor and exploratory abilities were improved, and depression levels were reduced. Anxiety was also improved.

4.
J Sci Food Agric ; 103(7): 3558-3568, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36719269

RESUMO

BACKGROUND: Yanghe Watershed has low annual rainfall, uneven spatial and temporal distribution, extreme shortage of water resources in some areas. The contradiction between supply and demand of water for agricultural production is prominent and the expected production value cannot be achieved. Therefore, it is necessary to investigate the supply and demand of agricultural water resources and the impact of green water on agricultural crops in Yanghe Watershed. RESULTS: This article proposes a new crop economic model for increasing the green-water footprint to blue-water footprint ratio (GWF:BWF) in accordance with the regional characteristics, alleviating agricultural water shortage in irrigation areas, optimizing water resource allocation, and achieving sustainable agricultural development. The proposition is based on a study of five crops in eight districts and counties in the Yanghe River watershed. By combining the economic model F with a crop water production function, we achieved 89.3%, 88.9%, 97.1%, 81.5%, and 87.0% of the optimal water demands of the five crops, respectively, and effectively improved the underground irrigation of crops and the water resource utilization efficiency. CONCLUSION: The GWF:BWF threshold interval was subsequently selected based on the temporal changes in the BWF and GWF in the study area. This enabled significant reduction of the planting area of blue-water crops and increase in the proportion of green-water crops, while also improving the agricultural economy of the Yanghe Watershed. The proposed model promises to afford enhanced management of agricultural irrigation areas that experience rainfall shortage. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Recursos Hídricos , Água , Água/análise , Agricultura , Irrigação Agrícola , Produtos Agrícolas , China , Abastecimento de Água
5.
Water Sci Technol ; 88(5): 1246-1268, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37771225

RESUMO

To explore the key factors and specific thresholds of water resources limiting economic development, and to provide technical support for water resources management in cities dominated by agriculture similar to Zhangjiakou. We used the Tapio elastic decoupling method to quantitatively evaluate the decoupling relationship between the water resources ecological footprint (WEF) and economic growth. Then the logarithmic mean Divisia index (LMDI) and mathematical statistics are used to identify the key factors and threshold effects. The results show a significant decreasing trend in the WEF and obvious spatial differences in Zhangjiakou between 2006 and 2015, with agricultural ecological footprint dominating all districts and counties (77.54 ± 14.35%). The changes in technological effect are a contributing factor to the decoupling between the WEF and the economy in Zhangjiakou, while the economic effect is the main restricting factor. In particular, there is a high correlation between the WEF and the number of water-saving irrigation machines and the total power of agricultural machinery. According to the findings, for water-scarce cities such as Zhangjiakou, where agriculture is the primary focus, it is suggested that increasing the number of agricultural machinery can effectively alleviate the problem of water scarcity constraining economic development.


Assuntos
Desenvolvimento Econômico , Recursos Hídricos , Cidades , Água , Agricultura , China
6.
Support Care Cancer ; 30(10): 7983-7989, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35759048

RESUMO

OBJECTIVES: The purpose of this study was to explore the clinical application value of phase angle (PA) of six parts in the nutritional evaluation and construct a prediction model for diagnosing malnutrition of tumor patients. METHODS: A total of 1129 patients with malignant tumors were analyzed retrospectively. The age, sex, tumor location and body mass index (BMI) of the patients were collected, and PA of six parts was measured. The Patient Subjective Global Assessment (PG-SGA) was used to evaluate the nutritional status of each patient. RESULTS: According to the PG-SGA, 66.5% (n = 750) of the patients were evaluated as malnourished. Patients under the age of 65 had higher PA values. The PA value of men was higher than that of women (except PA-RL). In different disease groups, the PA-RA and PA-TR values were significantly different. In our study, PA value increases with BMI and decreases with PG-SGA (except PG-SGA 0-1 group). Multivariate regression analysis indicates that the age (HR = 1.051, 95% CI 1.037-1.066, P < 0.001), BMI (HR = 0.885, 95% CI 0.849-0.924, P < 0.001), and PA-WB (HR = 0.615, 95% CI 0.546-0.692, P < 0.001) were independent significant predictors associated with malnutrition. The AUC of the prediction model is 0.7631 (p < 0.001), indicating that the model including age, BMI, and PA-WB has certain diagnostic value for the diagnosis of malnutrition. CONCLUSION: The PA-WB is an independent prognostic factor of malnutrition. The prediction model constructed by age, BMI, and PA-WB can be used as a useful tool for nutritional evaluation of tumor patients. TRIAL REGISTRATION: Clinical Trial No.: ChiCTR2100047858.


Assuntos
Desnutrição , Neoplasias , Feminino , Humanos , Masculino , Desnutrição/diagnóstico , Desnutrição/etiologia , Neoplasias/complicações , Avaliação Nutricional , Estado Nutricional , Estudos Retrospectivos
7.
Plant Dis ; 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35306837

RESUMO

Peanut (Arachis hypogaea L.), one of the most important oilseed crops in tropical and subtropical regions of the world (Kumar and Kirti 2011), is widely cultivated for its high protein and oil content in seeds. In August 2019, about 30% of A. hypogaea plants were found infected by leaf spot in the peanut-growing regions of Shandong Province, China. Disease symptoms appeared as the irregular and brown necrotic lesions on leaves that were 0.5 to 5.0 mm in diam. Twenty symptomatic plants were randomly sampled from peanut planting areas in Weihai and Yantai City. Small pieces (3 mm2) were cut from lesions, dipped in a 0.5% NaClO for 10 min, rinsed three times with sterilized distilled water, dried, placed onto potato-dextrose agar (PDA), and incubated in the dark at 25°C for 10 days. Three typical Cladosporium-like strains were isolated from diseased leaves of peanut. The colonies were grey to olivaceous green, reverse olivaceous black and woolly. The conidiophores were solitary, macronematous, unbranched or branched, straight or flexuous, cylindrical, slightly swollen at the apex, smooth. Conidiogenous cells were integrated, terminal and intercalary, with numerous loci on nodulose swelling. Ramoconidia were cylindrical, oblong, fusiform, 8.0 to 19.5×2.0 to 4.5 µm, aseptate or 1 septum, pale brown. Conidia were catenate, in densely branched chains, ellipsoid, ovoid, limoniform, aseptate, 4.0 to 11.5×2.5 to 5.5 µm, smooth, with conspicuous hila. The conidia easily break off from the chains. The morphological characteristics of these isolates matched the descriptions of Cladosporium tenuissimum (Bensch et al. 2010). For the molecular identification, the partial actin (act) and translation elongation factor 1-alpha (tef1) genes were amplified and sequenced using the respective primers ACT-512F/ACT-783R and EF1-728F/EF1-986R (Carbone and Kohn 1999). The representative sequences, deposited in GenBank (act: OL332701, OL332702 and OL332703; tef1: OL322090, OL322091 and OL322092), exhibited 99.6% and 100% identical to C. tenuissimum ex-type isolate CBS 125995 (HM148687 and HM148442). Phylogenetic analysis was done by Neighbor-Joining (NJ) analysis based on act+tef1 sequences. These three isolates were identified as C. tenuissimum by morphological and molecular characteristics. Pathogenicity of each C. tenuissimum isolate was tested on peanut in the greenhouse at 28°C with 75% relative humidity. Twenty plants of A. hypogaea were inoculated with the conidial suspension (1.0 × 105 conidia/ml) on the leaf surface. Ten plants were mock inoculated with sterile water as controls. Within 2 weeks, inoculated plants exhibited dark necrotic lesions on leaves which were similar to the symptoms observed in the field, while the mock inoculated plants remained symptomless. The fungal pathogen which was reisolated from inoculated rather than mock inoculated leaf tissues was identical to the original pathogen on the basis of morphological and molecular analysis, confirming Koch's postulates. To our knowledge, this is the first report of leaf spot caused by C. tenuissimum on peanut in China. The C. tenuissimum infection poses a serious threat by reducing the yield and quality of peanut in Shandong Province. This research is especially valuable to enhance epidemiological studies and implement effective control strategies.

8.
Langmuir ; 36(48): 14471-14477, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33231462

RESUMO

Magnetic-fluorescent nanocomposites have a tremendous potential in biomedicine realms as a revolutionary dual-modality probe tool for more accurate medical detection. However, complicated and inefficient postprocesses pose obstacles to obtaining high-quality magnetic-fluorescent nanocomposites. Thus, the fabrication of magnetic-fluorescent functional nanocomposites via a simple, effective, and ideal method remains a challenge and is still waiting to be tapped. The new synthesis approaches are becoming impending demands and probably enable us to address these above-mentioned problems. In this contribution, we present a novel self-assembly synthesis route for the construction of magnetic-fluorescent bimodal imaging nanocomposites rather than adopting sophisticated postpreparative processes. The Fe3O4 and quatum dots (QDs) nanocomposites were cross-linked fleetly by cerium(III) ion driven coordination bonds in which the cerium(III) ions served as the cross-connecting node and the carboxylate groups acted as bridging ligands. The potential application for dual-modality imaging capability was validated on tumor-bearing mice. This ingenious strategy was extremely efficient and handy for the magnetic-fluorescent Fe3O4-QDs nanocomposite construction. Significantly, our cerium(III) ion driven self-assembly method probably has a wide applicability for nanoparticles and organic molecules containing carboxyl groups but extensive explorations are still necessary.

9.
Analyst ; 145(4): 1294-1301, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31909779

RESUMO

Compared with normal cells, cancer or tumor cells have a specific microenvironment and apparently possess a relatively large amount of ROS/RNS, and their overexpression is one of the important reasons for tumor development and deterioration. Therefore, monitoring the changes of intracellular ROS/RNS can improve the awareness of the clinical manifestations of the disease, which will be beneficial for the early diagnosis of cancer and improving treatment efficiency. Herein, in this study we have exploited and constructed a novel strategy based on the SiC@C nanowire electrode for intracellular electrochemical analysis to monitor ROS levels in cancer or tumor cells. Firstly, the SiC@C nanowire electrode was utilized to detect the intracellular ROS radical changes involved in the relevant biological processes of cancer cells where fluorescent zinc nanoclusters were biosynthesized in situ in target cancer cells by using the intracellular microenvironment and specificity of these cancer cells. By combining a confocal fluorescence microscopy study simultaneously, our observations illustrate that accompanied by the apparent change of the intracellular ROS, these in situ biosynthesized fluorescent nanoclusters gradually accumulate inside the cytosolic area with the increase of the reaction time. Moreover, it is evident that the size of the SiC@C nanoelectrodes can match the single cell dimensions, and its unique high spatial resolution provides the possibility of relevant intracellular molecular detection. These nanoelectrochemical biosensors can be adopted to quantitatively determine the change of the ROS content in target single cells in the relevant biological microenvironment or during the in situ biosynthesis process, and are also beneficial for understanding the related mechanism of some specific biological processes including the in situ synthesis at the single cell level.


Assuntos
Técnicas Biossensoriais/métodos , Nanotecnologia/métodos , Espécies Reativas de Oxigênio/metabolismo , Eletroquímica , Células Hep G2 , Humanos , Espaço Intracelular/metabolismo , Imagem Óptica , Pontos Quânticos/química , Espécies Reativas de Oxigênio/química , Óxido de Zinco/química
10.
J Food Sci Technol ; 57(12): 4541-4550, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33087967

RESUMO

Color has strong relationship with food quality. In this paper, partial least square regression (PLSR) and least square-support vector machine (LS-SVM) models combined with six different color spaces (NRGB, CIELAB, CMY, HSI, I1I2I3, and YCbCr) were developed and compared to predict pH value and soluble solids content (SSC) in red bayberry. The results showed that PLSR and LS-SVM models coupled with color space could predict pH value in red bayberry (r = 0.93-0.96, RMSE = 0.09-0.12, MAE = 0.07-0.09, and MRE = 0.04-0.06). In addition, the minimum errors (RMSE = 0.09, MAE = 0.07, and MRE = 0.04) and maximum correlation coefficient value (r = 0.96) were found with the PLSR based on CMY, I1I2I3, and YCbCr color spaces. For predicting SSC, PLSR models based on CIELAB color space (r = 0.90, RMSE = 0.91, MAE = 0.69 and MRE = 0.12) and HSI color space (r = 0.89, RMSE = 0.95, MAE = 0.73 and MRE = 0.13) were recommended. The results indicated that color space combined with chemometric is suitable to non-destructively detect pH value and SSC of red bayberry.

11.
Small ; 15(35): e1902755, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31347262

RESUMO

Gold-silver nanocages (GSNCs) are widely used in cancer imaging and therapy due to excellent biocompatibility, internal hollow structures, and tunable optical properties. However, their possible responses toward the tumor microenvironment are still not well understood. In this study, it is demonstrated that a kind of relatively small sized (35 nm) and partially hollow GSNCs (absorbance centered at 532 nm) can enhance the intrinsic photoacoustic imaging performances for blood vessels around tumor sites. More importantly, the high concentration of glutathione around the tumor cells' microenvironment may induce the aggregation, disintegration, and agglomeration of these GSNCs sequentially, allowing significant shifts in the absorbance spectrum of GSNCs to the near-infrared (NIR) region. This enhanced absorbance in the NIR region entails the significant photothermal therapy (PTT) effect. In vivo experiments, including photoacoustic microscopy (PAM) for cancer diagnosis and PTT in tumor model mice, also show coincident consequences. Taken together, the slightly hollow GSNCs may assist PAM-based tumor diagnosis and induce a tumor targeted PTT effect. This work paves a new avenue for the development of an alternative tumor diagnostic and therapeutic strategy.


Assuntos
Glutationa/química , Ouro/química , Hipertermia Induzida , Nanoestruturas/química , Neoplasias/diagnóstico , Neoplasias/terapia , Fototerapia , Prata/química , Nanomedicina Teranóstica , Microambiente Tumoral
12.
Biotechnol Bioeng ; 115(3): 524-535, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29080350

RESUMO

Optically pure compounds are important in the synthesis of fine chemicals. Using directed evolution of enzymes to obtain biocatalysts that can selectively produce high-value chiral chemicals is often time-, money-, and resource-intensive; traditional semi-rational designs based on structural data and docking experiments are still limited due to the lack of accurate selection of hot-spot residues. In this study, through ligand-protein collision counts based on steered molecular dynamics simulation, we accurately identified four residues related to improving nitrile hydratase stereoselectivity toward rac-mandelonitrile (MAN). All the four selected residues had numerous collisions with rac-MAN. Five mutants significantly shifting stereoselectivity towards (S)-MAN were obtained from site-saturation mutagenesis, one of them, at position ßPhe37, exhibiting efficient production of (S)-MAN with 96.8% eep , was isolated and further analyzed. The increased pulling force observed during SMD simulation was found to be in good coincidence with the formation of hydrogen bonds between (R)-MAN and residue ßHis37. (R)-MAN had to break these barriers to enter the active site of nitrile hydratase and S selectivity was thus improved. The results indicated that combining steered molecular dynamics simulation with a traditional semi-rational design significantly reduced the select range of hot-spot residues for the evolution of NHase stereoselectivity, which could serve as an alternative for the modulation of enzyme stereoselectivity.


Assuntos
Acetonitrilas/química , Proteínas de Bactérias/química , Hidroliases/química , Engenharia de Proteínas , Rhodococcus/enzimologia , Proteínas de Bactérias/genética , Hidroliases/genética , Rhodococcus/genética , Estereoisomerismo
13.
BMC Geriatr ; 18(1): 112, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29807543

RESUMO

BACKGROUND: Balance performance is considered as an indicator of functional status in the elderly, a large scale population screening and evaluation in the community context followed by proper interventions would be of great significance at public health level. However, there has been no suitable balance testing scale available for large scale studies in the unique community context of urban China. METHODS: A balance scale named X16 balance testing scale was developed, which was composed of 3 domains and 16 items. A total of 1985 functionally independent and active community-dwelling elderly adults' balance abilities were tested using the X16 scale. The internal consistency, split-half reliability, content validity, construct validity, discriminant validity of X16 balance testing scale were evaluated. RESULTS: Factor analysis was performed to identify alternative factor structure. The Eigenvalues of factors 1, 2, and 3 were 8.53, 1.79, and 1.21, respectively, and their cumulative contribution to the total variance reached 72.0%. These 3 factors mainly represented domains static balance, postural stability, and dynamic balance. The Cronbach alpha coefficient for the scale was 0.933. The Spearman correlation coefficients between items and its corresponding domains were ranged from 0.538 to 0.964. The correlation coefficients between each item and its corresponding domain were higher than the coefficients between this item and other domains. With the increase of age, the scores of balance performance, domains static balance, postural stability, and dynamic balance in the elderly declined gradually (P < 0.001). With the increase of age, the proportion of the elderly with intact balance performance decreased gradually (P < 0.001). CONCLUSIONS: The reliability and validity of the X16 balance testing scale is both adequate and acceptable. Due to its simple and quick use features, it is practical to be used repeatedly and routinely especially in community setting and on large scale screening.


Assuntos
Avaliação Geriátrica , Equilíbrio Postural , Idoso , Idoso de 80 Anos ou mais , China , Análise Fatorial , Feminino , Indicadores Básicos de Saúde , Humanos , Vida Independente , Masculino , Programas de Rastreamento , Pessoa de Meia-Idade , Psicometria , Reprodutibilidade dos Testes
14.
J Integr Neurosci ; 17(2): 97-104, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29526851

RESUMO

A ten-layer feed forward network was constructed in the presence of an exogenous alternating magnetic field. Results indicate that for rate coding, the firing rate is increased in the presence of an exogenous alternating magnetic field and particularly with increasing enhancement of the alternating magnetic field amplitude. For temporal coding, in the presence of alternating magnetic field, the interspike intervals of the spiking sequence are decreased and the distribution of interspike intervals tends to be uniform.


Assuntos
Potenciais de Ação/fisiologia , Campos Magnéticos , Modelos Neurológicos , Neurônios/fisiologia , Animais , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Fatores de Tempo
15.
J Sep Sci ; 39(6): 1202-12, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27027594

RESUMO

An analytical method based on dispersive solid-phase extraction with a multiwalled carbon nanotubes sorbent coupled with positive pulse glow discharge ion mobility spectrometry was developed for analysis of 30 pesticide residues in drinking water samples. Reduced ion mobilities and the mass-mobility correlation of 30 pesticides were measured. The pesticides were divided into five groups to verify the separation capability of pulse glow discharge in mobility spectrometry. The extraction conditions such as desorption solvent, ionic strength, conditions of adsorption and desorption, the amounts of multiwalled carbon nanotubes, and solution pH were optimized. The enrichment factors of pesticides were 5.4- to 48.7-fold (theoretical enrichment factor was 50-fold). The detection limits of pesticides were 0.01∼0.77 µg/kg. The linear range was 0.005-0.2 mg/L for pesticide standard solutions, with determination coefficients from 0.9616 to 0.9999. The method was applied for the analysis of practical and spiked drinking water samples. All results were confirmed by high-performance liquid chromatography with tandem mass spectrometry. The proposed method was proven to be a commendably rapid screening qualitative and semiquantitative technique for the analysis of pesticide residues in drinking water samples on site.


Assuntos
Água Potável/química , Nanotubos de Carbono/química , Resíduos de Praguicidas/análise , Extração em Fase Sólida/métodos , Análise Espectral/métodos , Poluentes Químicos da Água/análise , Cromatografia Líquida de Alta Pressão , Concentração de Íons de Hidrogênio , Espectrometria de Massas em Tandem , Fatores de Tempo
16.
Plant Physiol Biochem ; 206: 108311, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38169227

RESUMO

The grain yield of crops is determined by the synergistic interaction between source activity and sink capacity. However, source-sink interactions are far from being fully understood of peanut. Therefore, a 2-year field study (2018-2019) was conducted to compare differences in photosynthetic characteristics, carbon and nitrogen metabolism, and yield and quality of different source-sink peanut varieties. Four representative source-sink types were examined: JH5 (source-sink coordination type), SH9 (sufficient source-large sink type), ZH24 (sufficient source-few sink type), and HY36 (large source-few sink type). The results showed that the photosynthetic potential of HY36 was higher than that of the other varieties after flowering because of a large source (leaves), whereas the chlorophyll content and net photosynthetic rate of HY36 were significantly lower than those of JH5 and ZH24. Proportions of dry matter transferred to pods were significantly different among four source-sink peanut varieties. From 50 days after flowering, the dry matter distribution ratio of pods exceeded that of stems and leaves in JH5, significantly earlier than other varieties, which prolong the duration of pod-filling period, followed by SH9 and ZH24. The activities of nitrate reductase, glutamine synthetase, glutamate dehydrogenase, and glutamate synthase in JH5 were the highest among the varieties, and thus, the highest protein content was also in JH5. The activities of sucrose synthase and sucrose phosphate synthase in ZH24 were significantly higher than those in HY36. The highest oil content was also in ZH24. Among pod sink characteristics and yield, SH9 had the longest flowering period and the highest gynophore formation rate but the lowest pod-bearing rate, and the effective proportion and pod fullness were also lower than those of other varieties. The highest pod rate was in ZH24. The effective proportion and pod fullness of JH5 were higher than those of the other varieties, and its yield was also the highest, followed by SH9 and ZH24, with the lowest yield in HY36. The obtained results indicate that the source-sink coordinated variety had high Pn and chlorophyll content in the late growth stage, a long functional period of leaves, and a high proportion of assimilates transported to pods, thus promoting effective proportions and pod fullness to improve peanut yield and protein content, suggesting that different cultivation and management measures should select for different peanut varieties to best coordinate the relationship between the source and sink.


Assuntos
Arachis , Carbono , Arachis/metabolismo , Fotossíntese/fisiologia , Clorofila/metabolismo , Nitrogênio
17.
Sci Data ; 11(1): 364, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605113

RESUMO

Peanut (Arachis hypogaea) showcases geocarpic behavior, transitioning from aerial flowering to subterranean seed development. We recently obtained an atavistic variant of this species, capable of producing aerial and subterranean pods on a single plant. Notably, although these pod types share similar vigor levels, they exhibit distinct differences in their physical aspects, such as pod size, color, and shell thickness. We constructed 63 RNA-sequencing datasets, comprising three biological replicates for each of 21 distinct tissues spanning six developmental stages for both pod types, providing a rich tapestry of the pod development process. This comprehensive analysis yielded an impressive 409.36 Gb of clean bases, facilitating the detection of 42,401 expressed genes. By comparing the transcriptomic data of the aerial and subterranean pods, we identified many differentially expressed genes (DEGs), highlighting their distinct developmental pathways. By providing a detailed workflow from the initial sampling to the final DEGs, this study serves as an important resource, paving the way for future research into peanut pod development and aiding transcriptome-based expression profiling and candidate gene identification.


Assuntos
Arachis , Regulação da Expressão Gênica de Plantas , Transcriptoma , Arachis/genética , Arachis/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Sementes/genética , Sementes/crescimento & desenvolvimento
18.
Endocrine ; 85(1): 407-416, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38386167

RESUMO

BACKGROUND: There have been few studies on the role of autophagy in pancreatic neuroendocrine tumours (PNETs). SQSTM1/p62 (also called Sequestosome 1) is a potential autophagy regulator, and its biological roles and clinical significance in PNETs remain poorly understood. PURPOSE: The purpose of this study was to evaluate the clinical significance of SQSTM1/p62 in human PNET specimens and to evaluate its potential value as a therapeutic target by studying its biological function in PNET cell lines. METHODS: SQSTM1/p62 protein expression was assessed in 106 PNET patient specimens by immunohistochemistry, and the relationship between SQSTM1/p62 protein expression and the clinicopathological features of PNETs in patients was analysed. The proliferation, invasion and apoptosis of SQSTM1/p62-knockdown QGP-1 and INS-1 cells were assessed by the MTT assay, a Transwell assay and flow cytometry. Cell autophagy was assessed by western blotting and mCherry-GFP-LC3B. RESULTS: The protein expression of SQSTM1/p62 in PNET patient specimens was significantly correlated with tumour recurrence (p = 0.005) and worse prognosis (log rank p = 0.020). Downregulation of the SQSTM1/p62 gene inhibited tumour cell proliferation and migration and induced PNET cell death. Downregulation of SQSTM1/p62 activated autophagy in PNET cell lines but blocked autophagic flow. Knockdown of the SQSTM1/p62 gene inhibited mTOR phosphorylation. CONCLUSION: The SQSTM1/P62 protein could be an independent prognostic marker for PNET patients. Downregulating SQSTM1/P62 can inhibit PNET progression, inhibit mTOR phosphorylation and block autophagic flow.


Assuntos
Autofagia , Proliferação de Células , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Proteína Sequestossoma-1 , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Prognóstico , Linhagem Celular Tumoral , Autofagia/fisiologia , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Adulto , Idoso , Apoptose
19.
Plants (Basel) ; 12(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38140481

RESUMO

Short-term drought events occur more frequently and more intensively under global climate change. Biochar amendment has been documented to ameliorate the negative effects of water deficits on plant performance. Moreover, biochar can alter the soil microbial community, soil properties and soil metabolome, resulting in changes in soil functioning. We aim to reveal the extent of biochar addition on soil nutrients and the soil microbial community structure and how this improves the tolerance of legume crops (peanuts) to short-term extreme drought. We measured plant performances under different contents of biochar, set as a gradient of 2%, 3% and 4%, after an extreme experimental drought. In addition, we investigated how soil bacteria and fungi respond to biochar additions and how the soil metabolome changes in response to biochar amendments, with combined growth experiments, high-throughput sequencing and soil omics. The results indicated that biochar increased nitrites and available phosphorus. Biochar was found to influence the soil bacterial community structure more intensively than the soil fungal community. Additionally, the fungal community showed a higher randomness under biochar addition when experiencing short-term extreme drought compared to the bacterial community. Soil bacteria may be more strongly related to soil nutrient cycling in peanut agricultural systems. Although the soil metabolome has been documented to be influenced by biochar addition independent of soil moisture, we found more differential metabolites with a higher biochar content. We suggest that biochar enhances the resistance of plants and soil microbes to short-term extreme drought by indirectly modifying soil functioning probably due to direct changes in soil moisture and soil pH.

20.
Heliyon ; 9(1): e12878, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36711321

RESUMO

Triacylglycerols is the major storage lipid in most crop seeds. As the key enzyme catalyzing the final step of triacylglycerols biosynthesis, the activity of diacylglycerol acyltransferases directly related to oil content. It has been shown that certain amino acids are very important for enzyme activity, one amino acid variation will greatly change the enzyme activity. In this study, we identified three amino acid point mutations that affect the Arachis hypogaea diacylglycerol acyltransferase 2 enzyme activity, T107M, K251R and L316P. According to the three amino acid variations, three single-nucleotide-mutant sequences of Arachis hypogaea diacylglycerol acyltransferase 2a were constructed and transformed into yeast strain H1246 for function verification. Results showed that T107M and K251R could change the fatty acid content and composition of the transformed yeast strains, whereas L316P led to the loss of enzyme activity. By analyzing the 2D and 3D structures of the three variants, we found that the changes of spatial structure of T107M, K251R and L316P caused the changes of the enzyme activity. Our study could provide a theoretical basis for changing the enzyme activity of DGAT by genetic engineering, and provide a new idea for increasing the oil content of the crops.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA