Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
1.
Nature ; 603(7902): 693-699, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35062016

RESUMO

The Omicron (B.1.1.529) variant of SARS-CoV-2 emerged in November 2021 and is rapidly spreading among the human population1. Although recent reports reveal that the Omicron variant robustly escapes vaccine-associated and therapeutic neutralization antibodies2-10, the pathogenicity of the virus remains unknown. Here we show that the replication of Omicron is substantially attenuated in human Calu3 and Caco2 cells. Further mechanistic investigations reveal that Omicron is inefficient in its use of transmembrane serine protease 2 (TMPRSS2) compared with wild-type SARS-CoV-2 (HKU-001a) and previous variants, which may explain its reduced replication in Calu3 and Caco2 cells. The replication of Omicron is markedly attenuated in both the upper and lower respiratory tracts of infected K18-hACE2 mice compared with that of the wild-type strain and Delta (B.1.617.2) variant, resulting in its substantially ameliorated lung pathology. Compared with wild-type SARS-CoV-2 and the Alpha (B.1.1.7), Beta (1.351) and Delta variants, infection by Omicron causes the lowest reduction in body weight and the lowest mortality rate. Overall, our study demonstrates that the replication and pathogenicity of the Omicron variant of SARS-CoV-2 in mice is attenuated compared with the wild-type strain and other variants.


Assuntos
COVID-19/patologia , COVID-19/virologia , SARS-CoV-2/patogenicidade , Replicação Viral , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/imunologia , Células CACO-2 , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Serina Endopeptidases/metabolismo , Virulência
2.
J Immunol ; 211(12): 1835-1843, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37930129

RESUMO

Oxidative stress induces a prothrombotic state through enhancement of adhesion properties of the endothelium. E-selectin, an endothelial cell adhesion molecule, becomes a therapeutic target for venous thrombosis, whereas the regulatory mechanisms of its expression have not been fully understood. In the present study, we report that H2O2 treatment increases expression of E-selectin but decreases expression of the endothelial transcription factor ETS-related gene (ERG) in HUVECs in a dose- and time-dependent manner. In BALB/c mice treated with hypochlorous acid, E-selectin expression is increased and ERG expression is decreased in endothelial cells of the brain and lung. RNA interference of ERG upregulates E-selectin expression, whereas transfection of ERG-expressing plasmid downregulates E-selectin expression in HUVECs. Knockdown or overexpression of ERG comprises H2O2-induced E-selectin expression in HUVECs. Deletion of the Erg gene in mice results in embryonic lethality at embryonic days 10.5-12.5, and E-selectin expression is increased in the Erg-/- embryos. No chromatin loop was found on the E-selectin gene or its promoter region by capture high-throughput chromosome conformation capture. Chromatin immunoprecipitation and luciferase reporter assay determined that the -127 ERG binding motif mediates ERG-repressed E-selectin promoter activity. In addition, ERG decreases H2O2-induced monocyte adhesion. Together, ERG represses the E-selectin gene transcription and inhibits oxidative stress-induced endothelial cell adhesion.


Assuntos
Selectina E , Fatores de Transcrição , Animais , Camundongos , Fatores de Transcrição/metabolismo , Selectina E/genética , Selectina E/metabolismo , Células Endoteliais/metabolismo , Células Cultivadas , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Endotélio Vascular/metabolismo
3.
Mol Biol Evol ; 40(8)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37494289

RESUMO

Although the continual expansion of the brain during primate evolution accounts for our enhanced cognitive capabilities, the drivers of brain evolution have scarcely been explored in these ancestral nodes. Here, we performed large-scale comparative genomic, transcriptomic, and epigenomic analyses to investigate the evolutionary alterations acquired by brain genes and provide comprehensive listings of innovatory genetic elements along the evolutionary path from ancestral primates to human. The regulatory sequences associated with brain-expressed genes experienced rapid change, particularly in the ancestor of the Simiiformes. Extensive comparisons of single-cell and bulk transcriptomic data between primate and nonprimate brains revealed that these regulatory sequences may drive the high expression of certain genes in primate brains. Employing in utero electroporation into mouse embryonic cortex, we show that the primate-specific brain-biased gene BMP7 was recruited, probably in the ancestor of the Simiiformes, to regulate neuronal proliferation in the primate ventricular zone. Our study provides a comprehensive listing of genes and regulatory changes along the brain evolution lineage of ancestral primates leading to human. These data should be invaluable for future functional studies that will deepen our understanding not only of the genetic basis of human brain evolution but also of inherited disease.


Assuntos
Encéfalo , Primatas , Camundongos , Humanos , Animais , Primatas/genética , Encéfalo/metabolismo , Evolução Molecular
4.
Hum Reprod ; 39(1): 108-118, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38011904

RESUMO

STUDY QUESTION: What is the current burden of infertility attributable to PCOS at global, regional, and national levels by age and socio-demographic index (SDI) across 21 regions and 204 countries and territories? SUMMARY ANSWER: The burden of infertility attributable to PCOS increased from 6.00 million prevalent cases in 1990 to 12.13 million in 2019 globally and increased sharply in most regions and nations. WHAT IS KNOWN ALREADY: PCOS is the most common cause of anovulatory infertility, affecting up to 80% of women with anovulation. No comprehensive and detailed epidemiological estimates of infertility attributable to PCOS in reproductive women aged 15-49 years by age and SDI, at the global, regional, and national level, have been reported. STUDY DESIGN, SIZE, DURATION: An age- and SDI-stratified systematic analysis of the prevalence and years lived with disability (YLD) of infertility attributable to PCOS across 21 regions and 204 countries and territories from 1990 to 2019 has been performed. PARTICIPANTS/MATERIALS, SETTING, METHODS: The prevalence and YLD of female infertility attributable to PCOS in reproductive women aged 15-49 years from 1990 to 2019 were retrieved directly from the Global Burden of Diseases 2019. The number, rates per 100 000 persons, and average annual percentage changes (AAPCs) of prevalence and YLD were estimated at the global, regional, and national levels. MAIN RESULTS AND THE ROLE OF CHANCE: Globally, the prevalent cases of infertility attributable to PCOS among women of reproductive age (15-49 years) doubled from 1990 to 2019, with 6.00 million prevalent cases in 1900 and 12.13 million in 2019. The global age-standardized prevalence rates (ASPRs) of infertility attributable to PCOS were 223.50/100 000 persons in 1990 and 308.25/100 000 persons in 2019. At global level, the YLDs of infertility attributable to PCOS increased by 98.0% from 35.20 thousand in 1990 to 69.70 thousand in 2019. The burden of infertility attributable to PCOS in the high SDI region was significantly higher than that in the other four SDI regions. The greatest annual increases in rates of ASPR and age-standardized YLD rate were observed in the middle SDI region (AAPC 1.96 [95% CI 1.87-2.06], 1.94 [1.87-2.00], respectively) and the low-middle SDI region (AAPC 1.96 [1.90-2.03], 1.90 [1.85-1.94], respectively). The regional highest ASPR and the age-standardized YLD rate of infertility were observed in High-income Asia Pacific. The national highest ASPR and the age-standardized YLD rate of infertility were observed in Italy. Positive associations were observed between these burden estimates and the SDI level (all P < 0.001). LIMITATIONS, REASONS FOR CAUTION: Although the Global Burden of Diseases 2019 has tried its best to collect all available data, some countries have limited data, which may result in an underestimation of the burden of infertility attributable to PCOS. The diagnostic criteria of PCOS are constantly changing, which may induce bias in infertility attributable to PCOS. No information on the PCOS phenotype is provided in the Global Burden of Diseases 2019, so we cannot estimate the infertility attributable to a specific PCOS phenotype. Detection bias would lead to a higher prevalence of PCOS and infertility attributable to PCOS in developed countries with well-established medical systems and greater willingness of the populace to seek medical attention. Thus, health resource allocation for infertility attributable to PCOS in low-prevalence areas should not be ignored. WIDER IMPLICATIONS OF THE FINDINGS: The global burden of infertility attributable to PCOS increased sharply from 1990 to 2019. Effective health interventions and efficient preventative and managerial strategies should be established to reduce the burden of infertility attributable to PCOS. Weight control is suggested to reduce the burden of infertility attributable to PCOS, especially in the high SDI region. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the National Key Research and Development Program of China (grant number, 2022YFC2704100) and the National Natural Science Foundation of China (Nos 82001498 and 82371648). The authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Infertilidade , Síndrome do Ovário Policístico , Humanos , Feminino , Anos de Vida Ajustados por Qualidade de Vida , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/epidemiologia , Carga Global da Doença , Prevalência , Saúde Global
5.
Hum Reprod ; 39(6): 1303-1315, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38689567

RESUMO

STUDY QUESTION: What is the burden of premenstrual syndrome (PMS) at the global, regional, and national levels across 21 regions and 204 countries and territories? SUMMARY ANSWER: Over the past few decades, the global prevalent cases of PMS have grown significantly from 652.5 million in 1990 to 956.0 million in 2019, representing a 46.5% increase. WHAT IS KNOWN ALREADY: PMS, which affects almost half of reproductive women worldwide, has substantial social, occupational, academic, and psychological effects on women's lives. However, no comprehensive and detailed epidemiological estimates of PMS by age and socio-demographic index (SDI) at global, regional, and national levels have been reported. STUDY DESIGN, SIZE, DURATION: An age- and SDI-stratified systematic analysis of the prevalence and years lived with disability (YLD) of PMS by age and SDI across 21 regions and 204 countries and territories has been performed. PARTICIPANTS/MATERIALS, SETTING, METHODS: The prevalence and YLD of PMS from 1990 to 2019 were retrieved directly from the Global Burden of Diseases (GBD) 2019 study. The number, rates per 100 000 persons, and average annual percentage changes (AAPCs) of prevalence and YLD were estimated at the global, regional, and national levels. MAIN RESULTS AND THE ROLE OF CHANCE: Globally, the prevalent cases of PMS increased by 46.5% from 652.5 million in 1990 to 956.0 million in 2019; in contrast, however, the age-standardized prevalence rate was approximately stable at 24 431.15/100 000 persons in 1990 and 24 406.51/100 000 persons in 2019 (AAPC, 0[95% CI: -0.01 to 0.01]). Globally, the YLD was 8.0 million in 2019 and 5.4 million in 1990, with a sizable increase over the past 30 years. The age-standardized YLD rate was stable (AAPC 0.01, P = 0.182), at 203.45/100 000 persons in 1990 and 203.76/100 000 persons in 2019. The age-standardized burden estimates were the highest in the low-middle SDI regions and the lowest in the high SDI regions. Peaks in burden rate estimates were all observed in the 40-44 years age group. Regional age-standardized burden estimates were the highest in South Asia and the lowest in Western Sub-Saharan Africa. The national age-standardized burden estimates were the highest in Pakistan and the lowest in Niger. LIMITATIONS, REASONS FOR CAUTION: The accuracy of the results depended on the quality and quantity of the GBD 2019 data. Fortunately, the GBD study endeavoured to retrieve data globally and applied multiple models to optimize the completeness, accuracy, and reliability of the data. In addition, the GBD study took the country as its basic unit and neglected the influence of race. Further study is warranted to compare differences in PMS burden associated with race. Finally, no data are available on the aetiology and risk information related to PMS, which might help us to better understand the trends and age distribution of PMS and help local governments formulate more detailed policies and comprehensive interventions. WIDER IMPLICATIONS OF THE FINDINGS: Although the age-standardized prevalence/YLD rate has been stable over the past 30 years, the absolute number of prevalent cases and YLD grew significantly worldwide from 1990 to 2019. Public health-related policies should be implemented to reduce the prevalence and alleviate the symptoms of PMS. Lifestyle changes and cognitive-behavioral therapy are critical in helping to reduce the burden of PMS. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the National Key Research and Development Program of China (grant number 2022YFC2704100) and the National Natural Science Foundation of China (No. 82001498, No. 82371648). The authors declare no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Carga Global da Doença , Saúde Global , Síndrome Pré-Menstrual , Humanos , Feminino , Síndrome Pré-Menstrual/epidemiologia , Adulto , Prevalência , Pessoa de Meia-Idade , Adulto Jovem , Adolescente , Efeitos Psicossociais da Doença
6.
Stem Cells ; 41(10): 928-943, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37419489

RESUMO

This study was performed to determine the effect of human umbilical cord mesenchymal stem cells (hucMSCs) treatment on pulmonary fibrosis and investigate the circFOXP1-mediated autophagic mechanism of hucMSCs treatment. Pulmonary fibrosis models were established by spraying bleomycin in mice and TGF-ß1 treatment of MRC-5 cells. Results showed that hucMSCs were retained in lung and hucMSCs treatment alleviated pulmonary fibrosis. Morphological staining indicated that hucMSCs-treated mice had thinner alveolar walls, effectively improved alveolar structure, significantly reduced alveolar inflammation, and decreased collagen deposition than control mice. Fibrotic proteins, including vimentin, α-SMA, collagens I and III, and the differentiation-related protein S100 calcium-binding protein A4 was reduced considerably in the hucMSCs-treated group. The mechanistic study revealed that the inhibition of hucMSCs treatment on pulmonary fibrogenesis depended on downregulating circFOXP1, in which hucMSCs treatment promoted circFOXP1-mediated autophagy process via blocking the nuclear human antigen R (HuR) translocation and promoting the HuR degradation, leading to a marked decrease in autophagy negative regulators EZH2, STAT1, and FOXK1. In conclusion, hucMSCs treatment significantly improved pulmonary fibrosis by downregulating the circFOXP1-HuR-EZH2/STAT1/FOXK1 autophagic axis. hucMSCs can act as an effective treatment for pulmonary fibrosis.


Assuntos
Células-Tronco Mesenquimais , Fibrose Pulmonar , Camundongos , Humanos , Animais , Fibrose Pulmonar/terapia , Fibrose , Pulmão/metabolismo , Células-Tronco Mesenquimais/metabolismo , Autofagia , Cordão Umbilical , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Fator de Transcrição STAT1 , Fatores de Transcrição Forkhead/metabolismo
7.
Ecotoxicol Environ Saf ; 275: 116246, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38537478

RESUMO

Cadmium (Cd) pollution is considered a pressing challenge to eco-environment and public health worldwide. Although it has been well-documented that Cd exhibits various adverse effects on aquatic animals, it is still largely unknown whether and how Cd at environmentally relevant concentrations affects iron metabolism. Here, we studied the effects of environmental Cd exposure (5 and 50 µg/L) on iron homeostasis and possible mechanisms in common carp. The data revealed that Cd elevated serum iron, transferrin saturation and iron deposition in livers and spleens, leading to the disruption of systemic iron homeostasis. Mechanistic investigations substantiated that Cd drove hemolysis by compromising the osmotic fragility and inducing defective morphology of erythrocytes. Cd concurrently exacerbated hepatic inflammatory responses, resulting in the activation of IL6-Stat3 signaling and subsequent hepcidin transcription. Notably, Cd elicited ferroptosis through increased iron burden and oxidative stress in livers. Taken together, our findings provide evidence and mechanistic insight that environmental Cd exposure could undermine iron homeostasis via erythrotoxicity and hepatotoxicity. Further investigation and ecological risk assessment of Cd and other pollutants on metabolism-related effects is warranted, especially under the realistic exposure scenarios.


Assuntos
Carpas , Ferroptose , Animais , Cádmio/metabolismo , Carpas/metabolismo , Hemólise , Fígado , Inflamação/induzido quimicamente , Inflamação/metabolismo , Homeostase , Ferro/metabolismo
8.
Ecotoxicol Environ Saf ; 276: 116334, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626607

RESUMO

Thioacetamide (TAA) within the liver generates hepatotoxic metabolites that can be induce hepatic fibrosis, similar to the clinical pathological features of chronic human liver disease. The potential protective effect of Albiflorin (ALB), a monoterpenoid glycoside found in Paeonia lactiflora Pall, against hepatic fibrosis was investigated. The mouse hepatic fibrosis model was induced with an intraperitoneal injection of TAA. Hepatic stellate cells (HSCs) were subjected to treatment with transforming growth factor-beta (TGF-ß), while lipopolysaccharide/adenosine triphosphate (LPS/ATP) was added to stimulate mouse peritoneal macrophages (MPMs), leading to the acquisition of conditioned medium. For TAA-treated mice, ALB reduced ALT, AST, HYP levels in serum or liver. The administration of ALB reduced histopathological abnormalities, and significantly regulated the expressions of nuclear receptor-related 1 protein (NURR1) and the P2X purinoceptor 7 receptor (P2×7r) in liver. ALB could suppress HSCs epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) deposition, and pro-inflammatory factor level. ALB also remarkably up-regulated NURR1, inhibited P2×7r signaling pathway, and worked as working as C-DIM12, a NURR1 agonist. Moreover, deficiency of NURR1 in activated HSCs and Kupffer cells weakened the regulatory effect of ALB on P2×7r inhibition. NURR1-mediated inhibition of inflammatory contributed to the regulation of ALB ameliorates TAA-induced hepatic fibrosis, especially based on involving in the crosstalk of HSCs-macrophage. Therefore, ALB plays a significant part in the mitigation of TAA-induced hepatotoxicity this highlights the potential of ALB as a protective intervention for hepatic fibrosis.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , Transdução de Sinais , Tioacetamida , Animais , Tioacetamida/toxicidade , Células Estreladas do Fígado/efeitos dos fármacos , Camundongos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Masculino , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Camundongos Endogâmicos C57BL , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos
9.
Nano Lett ; 23(11): 5180-5186, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37222445

RESUMO

Active plasmonic metamolecules under microscopic observation are promising for optical reporters in single molecule sensing applications. While self-assembled reconfigurable chiral plasmonic metamolecules can be conveniently engineered with sensing functionalities, their observation is usually based on ensemble measurements, where the chiroptical response of enantiomers tend to cancel each other in ensemble circular dichroism. Herein, we demonstrate microscopic observation of enantiomeric switching of individual active DNA origami-assembled plasmonic metamolecules. The metamolecules are immobilized on a glass substrate in a microfluidic chamber, in which the plasmonic metamolecule can maintain their activities upon certain local stimuli as in solution. In circular differential scattering, two enantiomeric states controlled by the strand-displacement reaction display opposite spectral signals to each other, representing successful enantiomeric switching of the chirality. Moreover, in a close-to-racemic mixture of chiral metamolecules controlled by pH-sensitive strands, the coexistence of enantiomeric individuals, which is concealed in ensemble measurements, is clearly identified.

10.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474588

RESUMO

Alcoholic liver disease (ALD) is the main factor that induces liver-related death worldwide and represents a common chronic hepatopathy resulting from binge or chronic alcohol consumption. This work focused on revealing the role and molecular mechanism of nodakenin (NK) in ALD associated with hepatic inflammation and lipid metabolism through the regulation of Nur77-P2X7r signaling. In this study, an ALD model was constructed through chronic feeding of Lieber-DeCarli control solution with or without NK treatment. Ethanol (EtOH) or NK was administered to AML-12 cells, after which Nur77 was silenced. HepG2 cells were exposed to ethanol (EtOH) and subsequently treated with recombinant Nur77 (rNur77). Mouse peritoneal macrophages (MPMs) were treated with lipopolysaccharide/adenosine triphosphate (LPS/ATP) and NK, resulting in the generation of conditioned media. In vivo, histopathological alterations were markedly alleviated by NK, accompanied by reductions in serum triglyceride (TG), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) levels and the modulation of Lipin-1, SREBP1, and Nur77 levels in comparison to the EtOH-exposed group (p < 0.001). Additionally, NK reduced the production of P2X7r and NLRP3. NK markedly upregulated Nur77, inhibited P2X7r and Lipin-1, and promoted the function of Cytosporone B, a Nur77 agonist (p < 0.001). Moreover, Nur77 deficiency weakened the regulatory effect of NK on P2X7r and Lipin-1 inhibition (p < 0.001). In NK-exposed MPMs, cleaved caspase-1 and mature IL-1ß expression decreased following LPS/ATP treatment (p < 0.001). NK also decreased inflammatory-factor production in primary hepatocytes stimulated with MPM supernatant. NK ameliorated ETOH-induced ALD through a reduction in inflammation and lipogenesis factors, which was likely related to Nur77 activation. Hence, NK is a potential therapeutic approach to ALD.


Assuntos
Cumarínicos , Glucosídeos , Lipopolissacarídeos , Hepatopatias Alcoólicas , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Hepatopatias Alcoólicas/metabolismo , Fígado , Etanol/metabolismo , Inflamação/metabolismo , Transdução de Sinais/fisiologia , Trifosfato de Adenosina/metabolismo , Camundongos Endogâmicos C57BL , Compostos Orgânicos
11.
Mol Hum Reprod ; 29(5)2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-36892447

RESUMO

Semaphorins are a family of evolutionarily conserved morphogenetic molecules that were initially found to be associated with axonal guidance. Semaphorin 4C (Sema4C), a member of the fourth subfamily of semaphorins, has been demonstrated to play multifaceted and important roles in organ development, immune regulation, tumor growth, and metastasis. However, it is completely unknown whether Sema4C is involved in the regulation of ovarian function. We found that Sema4C was widely expressed in the stroma, follicles, and corpus luteum of mouse ovaries, and its expression was decreased at distinct foci in ovaries of mice of mid-to-advanced reproductive age. Inhibition of Sema4C by the ovarian intrabursal administration of recombinant adeno-associated virus-shRNA significantly reduced oestradiol, progesterone, and testosterone levels in vivo. Transcriptome sequencing analysis showed changes in pathways related to ovarian steroidogenesis and the actin cytoskeleton. Similarly, knockdown of Sema4C by siRNA interference in mouse primary ovarian granulosa cells or thecal interstitial cells significantly suppressed ovarian steroidogenesis and led to actin cytoskeleton disorganization. Importantly, the cytoskeleton-related pathway RHOA/ROCK1 was simultaneously inhibited after the downregulation of Sema4C. Furthermore, treatment with a ROCK1 agonist after siRNA interference stabilized the actin cytoskeleton and reversed the inhibitory effect on steroid hormones described above. In conclusion, Sema4C may play an important role in ovarian steroidogenesis through regulation of the actin cytoskeleton via the RHOA/ROCK1 signaling pathway. These findings shed new light on the identification of dominant factors involved in the endocrine physiology of female reproduction.


Assuntos
Ovário , Semaforinas , Animais , Feminino , Camundongos , Citoesqueleto de Actina/metabolismo , Ovário/metabolismo , RNA Interferente Pequeno/genética , Semaforinas/genética , Semaforinas/metabolismo , Transdução de Sinais
12.
Plant Cell Environ ; 46(12): 3887-3901, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37656830

RESUMO

Alfalfa (Medicago sativa L.) is considered to be the most important forage crop on a global scale. Nevertheless, soil salinity significantly decreases productivity, seriously threatening food security worldwide. One viable strategy is to explore salt stress-responsive factors and elucidate their underlying molecular mechanism, and utilize them in further alfalfa breeding. In the present study, we designated MsWRKY33 as a representative salt stress-responsive factor preferentially expressed in alfalfa roots and leaves. Subsequently, it was demonstrated that MsWRKY33 was localized in the cell nucleus, and functioned as a transcriptional activator of the W-box element. Transgenic alfalfa overexpressing MsWRKY33 displayed enhanced salt stress tolerance and antioxidant activities with no significant difference in other agronomic traits. Transcriptome profiling of MsWRKY33 transgenic alfalfa under control and salt treatment unveiled significantly altered expression of reactive oxygen species (ROS) scavenger genes in transgenic alfalfa. Subsequent examination revealed that MsWRKY33 binded to the promoter of MsERF5, activating its expression and consequently fine-tuning the ROS-scavenging enzyme activity. Furthermore, MsWRKY33 interacted with the functional fragment of MsCaMBP25, which participates in Ca2+ signaling transduction. Collectively, this research offers new insight into the molecular mechanism of alfalfa salt stress tolerance and highlights the potential utility of MsWRKY33 in alfalfa breeding.


Assuntos
Medicago sativa , Tolerância ao Sal , Medicago sativa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/genética , Perfilação da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas
13.
Stem Cells ; 40(1): 88-101, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35511860

RESUMO

Ovarian aging is a pacemaker with multiple organ dysfunction. Recently, stem cells with the ability to generate new oocytes have been identified, which provides the possibility of stem cell therapy for ovarian aging. Several studies have revealed the existence of stem cells in the human postmenopausal ovary. In this study, we describe a new method using magnetic-activated cell sorting combined with differential adhesion to isolate DDX4+ stem cells from ovaries of postmenopausal women and show that the cells exhibit similar gene expression profiles and growth characteristics with primitive germ cells. Furthermore, the DDX4+ stem cells could enter the meiosis stage and differentiation into oocytes. The RNA-seq data of the differentiated oocytes shows that mitochondrial metabolism may play an important role in the oogenesis process of the DDX4+ stem cells. Through using the human ovarian cortical fragments transplantation model, we indicated that the GFP-DDX4+ stem cells differentiated into some GFP positive oocyte-like structure in vivo. Our study provided a new method for the isolation of DDX4+ stem cells from the ovaries of postmenopausal women and confirmed the ability of these stem cells to differentiate into oocytes.


Assuntos
Ovário , Pós-Menopausa , Diferenciação Celular , Feminino , Células Germinativas , Humanos , Oócitos , Ovário/metabolismo , Células-Tronco/metabolismo
14.
BMC Cancer ; 23(1): 152, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782138

RESUMO

BACKGROUND: Glucose and glutamine are the main energy sources for tumor cells. Whether glycolysis and glutaminolysis play a critical role in driving the molecular subtypes of lung adenocarcinoma (LUAD) is unknown. This study attempts to identify LUAD metabolic subtypes with different characteristics and key genes based on gene transcription profiling data related to glycolysis and glutaminolysis, and to construct prognostic models to facilitate patient outcome prediction. METHODS: LUAD related data were obtained from the Cancer Genome Atlas and Gene Expression Omnibus, including TCGA-LUAD, GSE42127, GSE68465, GSE72094, GSE29013, GSE31210, GSE30219, GSE37745, GSE50081. Unsupervised consensus clustering was used for the identification of LUAD subtypes. Differential expression analysis, weighted gene co-expression network analysis (WGCNA) and CytoNCA App in Cytoscape 3.9.0 were used for the screening of key genes. The Cox proportional hazards model was used for the construction of the prognostic risk model. Finally, qPCR analysis, immunohistochemistry and immunofluorescence colocalization were used to validate the core genes of the model. RESULT: This study identified four distinct characterized LUAD metabolic subtypes, glycolytic, glutaminolytic, mixed and quiescent types. The glycolytic type had a worse prognosis than the glutaminolytic type. Nine genes (CXCL8, CNR1, AGER, ALB, S100A7, SLC2A1, TH, SPP1, LEP) were identified as hub genes driving the glycolytic/glutaminolytic LUAD. In addition, the risk assessment model constructed based on three genes (SPP1, SLC2A1 and AGER) had good predictive performance and could be validated in multiple independent external LUAD cohorts. These three genes were differentially expressed in LUAD and lung normal tissues, and might be potential prognostic markers for LUAD. CONCLUSION: LUAD can be classified into four different characteristic metabolic subtypes based on the glycolysis- and glutaminolysis-related genes. Nine genes (CXCL8, CNR1, AGER, ALB, S100A7, SLC2A1, TH, SPP1, LEP) may play an important role in the subtype-intrinsic drive. This metabolic subtype classification, provides new biological insights into the previously established LUAD subtypes.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Prognóstico , Adenocarcinoma de Pulmão/genética , Divisão Celular , Glicólise/genética , Neoplasias Pulmonares/genética
15.
Langmuir ; 39(48): 17122-17132, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37983533

RESUMO

Zeolite is considered an ideal catalyst for olefin hydration due to its high specific surface area and abundant acid sites. However, the immiscibility of the water-oil two phases in olefin hydration limits mass transfer, and the side reaction of etherification occurs acutely, resulting in a low yield of alcohol. Thus, water-oil amphiphilic HZSM-5 was prepared by sulfonating silanized zeolite. The successful introduction of organic and sulfonic acid groups is demonstrated by FT-IR, TG, and water contact angles. Amphiphilic HZSM-5 can stabilize the Pickering emulsion and catalyze cyclopentene hydration at the phase interface. In addition, NH3-TPD and Py-IR show that the amount of strong BroÌ·nsted acid sites of zeolites increases significantly after sulfonation. This facilitates the rate-determining step of cyclopentene activation by H+ to form carbocation. Moreover, the nucleophilic side reactions are inhibited by a high concentration of H+. Finally, under the optimized reaction condition, the conversion of cyclopentene can achieve 5.066% with a selectivity of 85.37% to cyclopentanol, which almost reaches the reaction equilibrium.

16.
Fish Shellfish Immunol ; 132: 108491, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36503059

RESUMO

It has been known that vitamin D3 (VD3) not only plays an important role in regulating calcium and phosphorus metabolism in animals, but also has extensive effects on immune functions. In this study, the mechanism how VD3 influences bactericidal ability in turbot was explored. The transcriptomic analysis identified that dietary VD3 significantly upregulated the gene expression of C-type lectin receptors (CLRs), including mannose receptors (mrc1, mrc2, pla2r1) and collectins (collectin 11 and collectin 12) in turbot intestine. Further results obtained from in vitro experiments confirmed that the gene expression of mannose receptors and collectins in head-kidney macrophages (HKMs) of turbot was induced after the cells were incubated with different concentrations of VD3 (0, 1, 10 nM) or 1,25(OH)2D3 (0, 10, 100 pM). Meanwhile, both phagocytosis and bactericidal functions of HKMs were significantly improved in VD3 or 1,25(OH)2D3-incubated HKMs. Furthermore, phagocytosis and bacterial killing of HKMs decreased after collectin 11 was knocked down. Moreover, VD3-enhanced antibacterial activities diminished in collectin 11-interfered cells. Interestingly, the evidence was provided in the present study that inactive VD3 could be metabolized into active 1,25(OH)2D3 via hydroxylases encoded by cyp27a1 and cyp27b1 in fish macrophages. In conclusion, VD3 could be metabolized to 1,25(OH)2D3 in HKMs, which promoted the expression of CLRs in macrophages, leading to enhanced bacterial clearance.


Assuntos
Colecalciferol , Linguados , Animais , Colecalciferol/farmacologia , Colecalciferol/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Receptor de Manose , Linguados/genética , Linguados/metabolismo , Macrófagos , Colectinas , Rim/metabolismo
17.
Fish Shellfish Immunol ; 133: 108545, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36642352

RESUMO

IL-22 has been characterized as a critical cytokine in maintaining barrier integrity and host immunity. So far, it has been known that IL-22 is mainly produced by lymphoid lineage cells. In the present study, we have thoroughly investigated butyrate-induced production and function of IL-22 in fish macrophages. Our results demonstrated that short-chain fatty acids (SCFAs), major microbiota-derived metabolites, promoted the expression of IL-22 in head kidney macrophages (HKMs) of turbot (Scophthalmus maximus L.). Interestingly, butyrate-mediated intracellular bacterial killing in HKMs diminished when IL-22 expression was interfered. Furthermore, the turbot fed the diet containing sodium butyrate (NaB) exhibited significantly lower mortality after bacterial infection, compared to the fish fed a basal diet. At the meantime, a higher level of IL-22 expression and bactericidal activity was detected in HKMs from the turbot fed NaB-supplemented diet. In addition, NaB treatment promoted the expression of antimicrobial peptides (AMPs) ß-defensins in zebrafish (Danio rerio). However, butyrate-induced expression of AMPs was reduced in IL-22 mutant zebrafish compared to wild-type (WT) fish. Meanwhile, NaB treatment was incapable to protect IL-22 mutant fish from bacterial infection as it did in WT zebrafish. Importantly, our results demonstrated that IL-22 expression was remarkably suppressed in macrophage-depleted zebrafish, indicating that macrophage might be a cell source of IL-22 production in vivo. In conclusion, all these findings collectively revealed that SCFAs regulated the production and function of IL-22 in fish macrophages, which facilitated host resistance to bacterial invasion.


Assuntos
Interleucinas , Peixe-Zebra , Animais , Interleucinas/genética , Interleucinas/metabolismo , Ácido Butírico/farmacologia , Ácido Butírico/metabolismo , Macrófagos , Ácidos Graxos Voláteis/metabolismo , Bactérias , Interleucina 22
18.
Fish Shellfish Immunol ; 143: 109214, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977544

RESUMO

As one of short-chain fatty acids, butyrate is an important metabolite of dietary fiber by the fermentation of gut commensals. Our recent study uncovered that butyrate promoted IL-22 production in fish macrophages to augment the host defense. In the current study, we further explored the underlying signaling pathways in butyrate-induced IL-22 production in fish macrophages. Our results showed that butyrate augmented the IL-22 expression in head kidney macrophages (HKMs) of turbot through binding to G-protein receptor 41 (GPR41) and GPR43. Moreover, histone deacetylase 3 (HDAC3) inhibition apparently up-regulated the butyrate-enhanced IL-22 generation, indicating HDACs were engaged in butyrate-regulated IL-22 secretion. In addition, butyrate triggered the STAT3/HIF-1α signaling to elevate the IL-22 expression in HKMs. Importantly, the evidence in vitro and in vivo was provided that butyrate activated autophagy in fish macrophages via IL-22 signaling, which contributing to the elimination of invading bacteria. In conclusion, we clarified in the current study that butyrate induced STAT3/HIF-1α/IL-22 signaling pathway via GPCR binding and HDAC3 inhibition in fish macrophages to activate autophagy that was involved in pathogen clearance in fish macrophages.


Assuntos
Butiratos , Linguados , Animais , Butiratos/metabolismo , Linguados/metabolismo , Rim Cefálico/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Autofagia , Interleucina 22
19.
Mol Ther ; 30(6): 2370-2387, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35278674

RESUMO

Increasing circular RNAs (circRNAs) are involved in the progression of idiopathic pulmonary fibrosis (IPF). However, circRNA biogenesis and circRNA-mediated crosstalk between mechanical stiffness and biochemical signals in IPF remain obscure. In this study, a novel circRNA-ankyrin repeat domain 42 (ANKRD42) from peripheral blood of patients with IPF, which participated in pulmonary fibrosis through the close communication of mechanical stiffness and biochemical signals, was identified. Mechanistic studies revealed that the heterogeneous nuclear ribonucleoprotein L (hnRNP L) activated the circANKRD42 reverse splicing biogenesis. The biogenetic circANKRD42 sponged miR-324-5p to promote the AJUBA expression, which blocked the binding between phosphorylated yes-associated protein 1 (YAP1) and large tumor suppressor kinase 1/2 (LATS1/2), leading to increased YAP1 entering the nucleus. circANKRD42 also sponged miR-136-5p to promote the YAP1 translation. Accumulating YAP1 in nucleus bound to TEAD, which initiated the transcription of genes related to mechanical stiffness. Finally, the therapeutic effect of circANKRD42 was evaluated in mice and the association between circANKRD42 and clinicopathological features was analyzed in IPF patients. Our findings supported that circANKRD42 is a promising biomarker and a potential therapeutic target related to cytoskeleton tension for IPF treatment.


Assuntos
Fibrose Pulmonar Idiopática , MicroRNAs , Animais , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , Ribonucleoproteínas
20.
J Nanobiotechnology ; 21(1): 490, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38111049

RESUMO

Comprehensively understanding the female reproductive system is crucial for safeguarding fertility and preventing diseases concerning women's health. With the capacity to simulate the intricate physio- and patho-conditions, and provide diagnostic platforms, microfluidic chips have fundamentally transformed the knowledge and management of female reproductive health, which will ultimately promote the development of more effective assisted reproductive technologies, treatments, and drug screening approaches. This review elucidates diverse microfluidic systems in mimicking the ovary, fallopian tube, uterus, placenta and cervix, and we delve into the culture of follicles and oocytes, gametes' manipulation, cryopreservation, and permeability especially. We investigate the role of microfluidics in endometriosis and hysteromyoma, and explore their applications in ovarian cancer, endometrial cancer and cervical cancer. At last, the current status of assisted reproductive technology and integrated microfluidic devices are introduced briefly. Through delineating the multifarious advantages and challenges of the microfluidic technology, we chart a definitive course for future research in the woman health field. As the microfluidic technology continues to evolve and advance, it holds great promise for revolutionizing the diagnosis and treatment of female reproductive health issues, thus propelling us into a future where we can ultimately optimize the overall wellbeing and health of women everywhere.


Assuntos
Microfluídica , Neoplasias do Colo do Útero , Gravidez , Humanos , Feminino , Genitália Feminina , Reprodução , Útero , Dispositivos Lab-On-A-Chip
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA