Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Biochem ; 125(8): e30621, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38924128

RESUMO

Activating transcription factor 6 (ATF6) and its downstream genes are involved in progression of hepatocellular carcinoma (HCC). Herein, we demonstrated that sulfhydration of Ras-related protein Rab-7a (RAB7A) was regulated by ATF6. High expression of RAB7A indicated poor prognosis of HCC patients. RAB7A overexpression contributed to proliferation, colony formation, migration, and invasion of HepG2 and Hep3B cells. Furthermore, we found that RAB7A enhanced aerobic glycolysis in HepG2 cells, indicating a higher degree of tumor malignancy. Mechanistically, RAB7A suppressed Yes-associated protein 1 (YAP1) binding to 14-3-3 and conduced to YAP1 nuclear translocation and activation, promoting its downstream gene expression, thereby promoting growth and metastasis of liver cancer cells. In addition, knocking down RAB7A attenuated the progression of orthotopic liver tumors in mice. These findings illustrate the important role of RAB7A in regulating HCC progression. Thus, RAB7A may be a potential innovative target for HCC treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Carcinoma Hepatocelular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glicólise , Neoplasias Hepáticas , Fatores de Transcrição , Proteínas de Sinalização YAP , proteínas de unión al GTP Rab7 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Proteínas de Sinalização YAP/metabolismo , Animais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Camundongos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Prognóstico , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Camundongos Nus , Células Hep G2 , Movimento Celular , Metástase Neoplásica , Camundongos Endogâmicos BALB C
2.
Mol Cancer ; 23(1): 123, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849845

RESUMO

BACKGROUND: Pediatric-type diffuse high-grade glioma (pHGG) is the most frequent malignant brain tumor in children and can be subclassified into multiple entities. Fusion genes activating the MET receptor tyrosine kinase often occur in infant-type hemispheric glioma (IHG) but also in other pHGG and are associated with devastating morbidity and mortality. METHODS: To identify new treatment options, we established and characterized two novel orthotopic mouse models harboring distinct MET fusions. These included an immunocompetent, murine allograft model and patient-derived orthotopic xenografts (PDOX) from a MET-fusion IHG patient who failed conventional therapy and targeted therapy with cabozantinib. With these models, we analyzed the efficacy and pharmacokinetic properties of three MET inhibitors, capmatinib, crizotinib and cabozantinib, alone or combined with radiotherapy. RESULTS: Capmatinib showed superior brain pharmacokinetic properties and greater in vitro and in vivo efficacy than cabozantinib or crizotinib in both models. The PDOX models recapitulated the poor efficacy of cabozantinib experienced by the patient. In contrast, capmatinib extended survival and induced long-term progression-free survival when combined with radiotherapy in two complementary mouse models. Capmatinib treatment increased radiation-induced DNA double-strand breaks and delayed their repair. CONCLUSIONS: We comprehensively investigated the combination of MET inhibition and radiotherapy as a novel treatment option for MET-driven pHGG. Our seminal preclinical data package includes pharmacokinetic characterization, recapitulation of clinical outcomes, coinciding results from multiple complementing in vivo studies, and insights into molecular mechanism underlying increased efficacy. Taken together, we demonstrate the groundbreaking efficacy of capmatinib and radiation as a highly promising concept for future clinical trials.


Assuntos
Neoplasias Encefálicas , Glioma , Proteínas Proto-Oncogênicas c-met , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Humanos , Glioma/patologia , Glioma/tratamento farmacológico , Glioma/genética , Glioma/terapia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Camundongos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Linhagem Celular Tumoral , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Feminino , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Crizotinibe/farmacologia , Crizotinibe/uso terapêutico , Modelos Animais de Doenças , Criança , Gradação de Tumores , Anilidas/farmacologia , Imidazóis , Triazinas
3.
Langmuir ; 40(19): 9911-9925, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38688881

RESUMO

Groundwater infiltration into tunnels causes water to percolate through the fissure channels in the initial support shotcrete. This results in the dissolution and outflow of calcium hydroxide, a key product of cement hydration. This process significantly incurs the formation of crystallization blockages in the tunnel drainage systems. Optimizing the shotcrete mixing ratio is a feasible way to mitigate these blockages. Therefore, this study conducts calcium dissolution tests to investigate the impact of six admixtures, namely, antialkali agent, nanosilica, nanosilica carbonate, fly ash, sodium methyl silicate waterproofing agents, and silane waterproofing agents, on calcium dissolution resistance. Also, mechanical and microscopic tests are carried out to examine their impact on the strength and pore structure of the shotcrete. The objective of this study is to determine the optimal admixture for enhancing the calcium dissolution resistance of shotcrete. Results indicate that the antialkali agent significantly reduces the calcium leaching content of shotcrete. When the dosage is 14%, the calcium leaching amount is reduced by 68.4% in 28 days. Followed by nanosilica and silane waterproofing agents, with optimal dosages of 12 and 0.4%, respectively, the dissolution amount of calcium ions in shotcrete was reduced by 32.87 and 26.5%, respectively. Fly ash curing for 28 days can also reduce the calcium ion dissolution of shotcrete, while nanocalcium carbonate and sodium methyl silicate have little effect on the calcium dissolution of shotcrete. The antialkali agent with a strong calcium ion dissolution effect can improve the tensile strength of shotcrete under long-term curing conditions, which can be increased by 52%, but it compromises the growth of compressive strength. Nanosilica, fly ash, and silane waterproofing agents can improve both the compressive strength and tensile strength of shotcrete under long-term curing conditions. Specifically, at 28 days of curing, the compressive strength increased by 16.83, 28.8, and 20% and the tensile strength increased by 50.24, 60, and 64.5%. In addition, the microscopy results show that the antialkali agent, nanosilica, and silane waterproofing agents promote the hydration process of cement to form ettringite with a low and stable calcium-silicon ratio and reduce calcium hydroxide crystals. Nanosilica and silane waterproofing agents optimize the pore distribution in shotcrete by increasing beneficial pores, decreasing harmful pores, and reducing total porosity.

4.
J Nanobiotechnology ; 22(1): 410, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992774

RESUMO

Recapitulating the natural extracellular physical microenvironment has emerged as a promising method for tissue regeneration, as multiple physical interventions, including ultrasound, thermal and electrical therapy, have shown great potential. However, simultaneous coupling of multiple physical cues to highly bio-mimick natural characteristics for improved tissue regeneration still remains formidable. Coupling of intrinsic electrical and mechanical cues has been regarded as an effective way to modulate tissue repair. Nevertheless, precise and convenient manipulation on coupling of mechano-electrical signals within extracellular environment to facilitate tissue regeneration remains challengeable. Herein, a photothermal-sensitive piezoelectric membrane was designed for simultaneous integration of electrical and mechanical signals in response to NIR irradiation. The high-performance mechano-electrical coupling under NIR exposure synergistically triggered the promotion of osteogenic differentiation of stem cells and enhances bone defect regeneration by increasing cellular mechanical sensing, attachment, spreading and cytoskeleton remodeling. This study highlights the coupling of mechanical signals and electrical cues for modulation of osteogenesis, and sheds light on alternative bone tissue engineering therapies with multiple integrated physical cues for tissue repair.


Assuntos
Regeneração Óssea , Diferenciação Celular , Osteogênese , Animais , Camundongos , Engenharia Tecidual/métodos , Células-Tronco Mesenquimais/citologia , Humanos
5.
Molecules ; 29(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38792210

RESUMO

A Fe-Co dual-metal co-doped N containing the carbon composite (FeCo-HNC) was prepared by adjusting the ratio of iron to cobalt as well as the pyrolysis temperature with the assistance of functionalized silica template. Fe1Co-HNC, which was formed with 1D carbon nanotubes and 2D carbon nanosheets including a rich mesoporous structure, exhibited outstanding oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic activities. The ORR half-wave potential is 0.86 V (vs. reversible hydrogen electrode, RHE), and the OER overpotential is 0.76 V at 10 mA cm-2 with the Fe1Co-HNC catalyst. It also displayed superior performance in zinc-air batteries. This method provides a promising strategy for the fabrication of efficient transition metal-based carbon catalysts.

6.
PeerJ ; 12: e17283, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708354

RESUMO

Objective: To investigate the impact of the third lumbar skeletal muscle index (L3-SMI) assessed by CT on the in-hospital severity and short-term prognosis of acute pancreatitis. Methods: A total of 224 patients with severe acute pancreatitis admitted to Yantaishan Hospital from January 2021 to June 2022 were selected as the subjects. Based on the in-hospital treatment outcomes, they were divided into a mortality group of 59 cases as well as a survival group of 165 cases. Upon admission, general information such as the Acute Physiology and Chronic Health Evaluation II (APACHE II) score, along with the abdominal CT images of each patient, were analyzed. The L3-SMI was calculated, and the Modified CT Severity Index (MCTSI) and Balthazar CT grade were used to assess the severity of in-hospital complications of acute pancreatitis. The evaluation value of L3-SMI for the prognosis of severe acute pancreatitis was analyzed, as well as the factors influencing the prognosis of severe acute pancreatitis. Results: No statistically significant differences in gender, age, BMI, etiology, duration of anti-inflammatory drug use, and proportion of surgical patients between the survival and mortality groups were observed. But the mortality group showed higher proportions of patients with an elevated APACHE II score upon admission, mechanical ventilation, and renal replacement therapy, compared to the survival group, with statistically significant differences (P < 0.001). Furthermore, the mortality group had higher MCTSI scores (6.42 ± 0.69) and Balthazar CT grades (3.78 ± 0.45) than the survival group, with statistically significant differences (P < 0.001). The mortality group also had a lower L3-SMI (39.68 ± 3.25) compared to the survival group (42.71 ± 4.28), with statistically significant differences (P < 0.001). L3-SMI exhibited a negative correlation with MCTSI scores and Balthazar CT grades (r = -0.889, -0.790, P < 0.001). Logistic regression analysis, with mortality of acute pancreatitis patients as the dependent variable and MCTSI scores, Balthazar CT grades, L3-SMI, APACHE II score upon admission, mechanical ventilation, and renal replacement therapy as independent variables, revealed that MCTSI scores and L3-SMI were risk factors for mortality in acute pancreatitis patients (P < 0.001). Logistic regression analysis using the same variables confirmed that all these factors were risk factors for mortality in acute pancreatitis patients. Conclusion: This study confirmed that diagnosing muscle depletion using L3-SMI is a valuable radiological parameter for predicting in-hospital severity and short-term prognosis in patients with acute pancreatitis.


Assuntos
APACHE , Vértebras Lombares , Músculo Esquelético , Pancreatite , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Pancreatite/mortalidade , Pancreatite/terapia , Pancreatite/fisiopatologia , Pancreatite/diagnóstico por imagem , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/fisiopatologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiopatologia , Músculo Esquelético/patologia , Adulto , Idoso , Mortalidade Hospitalar
7.
J Colloid Interface Sci ; 658: 373-382, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38113546

RESUMO

In this work, potassium acetate (KAc) was added during the synthesis of a Zn-Fe based metal-organic framework (Fe-ZIF-8) to increase the fixed amount of Fe while simultaneously enhancing the number of pores. Electrospinning was utilized to embed KAc-modified Fe-ZIF-8 (Fe-ZIF-8-Ac) into the polyacrylonitrile nanofiber mesh, to obtain a network composite (Fe@NC-Ac) with hierarchical porous structure. Fe@NC-Ac was co-pyrolyzed with thiourea, resulting in Fe, N, S co-doped carbon electrocatalyst. The electrochemical tests indicated that the prepared catalyst displayed relatively remarkable oxygen reduction reaction (ORR) catalytic activity, with an onset potential (Eonset) of 1.08 V (vs. reversible hydrogen electrode, RHE) and a half-wave potential (E1/2) of 0.94 V, both higher than those of the commercial Pt/C (Eonset = 0.95 V and E1/2 = 0.84 V), respectively. Assembled into Zn-air batteries, the optimized catalyst exhibited higher open circuit voltage (1.698 V) and peak power density (90 mW cm-2) than those of the commercial 20 wt% Pt/C (1.402 V and 80 mW cm-2), respectively. This work provided a straightforward manufacturing strategy for the design of hierarchical porous carbon-based ORR catalysts with desirable performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA