Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2307750, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38431939

RESUMO

As an innovative technology, four-dimentional (4D) printing is built upon the principles of three-dimentional (3D) printing with an additional dimension: time. While traditional 3D printing creates static objects, 4D printing generates "responsive 3D printed structures", enabling them to transform or self-assemble in response to external stimuli. Due to the dynamic nature, 4D printing has demonstrated tremendous potential in a range of industries, encompassing aerospace, healthcare, and intelligent devices. Nanotechnology has gained considerable attention owing to the exceptional properties and functions of nanomaterials. Incorporating nanomaterials into an intelligent matrix enhances the physiochemical properties of 4D printed constructs, introducing novel functions. This review provides a comprehensive overview of current applications of nanomaterials in 4D printing, exploring their synergistic potential to create dynamic and responsive structures. Nanomaterials play diverse roles as rheology modifiers, mechanical enhancers, function introducers, and more. The overarching goal of this review is to inspire researchers to delve into the vast potential of nanomaterial-enabled 4D printing, propelling advancements in this rapidly evolving field.

2.
J Ultrasound Med ; 39(10): 2043-2052, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32352188

RESUMO

OBJECTIVES: Cancer is characterized by uncontrolled cell proliferation, which makes novel therapies highly desired. In this study, the effects of near-field low-intensity pulsed ultrasound (LIPUS) stimulation on T47D human breast cancer cell and healthy immortalized MCF-12A breast epithelial cell proliferation were investigated in monolayer cultures. METHODS: A customized ultrasound (US) exposure setup was used for the variation of key US parameters: intensity, excitation duration, and duty cycle. Cell proliferation was quantified by 5-bromo-2'-deoxyuridine and alamarBlue assays after LIPUS excitation. RESULTS: At a 20% duty cycle and 10-minute excitation period, we varied LIPUS intensity from to 100 mW/cm2 (spatial-average temporal-average) to find a gradual decrease in T47D cell proliferation, the decrease being strongest at 100 mW/cm2 . In contrast, healthy MCF-12A breast cells showed an increase in proliferation when exposed to the same conditions. Above a 60% duty cycle, T47D cell proliferation decreased drastically. Effects of continuous wave US stimulation were further explored by varying the intensity and excitation period. CONCLUSIONS: These experiments concluded that, irrespective of the waveform (pulsed or continuous), LIPUS stimulation could inhibit the proliferation of T47D breast cancer cells, whereas the same behavior was not observed in healthy cells. The study demonstrates the beneficial bioeffects of LIPUS on breast cancer cells and offers the possibility of developing novel US-mediated cancer therapy.


Assuntos
Neoplasias da Mama , Terapia por Ultrassom , Neoplasias da Mama/terapia , Diferenciação Celular , Proliferação de Células , Humanos , Ondas Ultrassônicas
3.
Nanomedicine ; 19: 58-70, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31004813

RESUMO

Osteochondral defects resulting from trauma and/or pathologic disorders are critical clinical problems. The current approaches still do not yield satisfactory due to insufficient donor sources and potential immunological rejection of implanted tissues. 3D printing technology has shown great promise for fabricating customizable, biomimetic tissue matrices. The purpose of the present study is to investigate 3D printed scaffolds with biomimetic, biphasic structure for osteochondral regeneration. For this purpose, nano-hydroxyapatite and transforming growth factor beta 1 nanoparticles were synthesized and distributed separately into the lower and upper layers of the biphasic scaffold, which was fabricated using 3D stereolithography printer. Our results showed that this scaffold design successfully promoted osteogenic and chondrogenic differentiation of human bone marrow mesenchymal stem cells, as well as enhanced gene expression associated with both osteogenesis and chondrogenesis alike. The finding demonstrated that 3D printed osteochondral scaffolds with biomimetic, biphasic structure are excellent candidates for osteochondral repair and regeneration.


Assuntos
Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Condrogênese , Osteogênese , Impressão Tridimensional , Regeneração , Alicerces Teciduais/química , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Nanopartículas/química , Nanopartículas/ultraestrutura , Osteogênese/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Regeneração/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo
4.
Nanotechnology ; 29(18): 185101, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29446757

RESUMO

Cartilage tissue is prone to degradation and has little capacity for self-healing due to its avascularity. Tissue engineering, which provides artificial scaffolds to repair injured tissues, is a novel and promising strategy for cartilage repair. 3D bioprinting offers even greater potential for repairing degenerative tissue by simultaneously integrating living cells, biomaterials, and biological cues to provide a customized scaffold. With regard to cell selection, mesenchymal stem cells (MSCs) hold great capacity for differentiating into a variety of cell types, including chondrocytes, and could therefore be utilized as a cartilage cell source in 3D bioprinting. In the present study, we utilize a tabletop stereolithography-based 3D bioprinter for a novel cell-laden cartilage tissue construct fabrication. Printable resin is composed of 10% gelatin methacrylate (GelMA) base, various concentrations of polyethylene glycol diacrylate (PEGDA), biocompatible photoinitiator, and transforming growth factor beta 1 (TGF-ß1) embedded nanospheres fabricated via a core-shell electrospraying technique. We find that the addition of PEGDA into GelMA hydrogel greatly improves the printing resolution. Compressive testing shows that modulus of the bioprinted scaffolds proportionally increases with the concentrations of PEGDA, while swelling ratio decreases with the increase of PEGDA concentration. Confocal microscopy images illustrate that the cells and nanospheres are evenly distributed throughout the entire bioprinted construct. Cells grown on 5%/10% (PEGDA/GelMA) hydrogel present the highest cell viability and proliferation rate. The TGF-ß1 embedded in nanospheres can keep a sustained release up to 21 d and improve chondrogenic differentiation of encapsulated MSCs. The cell-laden bioprinted cartilage constructs with TGF-ß1-containing nanospheres is a promising strategy for cartilage regeneration.


Assuntos
Bioimpressão , Cartilagem/fisiologia , Células-Tronco Mesenquimais/citologia , Nanosferas/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Cartilagem/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Condrogênese/genética , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Tinta , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Nanosferas/ultraestrutura , Estresse Mecânico , Alicerces Teciduais/química , Fator de Crescimento Transformador beta1/farmacologia
5.
Environ Sci Technol ; 52(15): 8920-8929, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30011188

RESUMO

Metal-based nanomaterials (MNMs) represent a large category of the engineered nanomaterials, and have been extensively used to enhance the electrical, optical, and magnetic properties of nanoenabled consumer products. Inhaled MNMs can penetrate deeply into the peripheral lung at which they first interact with the pulmonary surfactant (PS) lining of alveoli. Here we studied the biophysical inhibitory potential of representative MNMs on a modified natural PS, Infasurf, using a novel in vitro experimental methodology called the constrained drop surfactometry (CDS). It was found that the biophysical inhibitory potential of six MNMs on Infasurf ranks in the order CeO2 > ZnO > TiO2 > Ag > Fe3O4 > ZrO2-CeO2. This rank of in vitro biophysical inhibition is in general agreement with the in vitro and in vivo toxicity of these MNMs. Directly imaging the lateral structure and molecular conformation of the PS film using atomic force microscopy revealed that there exists a correlation between biophysical inhibition of the PS film by the MNMs and their aggregation state at the PS film. Taken together, our study suggests that the nano-bio interactions at the PS film are determined by multiple physicochemical properties of the MNMs, including not only well-studied properties such as their chemical composition and particle size, but also properties such as hydrophobicity, dissolution rate, and aggregation state at the PS film found here. Our study provides novel insight into the understanding of nanotoxicology and metallomics of MNMs.


Assuntos
Nanoestruturas , Surfactantes Pulmonares , Pulmão , Metais , Tamanho da Partícula
6.
Nanomedicine ; 14(7): 2485-2494, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-28552650

RESUMO

Carbon-based nanomaterials have shown great promise in regenerative medicine because of their unique electrical, mechanical, and biological properties; however, it is still difficult to engineer 2D pure carbon nanomaterials into a 3D scaffold while maintaining its structural integrity. In the present study, we developed novel carbon nanofibrous scaffolds by annealing electrospun mats at elevated temperature. The resultant scaffold showed a cohesive structure and excellent mechanical flexibility. The graphitic structure generated by annealing renders superior electrical conductivity to the carbon nanofibrous scaffold. By integrating the conductive scaffold with biphasic electrical stimulation, neural stem cell proliferation was promoted associating with upregulated neuronal gene expression level and increased microtubule-associated protein 2 immunofluorescence, demonstrating an improved neuronal differentiation and maturation. The findings suggest that the integration of the conducting carbon nanofibrous scaffold and electrical stimulation may pave a new avenue for neural tissue regeneration.


Assuntos
Estimulação Elétrica , Regeneração Tecidual Guiada/instrumentação , Nanofibras/química , Regeneração Nervosa/fisiologia , Células-Tronco Neurais/fisiologia , Engenharia Tecidual , Alicerces Teciduais , Animais , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Células Cultivadas , Regeneração Tecidual Guiada/métodos , Camundongos , Regeneração Nervosa/efeitos da radiação , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos da radiação
7.
Mater Today (Kidlington) ; 20(10): 577-591, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29403328

RESUMO

Four dimensional (4D) printing is an emerging technology with great capacity for fabricating complex, stimuli-responsive 3D structures, providing great potential for tissue and organ engineering applications. Although the 4D concept was first highlighted in 2013, extensive research has rapidly developed, along with more-in-depth understanding and assertions regarding the definition of 4D. In this review, we begin by establishing the criteria of 4D printing, followed by an extensive summary of state-of-the-art technological advances in the field. Both transformation-preprogrammed 4D printing and 4D printing of shape memory polymers are intensively surveyed. Afterwards we will explore and discuss the applications of 4D printing in tissue and organ regeneration, such as developing synthetic tissues and implantable scaffolds, as well as future perspectives and conclusions.

8.
Nanotechnology ; 28(38): 382001, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28762957

RESUMO

The field of tissue engineering is advancing steadily, partly due to advancements in rapid prototyping technology. Even with increasing focus, successful complex tissue regeneration of vascularized bone, cartilage and the osteochondral interface remains largely illusive. This review examines current three-dimensional printing techniques and their application towards bone, cartilage and osteochondral regeneration. The importance of, and benefit to, nanomaterial integration is also highlighted with recent published examples. Early-stage successes and challenges of recent studies are discussed, with an outlook to future research in the related areas.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Doenças Musculoesqueléticas/terapia , Nanotecnologia/métodos , Impressão Tridimensional/instrumentação , Regeneração/fisiologia , Alicerces Teciduais , Animais , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Osso e Ossos/cirurgia , Cartilagem/efeitos dos fármacos , Cartilagem/patologia , Cartilagem/cirurgia , Humanos , Doenças Musculoesqueléticas/patologia , Doenças Musculoesqueléticas/cirurgia , Sistema Musculoesquelético/efeitos dos fármacos , Sistema Musculoesquelético/patologia , Sistema Musculoesquelético/cirurgia , Nanotecnologia/instrumentação , Neovascularização Fisiológica , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
9.
Nanotechnology ; 27(6): 064001, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26758780

RESUMO

3D bioprinting has begun to show great promise in advancing the development of functional tissue/organ replacements. However, to realize the true potential of 3D bioprinted tissues for clinical use requires the fabrication of an interconnected and effective vascular network. Solving this challenge is critical, as human tissue relies on an adequate network of blood vessels to transport oxygen, nutrients, other chemicals, biological factors and waste, in and out of the tissue. Here, we have successfully designed and printed a series of novel 3D bone scaffolds with both bone formation supporting structures and highly interconnected 3D microvascular mimicking channels, for efficient and enhanced osteogenic bone regeneration as well as vascular cell growth. Using a chemical functionalization process, we have conjugated our samples with nano hydroxyapatite (nHA), for the creation of novel micro and nano featured devices for vascularized bone growth. We evaluated our scaffolds with mechanical testing, hydrodynamic measurements and in vitro human mesenchymal stem cell (hMSC) adhesion (4 h), proliferation (1, 3 and 5 d) and osteogenic differentiation (1, 2 and 3 weeks). These tests confirmed bone-like physical properties and vascular-like flow profiles, as well as demonstrated enhanced hMSC adhesion, proliferation and osteogenic differentiation. Additional in vitro experiments with human umbilical vein endothelial cells also demonstrated improved vascular cell growth, migration and organization on micro-nano featured scaffolds.


Assuntos
Regeneração Óssea/fisiologia , Osso e Ossos/fisiologia , Nanoestruturas/química , Osteogênese/fisiologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Durapatita/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Impressão
10.
Nanotechnology ; 27(41): 414001, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27606933

RESUMO

Osteochondral tissue has a complex graded structure where biological, physiological, and mechanical properties vary significantly over the full thickness spanning from the subchondral bone region beneath the joint surface to the hyaline cartilage region at the joint surface. This presents a significant challenge for tissue-engineered structures addressing osteochondral defects. Fused deposition modeling (FDM) 3D bioprinters present a unique solution to this problem. The objective of this study is to use FDM-based 3D bioprinting and nanocrystalline hydroxyapatite for improved bone marrow human mesenchymal stem cell (hMSC) adhesion, growth, and osteochondral differentiation. FDM printing parameters can be tuned through computer aided design and computer numerical control software to manipulate scaffold geometries in ways that are beneficial to mechanical performance without hindering cellular behavior. Additionally, the ability to fine-tune 3D printed scaffolds increases further through our investment casting procedure which facilitates the inclusion of nanoparticles with biochemical factors to further elicit desired hMSC differentiation. For this study, FDM was used to print investment-casting molds innovatively designed with varied pore distribution over the full thickness of the scaffold. The mechanical and biological impacts of the varied pore distributions were compared and evaluated to determine the benefits of this physical manipulation. The results indicate that both mechanical properties and cell performance improve in the graded pore structures when compared to homogeneously distributed porous and non-porous structures. Differentiation results indicated successful osteogenic and chondrogenic manipulation in engineered scaffolds.


Assuntos
Impressão Tridimensional , Humanos , Células-Tronco Mesenquimais , Osteogênese , Engenharia Tecidual , Alicerces Teciduais
11.
Nanotechnology ; 27(31): 315103, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27346678

RESUMO

Bone metastasis is one of the most prevalent complications of late-stage breast cancer, in which the native bone matrix components, including osteoblasts, are intimately involved in tumor progression. The development of a successful in vitro model would greatly facilitate understanding the underlying mechanism of breast cancer bone invasion as well as provide a tool for effective discovery of novel therapeutic strategies. In the current study, we fabricated a series of in vitro bone matrices composed of a polyethylene glycol hydrogel and nanocrystalline hydroxyapatite of varying concentrations to mimic the native bone microenvironment for the investigation of breast cancer bone metastasis. A stereolithography-based three-dimensional (3D) printer was used to fabricate the bone matrices with precisely controlled architecture. The interaction between breast cancer cells and osteoblasts was investigated in the optimized bone matrix. Using a Transwell® system to separate the two cell lines, breast cancer cells inhibited osteoblast proliferation, while osteoblasts stimulated breast cancer cell growth, whereas, both cell lines increased IL-8 secretion. Breast cancer cells co-cultured with osteoblasts within the 3D bone matrix formed multi-cellular spheroids in comparison to two-dimensional monolayers. These findings validate the use of our 3D printed bone matrices as an in vitro metastasis model, and highlights their potential for investigating breast cancer bone metastasis.

12.
Nanomedicine ; 12(1): 69-79, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26472048

RESUMO

Bone is one of the most common metastatic sites of breast cancer, but the underlying mechanisms remain unclear, in part due to an absence of advanced platforms for cancer culture and study that mimic the bone microenvironment. In the present study, we integrated a novel stereolithography-based 3D printer and a unique 3D printed nano-ink consisting of hydroxyapatite nanoparticles suspended in hydrogel to create a biomimetic bone-specific environment for evaluating breast cancer bone invasion. Breast cancer cells cultured in a geometrically optimized matrix exhibited spheroid morphology and migratory characteristics. Co-culture of tumor cells with bone marrow mesenchymal stem cells increased the formation of spheroid clusters. The 3D matrix also allowed for higher drug resistance of breast cancer cells than 2D culture. These results validate that our 3D bone matrix can mimic tumor bone microenvironments, suggesting that it can serve as a tool for studying metastasis and assessing drug sensitivity. From the Clinical Editor: Cancer remains a major cause of mortality for patients in the clinical setting. For breast cancer, bone is one of the most common metastatic sites. In this intriguing article, the authors developed a bone-like environment using 3D printing technology to investigate the underlying biology of bone metastasis. Their results would also allow a new model for other researchers who work on cancer to use.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Matriz Óssea/química , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Nanocompostos/química , Materiais Biomiméticos/síntese química , Linhagem Celular Tumoral , Humanos , Teste de Materiais , Nanocompostos/ultraestrutura , Invasividade Neoplásica , Tamanho da Partícula , Impressão Tridimensional , Microambiente Tumoral
13.
Nanomedicine ; 11(3): 693-704, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25596341

RESUMO

Neural tissue engineering offers a promising avenue for repairing neural injuries. Advancement in nanotechnology and neural scaffold manufacturing strategies has shed light on this field into a new era. In this study, a novel tissue engineered scaffold, which possesses highly aligned poly-ε-caprolactone microfibrous framework and adjustable bioactive factor embedded poly (d, l-lactide-co-glycolide) core-shell nanospheres, was fabricated by combining electrospinning and electrospraying techniques. The fabricated nanocomposite scaffold has cell favorable nanostructured feature and improved hydrophilic surface property. More importantly, by incorporating core-shell nanospheres into microfibrous scaffold, a sustained bioactive factor release was achieved. Results show rat pheochromocytoma (PC-12) cell proliferation was significantly promoted on the nanocomposite scaffold. In addition, confocal microscope images illustrated that the highly aligned scaffold increased length of neurites and directed neurites extension along the fibers in both PC-12 and astrocyte cell lines, which indicates that the scaffold is promising for guiding neural tissue growth and regeneration. From the clinical editor: In an attempt to direct neural cell growth, biomimetic neural scaffold was produced by electrospinning integrated with co-axial electrospraying techniques. In-vitro data provided a framework for future designs for neuronal regeneration.


Assuntos
Proliferação de Células , Nanocompostos/química , Neuritos/metabolismo , Poliglactina 910/química , Regeneração , Alicerces Teciduais/química , Animais , Células PC12 , Ratos
14.
Nanotechnology ; 24(36): 365102, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23959974

RESUMO

Cartilage tissue is a nanostructured tissue which is notoriously hard to regenerate due to its extremely poor inherent regenerative capacity and complex stratified architecture. Current treatment methods are highly invasive and may have many complications. Thus, the goal of this work is to use nanomaterials and nano/microfabrication methods to create novel biologically inspired tissue engineered cartilage scaffolds to facilitate human bone marrow mesenchymal stem cell (MSC) chondrogenesis. To this end we utilized electrospinning to design and fabricate a series of novel 3D biomimetic nanostructured scaffolds based on hydrogen (H2) treated multi-walled carbon nanotubes (MWCNTs) and biocompatible poly(L-lactic acid) (PLLA) polymers. Specifically, a series of electrospun fibrous PLLA scaffolds with controlled fiber dimension were fabricated in this study. In vitro MSC studies showed that stem cells prefer to attach in the scaffolds with smaller fiber diameter. More importantly, the MWCNT embedded scaffolds showed a drastic increase in mechanical strength and a compressive Young's modulus matching to natural cartilage. Furthermore, our MSC differentiation results demonstrated that incorporation of the H2 treated carbon nanotubes and poly-L-lysine coating can induce more chondrogenic differentiations of MSCs than controls. After two weeks of culture, PLLA scaffolds with H2 treated MWCNTs and poly-L-lysine can achieve the highest glycosaminoglycan synthesis, making them promising for further exploration for cartilage regeneration.


Assuntos
Células da Medula Óssea/citologia , Cartilagem/fisiologia , Hidrogênio/farmacologia , Células-Tronco Mesenquimais/citologia , Nanotubos de Carbono/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Adulto , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Cartilagem/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Colágeno/biossíntese , Módulo de Elasticidade/efeitos dos fármacos , Feminino , Glicosaminoglicanos/biossíntese , Humanos , Ácido Láctico/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Nanotubos de Carbono/ultraestrutura , Poliésteres , Polímeros/farmacologia
15.
Int J Nanomedicine ; 18: 1809-1821, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051312

RESUMO

Purpose: 4D fabrication techniques have been utilized for advanced biomedical therapeutics due to their ability to create dynamic constructs that can transform into desired shapes on demand. The internal structure of the human cardiovascular system is complex, where the contracting heart has a highly curved surface that changes shape with the heart's dynamic beating motion. Hence, 4D architectures that adjust their shapes as required are a good candidate to readily deliver cardiac cells into the damaged heart and/or to serve as self-morphing tissue scaffolds/patches for healing cardiac diseases. In this proof-of-concept in vitro study, a two-in-one 4D smart cardiac construct that integrates the functions of minimally invasive cell vehicles and in situ tissue patches was developed for repairing damaged myocardial tissue. Methods: For this purpose, a series of thermo-responsive 4D structures with different shapes and sizes were fabricated via the combination of fused deposition modeling (FDM)-printing and stamping molding. The thermo-responsive 4D constructs were firstly optimized to exhibit their shape transformation behavior at the designated temperature for convenient control. After which, the mechanical properties, shape recovery rate, and shape recovery speed of the 4D constructs at different temperatures were thoroughly evaluated. Also, the proliferation and functional prototype of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) on the 4D constructs were quantified and evaluated using F-actin staining and immunostaining. Results: Our results showed that the 4D constructs possessed the desirable capability of shape-changing from spherical carriers to unfolded patches at human body temperature and exhibited excellent biocompatibility. Moreover, myocardial maturation in vitro with a uniform and printing pattern-specific cell distribution was observed on the surface of the unfolded 4D constructs. Conclusion: We successfully developed a 4D smart cardiac construct that integrates the functions of minimally invasive cell vehicles and in situ tissue patches for repairing damaged myocardial tissue.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Miócitos Cardíacos/metabolismo , Miocárdio , Alicerces Teciduais/química , Terapia Baseada em Transplante de Células e Tecidos
16.
Tissue Eng Part A ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37847181

RESUMO

Nerve repair poses a significant challenge in the field of tissue regeneration. As a bioengineered therapeutic method, nerve conduits have been developed to address damaged nerve repair. However, despite their remarkable potential, it is still challenging to encompass complex physiologically microenvironmental cues (both biophysical and biochemical factors) to synergistically regulate stem cell differentiation within the implanted nerve conduits, especially in a facile manner. In this study, a neurogenic nerve conduit with self-actuated ability has been developed by in situ immobilization of neurogenic factors onto printed architectures with aligned microgrooves. One objective was to facilitate self-entubulation, ultimately enhancing nerve repairs. Our results demonstrated that the integration of topographical and in situ biological cues could accurately mimic native microenvironments, leading to a significant improvement in neural alignment and enhanced neural differentiation within the conduit. This innovative approach offers a revolutionary method for fabricating multifunctional nerve conduits, capable of modulating neural regeneration efficiently. It has the potential to accelerate the functional recovery of injured neural tissues, providing a promising avenue for advancing nerve repair therapies.

17.
Biomater Adv ; 153: 213579, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37566935

RESUMO

Engineering of myocardial tissues has become a promising therapeutic strategy for treating myocardial infarction (MI). However, a significant challenge remains in generating clinically relevant myocardial tissues that possess native microstructural characteristics and fulfill the requirements for implantation within the human body. In this study, a thick 3D myocardial construct with anisotropic myofibers and perfusable branched vascular channels is created with clinically relevant dimensions using a customized beam-scanning stereolithography printing technique. To obtain tissue-specific matrix niches, a decellularized extracellular matrix microfiber-reinforced gelatin-based bioink is developed. The bioink plays a crucial role in facilitating the precise manufacturing of a hierarchical microstructure, enabling us to better replicate the physiological characteristics of the native myocardial tissue matrix in terms of structure, biomechanics, and bioactivity. Through the integration of the tailored bioink with our printing method, we demonstrate a biomimetic architecture, appropriate biomechanical properties, vascularization, and improved functionality of induced pluripotent stem cell-derived cardiomyocytes in the thick tissue construct in vitro. This work not only offers a novel and effective means to generate biomimetic heart tissue in vitro for the treatment of MI, but also introduces a potential methodology for creating clinically relevant tissue products to aid in other complex tissue/organ regeneration and disease model applications.


Assuntos
Miocárdio , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Miócitos Cardíacos , Impressão Tridimensional , Estereolitografia
18.
Int J Biol Macromol ; 246: 125669, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37406901

RESUMO

Tissue engineering research has undergone to a revolutionary improvement, thanks to technological advancements, such as the introduction of bioprinting technologies. The ability to develop suitable customized biomaterial inks/bioinks, with excellent printability and ability to promote cell proliferation and function, has a deep impact on such improvements. In this context, printing inks based on chitosan and its derivatives have been instrumental. Thus, the current review aims at providing a comprehensive overview on chitosan-based materials as suitable inks for 3D/4D (bio)printing and their applicability in creating advanced drug delivery platforms and tissue engineered constructs. Furthermore, relevant strategies to improve the mechanical and biological performances of this biomaterial are also highlighted.


Assuntos
Quitosana , Engenharia Tecidual , Impressão Tridimensional , Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Alicerces Teciduais
19.
J Nanosci Nanotechnol ; 12(10): 7692-702, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23421129

RESUMO

With an increasingly active and aging population, a growing number of orthopedic procedures are performed annually. However, traditional orthopedic implants face many complications such as infection, implant loosening, and poor host tissue integration leading to implant failure. Metal implant materials such as titanium and its alloys are widely used in orthopedic applications mainly based on their excellent mechanical properties and biological inertness. Since human bone extracellular matrix is nanometer in dimension comprised of rich nanostructured hydroxyapatite particles and collagen nanofibers, it is highly desirable to design a biologically-inspired nanostructured coating which renders the biocompatible titanium surface into a biomimetic and bioactive interface, thus enhancing osteoblast adhesion and promoting osseointegration. For this purpose, a biomimetic nanostructured coating based on nanocrystalline hydroxyapatite and single wall carbon nanotubes was designed. Specifically, nano hydroxyapatites with good crystallinity and biomimetic dimensions were prepared via a wet chemistry method and hydrothermal treatment. Microcrystalline hydroxyapatite with larger grain sizes can be obtained without hydrothermal treatment. The carbon nanotubes with different diameter and length were synthesized via an arc plasma method in the presence or absence of a magnetic field. Transmission electron microscopy images illustrate the regular, rod-like nanocrystalline and biomimetic nanostructure of hydrothermally treated nano hydroxyapatite. In addition, the length of carbon nanotubes can be significantly increased under external magnetic fields when compared to nanotubes produced without a magnetic field. More importantly, the in vitro study demonstrated for the first time that osteoblast and mesenchymal stem cell adhesion and proliferation were greater on titanium with hydrothermally treated nanocrystalline hydroxyapatites/magnetically treated carbon nanotubes, which suggests the potential of these novel nanostructured materials for orthopedic applications.


Assuntos
Adesão Celular , Proliferação de Células , Durapatita , Células-Tronco Mesenquimais/citologia , Nanotubos de Carbono , Osteoblastos/citologia , Titânio , Linhagem Celular , Cristalização , Humanos , Magnetismo , Microscopia Eletrônica de Transmissão
20.
Adv Mater ; 34(20): e2109198, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34951494

RESUMO

The rapid development of 3D printing has led to considerable progress in the field of biomedical engineering. Notably, 4D printing provides a potential strategy to achieve a time-dependent physical change within tissue scaffolds or replicate the dynamic biological behaviors of native tissues for smart tissue regeneration and the fabrication of medical devices. The fabricated stimulus-responsive structures can offer dynamic, reprogrammable deformation or actuation to mimic complex physical, biochemical, and mechanical processes of native tissues. Although there is notable progress made in the development of the 4D printing approach for various biomedical applications, its more broad-scale adoption for clinical use and tissue engineering purposes is complicated by a notable limitation of printable smart materials and the simplistic nature of achievable responses possible with current sources of stimulation. In this review, the recent progress made in the field of 4D printing by discussing the various printing mechanisms that are achieved with great emphasis on smart ink mechanisms of 4D actuation, construct structural design, and printing technologies, is highlighted. Recent 4D printing studies which focus on the applications of tissue/organ regeneration and medical devices are then summarized. Finally, the current challenges and future perspectives of 4D printing are also discussed.


Assuntos
Impressão Tridimensional , Materiais Inteligentes , Engenharia Tecidual , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA